cindyhouse0221
瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。 有一次,俄国女皇邀请法国哲学家狄德罗访问她的宫廷。狄德罗试图通过使朝臣改信无神论来证明他是值得被邀请的。女皇厌倦了,她命令欧拉去让这位哲学家闭嘴。于是,狄德罗被告知,一个有学问的数学家用代数证明了上帝的存在,要是他想听的话,这位数学家将当着所有朝臣的面给出这个证明。狄德罗高兴地接受了挑战。 第二天,在宫廷上,欧拉朝狄德罗走去,用一种非常肯定的声调一本正经地说:“先生,,因此上帝存在。请回答!”对狄德罗来说,这听起来好像有点道理,他困惑得不知说什么好。周围的人报以纵声大笑,使这个可怜的人觉得受了羞辱。他请求女皇答应他立即返回法国,女皇神态自若地答应了。 就这样,一个伟大的数学家用欺的手段“战胜”了一个伟大的哲学家。 拉普拉斯和拉格朗日是19世纪初法国的两位数学家。拉普拉斯在数学上十分伟大,在政治上却是一个十足的小人,每次政权更迭,他都能够见风使舵,毫无政治操守可言。拉普拉斯曾把他的巨著《天体力学》献给拿破仑。拿破仑想惹恼拉普拉斯,责备他犯了一个明显的疏忽:“你写了一本关于世界体系的书,却一次也没有提到宇宙的创造者——上帝。” 拉普拉斯反驳说:“陛下,我不需要这样一个假设。” 当拿破仑向拉格朗日复述这句话时,拉格朗日说:“啊,但那是一个很好的假设,它说明了许多问题。” 两个神童19世纪初,在大西洋两岸出现了两个神童:一个是英国少年哈密顿,另一个是美国孩子科尔伯恩哈密顿的天才表现在语言学上,他8岁时就已经掌握了英文、拉丁文、希腊文和希伯莱文;12岁时已熟练地掌握了波斯语、阿拉伯语、马来语和孟加拉语,只是由于没有教科书,他才没有学习汉语。科尔伯恩则在数学上表现出神奇的天才,小时候,有人问他4294967297是否是素数时,他立刻回答不是,因为它有641作为除数。类似的例子多得不胜枚举,但他不能解释他得出正确结论的过程。 人们把两个神童带到一起,这次会面是奇妙的,现在已经无法确知他们交谈了什么,但结果却是完全出人意料的:科尔伯恩的数学天赋完全“移植”给了哈密顿;哈密顿放弃了语言学,投身数学,成为爱尔兰历史上最伟大的数学家。 至于科尔伯恩,他的天才渐渐消失了。 数学家之死挪威数学家阿贝尔22岁的时候就对数学的发展做出了重大的贡献,但并不为当时的数学界所接受。他过着穷困潦倒的生活,这严重地影响了他的健康,他得了肺结核,这在当时是绝症。在最后的几个星期,他一直在考虑他的未婚姐的未来。他写信给他最好的朋友基尔豪:“她并不美丽,有着一头红发和雀斑,但她是一个可爱的女子。”虽然基尔豪和肯普从未见过面,但阿贝尔希望他们两个能够结婚。 肯普小姐照料阿贝尔度过了生命的最后时刻。在葬礼上,她与专程赶来的基尔豪相遇了。基尔豪帮助她克服了悲伤,他们相爱并结了婚。正如阿贝尔所希望的那样,基尔豪和肯普婚后十分幸福,他们经常到阿贝尔墓前去怀念他。随着岁月的流逝,他们发现越来越多的人从各地赶来,为阿贝尔在数学上的贡献向他表达他们迟到的敬意,而他们只是这一朝圣队伍中的一对普通的朝圣者。 1832年5月29日,法国年轻气盛的伽罗瓦为了所谓的“爱情与荣誉”打算和另外一个人决斗。他知道对手的枪法很好,自己获胜的希望很小,很可能会死去。他问自己,如何度过这最后的夜晚?在这之前,他曾写过两篇数学论文,但都被权威轻蔑地拒绝了:一次是被伟大的数学家柯西;另一次是被神圣的法兰西科学院他头脑中的东西是有价值的。整个晚上,他把飞逝的时间用来焦躁地一气写出他在科学上的遗言。在死亡之前尽快地写,把他丰富的思想中那些伟大的东西尽量写出来。他不时中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。 他在天亮之前那最后几个小时写出的东西,一劳永逸地为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一个极为重要的分支——群论。 第二天上午,在决斗场上,他被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去。”他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。 数学家的问题费马是17世纪法国图卢兹议会的议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的数学家们提出了严峻的挑战。 费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。1908年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“费马大定理”完全证明的人。自此定理提出后,数学家们奋斗了300多年,还是没有证出来。但这个定理肯定存在,费马知道它。 在数学上,“费马大定理”已成为一座比珠穆朗玛峰更高的山峰,人类的数学智慧只有一次达到过这样的高度,从那以后,再也没有达到过。
蓝色天机
孔子应该是一个教育家,而且当时很受人尊敬。他在政治上是有抱负的,比如周游列国,就是他想在政治领域表达声音的努力,只是没取得什么成绩。孔子肯定是一个非常伟大的教育家,也是儒家的代表人物,在当时的思想界是泰斗级的人物,但这并不表示儒家思想是灵丹妙药,可治百病.中国历史上也是有很多思想流派的,比如道家,法家,阴阳家,佛家等等,都是以自已的思想在描述社会。但社会是本身现实存在的,我认为用文字是不能完全描述清楚的。思想可以用来启发智慧,但绝对不可以当做现实,想用某种思想一统天下肯定是不妥的。
V大米爸爸V
他根本上不了岗。他有大学学历吗?他写过什么论文吗?在核心期刊上发表过吗?他愿意给教授打工吗?他家也不富裕,上不上得起大学还成问题。而且,象这种人,身边常常跟着一群人,还有好打架的混迹其中,一看就是社会不安定因素。他还到处SHANG访。哼,我看他比较危险。
休普若斯
弗兰克,维克多(Frankl,Viktor 1905-?)美国临床心理学家。出生于身地利,1930年在维也纳大学获得医学博士学位,1949年获得哲学博士学位。第二次世界大战后,是美国国际大学的著名教授,并任哈佛大学、斯坦福大学、迪尤省大学和南卫理公会大学的访问教授。 弗兰克尔是言语疗法的奠基者,其治疗理论被称为维也纳第三精神治疗学派,前两个学派为S.弗洛伊德学派和A.阿德勒学派。本世纪20代,弗兰克尔开始发表论文,第一篇论文应弗洛伊德约稿刊布于弗洛伊德的《国际精神分析》杂志上,第二篇论文应阿德勒约稿刊布于阿德勒的《国际个体心理学》杂志上。然而,由于他的非下统观点,他被先后开除出弗洛伊德的精神分析学会和阿德勒的个体心理学学会。此后,弗兰克尔受到O.施瓦茨和R.阿勒斯的影响,特别是存在主义者L.宾斯万格和现象学家M.谢勒的影响,不再信奉精神分析和个体心理学,开始倡导其独特的体系。早在40年代,弗兰克尔的理论就具有人本主义的倾向。他认为,人的主要动机是要理解生存的目的与意义,揭示自己生存的秘密。他把这种支机称作“探求意义的意愿”。动物娃求快乐与征服,却不懂生存的意义;人的本性在于探求意义。由于“探求意义的意愿”是人的主要支机,因此,倘若在现实生活中这一内在的欲求受到阴碍,就会引起人的心理障碍。启发患者去发现生活的意义,是言语疗法的核心。言语疗法的裨在于,治疗者应使患者逐步认识到死亡、痛苦、不确定性的必然性,面临这些遭遇不可避免地会使人感到焦虑、恐惧、失望和罪恶感。患者有时为回避这种焦虑感,会歪曲自己的内心体验,生活在不真实的存在之中。引导患者懂得只有通忍受这些焦虑和痛苦,并在与这些困难作斗争的过程中,才能体验到自己的存在。治疗的最终目的是唤起患者的责任感,乇底了解自己存在的意义和目的,对自己的生活道路有明确的方向。弗兰克尔的言语治疗是以“人类对意义的探索”为依据的,因此他给他的成名作定名为《人类对意义的探索》。这部著作以弗兰克尔在纳粹集中营的亲身经历,包括在臭名昭著的奥斯威辛集中营的经历,阐述了他能自下而上下来的唯一支柱是对生活意义的理解,并由此提出言语疗法的理论与实践。他后来的一些著作有:《意义的意愿》、《无意识的上帝》、《听不见的要求意义的呼声》、《精神治疗和存在主义》、《医生和心灵》等。这些著作详尽阐述并发展了他的言语疗法。
小S妈是顾大厨
人物简介约翰·冯·诺依曼( John von Neumann,1903-1957),“现代电子计算机之父”,美籍匈牙利人,物理学家、数学家、发明家,“现代电子计算机之父”即电脑(即EDVAC,它是世界上第一台现代意义的通用计算机)的发明者。1903年12月28日生于匈牙 约翰·冯·诺依曼利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对孩子的教育.冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.1921年一1923年在苏黎世联邦工业大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁.1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年他成为美国普林斯顿大学的第一批终身教授,那时,他还不到30岁。1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生. 冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院士. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席. 1954年夏,冯·诺依曼被发现患有癌症,1957年2月8日,在华盛顿去世,终年54岁.编辑本段杰出贡献主要贡献冯·诺伊曼是二十世纪最重要的数学家之一,在纯粹数学和应用数学方面都有杰出的贡献。他的工作大致可以分为两个时期:1940年以前,主要是纯粹数学的研究:在数理逻辑方面提出简单而明确的序数理论,并对集合论进行新的公理化,其中明确区别集合与类;其后,他研究希尔伯特空间上线性自伴算子谱理论,从而为量子力学打下数学基础;1930年起,他证明平均遍历定理开拓了遍历理论的新领域;1933年,他运用紧致群解决了希尔伯特第五问题;此外,他还在测度论、格论和连续几何学方面也有开创性的贡献;从1936~1943年,他和默里合作,创造了算子环理论,即现在所谓的冯·诺伊曼代数。 1940年以后,冯·诺伊曼转向应用数学。如果说他的纯粹数学成就属于数学界,那么他在力学、经济学、数值分析和电子计算机方面的工作则属于全人类。第二次世界大战开始,冯·诺伊曼因战事的需要研究可压缩气体运动,建立冲击波理论和湍流理论,发展了流体力学;从1942年起,他同莫根施特恩合作,写作《博弈论和经济行为》一书,这是博弈论(又称对策论)中的经典著作,使他成为数理经济学的奠基人之一。 冯·诺伊曼对世界上第一台电子计算机ENIAC(电子数字积分计算机)的设计提出过建议,1945年3月他在共同讨论的基础上起草EDVAC(电子离散变量自动计算机)设计报告初稿,这对后来计算机的设计有决定性的影响,特别是确定计算机的结构,采用存储程序以及二进制编码等,至今仍为电子计算机设计者所遵循。 1946年,冯·诺依曼开始研究程序编制问题,他是现代数值分析——计算数学的缔造者之一,他首先研究线性代数和算术的数值计算,后来着重研究非线性微分方程的离散化以及稳定问题,并给出误差的估计。他协助发展了一些算法,特别是蒙特卡罗方法。 40年代末,他开始研究自动机理论,研究一般逻辑理论以及自复制系统。在生命的最后时刻他深入比较天然自动机与人工自动机。他逝世后其未完成的手稿在1958年以《计算机与人脑》为名出版。 冯·诺伊曼的主要著作收集在《冯·诺伊曼全集》(6卷,1961)中。 无论在纯粹数学还是在应用数学研究方面,冯·诺依曼都显示了卓越的才能,取得了众多影响深远的重大成果。不断变换研究主题,常常在几种学科交叉渗透中获得成就是他的特色。 最简单的来说,他的精髓贡献是2点:2进制思想与程序内存思想。 回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".而在经济学方面,他也有突破性成就,被誉为“博弈论之父”。在物理领域,冯·诺依曼在30年代撰写的《量子力学的数学基础》已经被证明对原子物理学的发展有极其重要的价值。在化学方面也有相当的造诣,曾获苏黎世高等技术学院化学系大学学位。与同为犹太人的哈耶克一样,他无愧是上世纪最伟大的全才之一。 约翰·冯·诺依曼冯·诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯·诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在1925年的一篇论文中,冯·诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题. 1933年,冯·诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群.1934年他又把紧群理论与波尔的殆周期函数理论统一起来.他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的. 他对算子代数进行了开创性工作,并奠定了它的理论基础,从而建立了算子代数这门新的数学分支.这个分支在当代的有关数学文献中均称为冯·诺依曼代数.这是有限维空间中矩阵代数的自然推广. 冯·诺依曼还创立了博弈论这一现代数学的又一重要分支. 1944年发表了奠基性的重要论文《博弈论与经济行为》.论文中包含博弈论的纯粹数学形式的阐述以及对于实际博弈应用的详细说明.文中还包含了诸如统计理论等教学思想.冯·诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作. 冯·诺依曼对人类的最大贡献是对计算机科学、计算机技术、数值分析和经济学中的博弈论的开拓性工作. 现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的"科洛萨斯"计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接几天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进。 1944年,诺伊曼参加原子弹的研制工作,该工作涉及到极为困难的计算。在对原子核反应过程的研究中,要对一个反应的传播做出“是”或“否”的回答。解决这一问题通常需要通过几十亿次的数学运算和逻辑指令,尽管最终的数据并不要求十分精确,但所有的中间运算过程均不可缺少,且要尽可能保持准确。他所在的洛·斯阿拉莫斯实验室为此聘用了一百多名女计算员,利用台式计算机从早到晚计算,还是远远不能满足需要。无穷无尽的数字和逻辑指令如同沙漠一样把人的智慧和精力吸尽。 被计算机所困扰的诺伊曼在一次极为偶然的机会中知道了ENIAC计算机的研制计划,从此他投身到计算机研制这一宏伟的事业中,建立了一生中最大的丰功伟绩。 1944年夏的一天,正在火车站候车的诺伊曼巧遇戈尔斯坦,并同他进行了短暂的交谈。当时,戈尔斯坦是美国弹道实验室的军方负责人,他正参与ENIAC计算机的研制工作。在交谈中,戈尔斯坦告诉了诺伊曼有关ENIAC的研制情况。具有远见卓识的诺伊曼为这一研制计划所吸引,他意识到了这项工作的深远意义。 冯·诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军.1945年,他们在共同讨论的基础上,发表了一个全新的"存储程序通用电子计算机方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的缩写).在这过程中,冯·诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力。诺伊曼以“关于EDVAC的报告草案”为题,起草了长达101页的总结报告。报告广泛而具体地介绍了制造电子计算机和程序设计的新思想。这份报告是计算机发展史上一个划时代的文献,它向世界宣告:电子计算机的时代开始了。 EDVAC方案明确奠定了新机器由五个部分组成,包括:运算器、逻辑控制装置、存储器、输入和输出设备,并描述了这五部分的职能和相互关系.报告中,诺伊曼对EDVAC中的两大设计思想作了进一步的论证,为计算机的设计树立了一座里程碑。 设计思想之一是二进制,他根据电子元件双稳工作的特点,建议在电子计算机中采用二进制。报告提到了二进制的优点,并预言,二进制的采用将大简化机器的逻辑线路。 现在使用的计算机,其基本工作原理是存储程序和程序控制,它是由世界著名数学家冯·诺依曼提出的。美籍匈牙利数学家冯·诺依曼被称为“计算机之父”。 实践证明了诺伊曼预言的正确性。如今,逻辑代数的应用已成为设计电子计算机的重要手段,在EDVAC中采用的主要逻辑线路也一直沿用着,只是对实现逻辑线路的工程方法和逻辑电路的分析方法作了改进。程序内存程序内存是诺伊曼的另一杰作。通过对ENIAC的考察,诺伊曼敏锐地抓住了它的最大弱点--没有真正的存储器。ENIAC只在20个暂存器,它的程序是外插型的,指令存储在计算机的其他电路中。这样,解题之前,必需先相好所需的全部指令,通过手工把相应的电路联通。这种准备工作要花几小时甚至几天时间,而计算本身只需几分钟。计算的高速与程序的手工存在着很大的矛盾。 针对这个问题,诺伊曼提出了程序内存的思想:把运算程序存在机器的存储器中,程序设计员只需要在存储器中寻找运算指令,机器就会自行计算,这样,就不必每个问题都重新编程,从而大大加快了运算进程。这一思想标志着自动运算的实现,标志着电子计算机的成熟,已成为电子计算机设计的基本原则。 1946年7,8月间,冯·诺依曼和戈尔德斯廷、勃克斯在EDVAC方案的基础上,为普林斯顿大学高级研究所研制IAS计算机时,又提出了一个更加完善的设计报告《电子计算机逻辑设计初探》.以上两份既有理论又有具体设计的文件,首次在全世界掀起了一股"计算机热",它们的综合设计思想,便是著名的"冯·诺依曼机",其中心就是有存储程序原则--指令和数据一起存储.这个概念被誉为'计算机发展史上的一个里程碑".它标志着电子计算机时代的真正开始,指导着以后的计算机设计.自然一切事物总是在发展着的,随着科学技术的进步,今天人们又认识到"冯·诺依曼机"的不足,它妨碍着计算机速度的进一步提高,而提出了"非冯·诺依曼机"的设想. 冯·诺依曼还积极参与了推广应用计算机的工作,对如何编制程序及搞数值计算都作出了杰出的贡献. 冯·诺依曼于1937年获美国数学会的波策奖;1947年获美国总统的功勋奖章、美国海军优秀公民服务奖;1956年获美国总统的自由奖章和爱因斯坦纪念奖以及费米奖。相关书籍冯·诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版.他的主要著作收集在六卷《冯·诺依曼全集》中,1961年出版。 另外,冯·诺依曼40年代出版的著作《博弈论和经济行为》,使他在经济学和决策科学领域竖起了一块丰碑。他被经济学家公认为博弈论之父。当时年轻的约翰·纳什在普林斯顿求学期间开始研究发展这一领域,并在1994年凭借对博弈论的突出贡献获得了诺贝尔经济学奖。编辑本段生平经历前半生 诺伊曼,著名美籍匈牙利数学家。1903年12月3日生于匈牙利布达佩斯的一个犹太人家庭。 冯·诺依曼的父亲麦克斯年轻有为、风度翩翩,凭着勤奋、机智和善于经营,年轻时就已跻身于布达佩斯的银行家行列。冯·诺依曼的母亲是一位善良的妇女,贤慧温顺,受过良好教育。 冯·诺伊曼从小就显示出数学天才,关于他的童年有不少传说。大多数的传说都讲到冯·诺伊曼自童年起在吸收知识和解题方面就具有惊人的速度。六岁时他能心算做八位数乘除法,八岁时掌握微积分,十二岁就读懂领会了波莱尔的大作《函数论》要义。 微积分的实质是对无穷小量进行数学分析。人类探索有限、无限以及它们之间的关系由来已久,l7世纪由牛顿莱布尼茨发现的微积分,是人类探索无限方面取得的一项激动人心的伟大成果。三百年来,它一直是高等学府的教学内容,随着时代的发展,微积分在不断地改变它的形式,概念变得精确了,基础理论扎实了,甚至有不少简明恰当的陈述。但不管怎么说,八岁的儿童要弄懂微积分,仍然是罕见的。上述种种传闻虽然不尽可信,但冯·诺伊曼的才智过人,则是与他相识的人们的一致看法。 1914年夏天,约翰进入了大学预科班学习,是年7月28日,奥匈帝国借故向塞尔维亚宣战,揭开了第一次世界大战的序幕。由于战争动乱连年不断,冯·诺依曼全家离开过匈牙利,以后再重返布达佩斯。当然他的学业也会受到影响。但是在毕业考试时,冯·诺依曼的成绩仍名列前茅。 1921年,冯·诺依曼通过“成熟”考试时,已被大家当作数学家了。他的第一篇论文是和菲克特合写的,那时他还不到18岁。麦克斯由于考虑到经济上原因,请人劝阻年方17的冯·诺依曼不要专攻数学,后来父子俩达成协议,冯·诺依曼便去攻读化学。 其后的四年间,冯·诺依曼在布达佩斯大学注册为数学方面的学生,但并不听课,只是每年按时参加考试。与此同时,冯·诺依曼入柏林大学(1921年),1923年又进入瑞士苏黎世联邦工业大学学习化学。1926年他在苏黎世的获得化学方面的大学毕业学位,通过在每学期期末回到布达佩斯大学通过课程考试,他也获得了布达佩斯大学数学博士学位。 冯·诺依曼的这种不参加听课只参加考试的求学方式,当时是非常特殊的,就整个欧洲来说也是完全不合规则的。但是这不合规则的学习方法,却又非常适合冯·诺依曼。冯·诺依曼在柏林大学学习期间,曾得到化学家哈贝尔的悉心栽培。哈贝尔是德国著名的化学家,由于合成氨而获诺贝尔奖。 逗留在苏黎世期间,冯·诺依曼常常利用空余时间研读数学、写文章和数学家通信。在此期间冯·诺依曼受到了希尔伯特和他的学生施密特和外尔的思想影响,开始研究数理逻辑。当时外尔和波伊亚两位也在苏黎世,他和他们有过交往。一次外尔短期离开苏黎世,冯·诺依曼还代他上过课。聪明的智慧加上得天独厚的栽培,冯·诺依曼在茁壮地成长,当他结束学生时代的时候,他已经漫步在数学、物理、化学三个领域的某些前沿。 1926年春,冯·诺依曼到哥廷根大学任希尔伯特的助手。1927~1929年,冯·诺依曼在柏林大学任兼职讲师,期间他发表了集合论、代数和量子理论方面的文章。l927年冯·诺依曼到波兰里沃夫出席数学家会议,那时他在数学基础和集合论方面的工作已经很有名气。 l929年,冯·诺依曼转任汉堡大学兼职讲师。1930年他首次赴美,成为普林斯顿大学的客座讲师。善于汇集人才的美国不久就聘冯·诺依曼为客座教授。 冯·诺依曼曾经算过,德国大学里现有的和可以期待的空缺很少,照他典型的推理得出,在三年内可以得到的教授任命数是三,而参加竞争的讲师则有40名之多。在普林斯顿,冯·诺依曼每到夏季就回欧洲,一直到l933年担任普林斯顿高级研究院教授为止。当时高级研究院聘有六名教授,其中就包括爱因斯坦,而年仅30岁的冯·诺依曼是他们当中最年轻的一位。 在高等研究院初创时间,欧洲来访者会发现,那里充满着一种极好的不拘礼节的、浓厚的研究风气。教授们的办公室设置在大学的“优美大厦”里,生活安定,思想活跃,高质量的研究成果层出不穷。可以这样说,那里集中了有史以来最多的有数学和物理头脑的人才。 l930年冯·诺依曼和玛丽达·柯维斯结婚。1935年他们的女儿玛丽娜出生在普林斯顿。冯·诺依曼家里常常举办时间持续很长的社交聚会,这是远近皆知的。l937年冯·诺依曼与妻子离婚,1938年又与克拉拉·丹结婚,并一起回普林斯顿。丹随冯·诺依曼学数学,后来成为优秀的程序编制家。与克拉拉婚后,冯·诺依曼的家仍是科学家聚会的场所,还是那样殷勤好客,在那里人人都会感到一种聪慧的气氛。 二次大战欧洲战事爆发后,冯·诺依曼的活动越出了普林斯顿,参与了同反法西斯战争有关的多项科学研究计划。l943年起他成了制造原子弹的顾问,战后仍在政府诸多部门和委员会中任职。1954年又成为美国原子能委员会成员。 冯·诺依曼的多年老友,原子能委员会主席斯特劳斯曾对他作过这样的评价:从他被任命到1955年深秋,冯·诺依曼干得很漂亮。他有一种使人望尘莫及的能力,最困难的问题到他手里。都会被分解成一件件看起来十分简单的事情,……用这种办法,他大大地促进了原子能委员会的工作。 晚年 冯·诺依曼的健康状况一直很好,可是由于工作繁忙,到1954年他开始感到十分疲劳。1955年的夏天,X射线检查出他患有癌症,但他还是不停的工作,病势扩展。后来他被安置在轮椅上,继续思考、演说及参加会议。长期而无情的疾病折磨着他,慢慢地终止了他所有的活动。1956年4月,他进入华盛顿的沃尔特·里德医院,1957年2月8日在医院逝世,享年53岁。集合论、数学基础冯·诺依曼的第一篇论文是和菲克特合写的,是关于车比雪夫多项式求根法的菲叶定理推广,注明的日期是1922年,那时冯·诺依曼还不满18岁。另一篇文章讨论一致稠密数列,用匈牙利文写就,题目的选取和证明手法的简洁显露出冯·诺依曼在代数技巧和集合论直观结合的特征。 1923年当冯·诺依曼还是苏黎世的大学生时,发表了超限序数的论文。文章第一句话就直率地声称“本文的目的是将康托的序数概念具体化、精确。他的关于序数的定义,现在已被普遍采用。 强烈企求探讨公理化是冯·诺依曼的愿望,大约从l925年到l929年,他的大多数文章都尝试着贯彻这种公理化精神,以至在理论物理研究中也如此。当时,他对集合论的表述处理,尤感不够形式化,在他1925年关于集合论公理系统的博士论文中,开始就说“本文的目的,是要给集合论以逻辑上无可非议的公理化论述”。 有趣的是,冯·诺依曼在论文中预感到任何一种形式的公理系统所具有的局限性,模糊地使人联想到后来由哥德尔证明的不完全性定理。对此文章,著名逻辑学家、公理集合论奠基人之一的弗兰克尔教授曾作过如下评价:“我不能坚持说我已把(文章的)一切理解了,但可以确有把握地说这是一件杰出的工作,并且透过他可以看到一位巨人”。 1928年冯·诺依曼发表了论文《集合论的公理化》,是对上述集合论的公理化处理。该系统十分简洁,它用第一型对象和第二型对象相应表示朴素集合论中的集合和集合的性质,用了一页多一点的纸就写好了系统的公理,它已足够建立朴素集合论的所有内容,并借此确立整个现代数学。 冯·诺依曼的系统给出了集合论的也许是第一个基础,所用的有限条公理,具有像初等几何那样简单的逻辑结构。冯·诺依曼从公理出发,巧妙地使用代数方法导出集合论中许多重要概念的能力简直叫人惊叹不已,所有这些也为他未来把兴趣落脚在计算机和“机械化”证明方面准备了条件。 20年代后期,冯·诺依曼参与了希尔伯特的元数学计划,发表过几篇证明部分算术公理无矛盾性的论文。l927年的论文《关于希尔伯特证明论》最为引人注目,它的主题是讨论如何把数学从矛盾中解脱出来。文章强调由希尔伯特等提出和发展的这个问题十分复杂,当时还未得到满意的解答。它还指出阿克曼排除矛盾的证明并不能在古典分析中实现。为此,冯·诺依曼对某个子系统作了严格的有限性证明。这离希尔伯特企求的最终解答似乎不远了。这是恰在此时,1930年哥德尔证明了不完全性定理。定理断言:在包含初等算术(或集合论)的无矛盾的形式系统中,系统的无矛盾性在系统内是不可证明的。至此,冯·诺依曼只能中止这方面的研究。 冯·诺依曼还得到过有关集合论本身的专门结果。他在数学基础和集合论方面的兴趣一直延续到他生命的结束。三项最重要的数学工作在1930~1940年间,冯·诺依曼在纯粹数学方面取得的成就更为集中,创作更趋于成熟,声誉也更高涨。后来在一张为国家科学院填的问答表中,冯·诺依曼选择了量子理论的数学基础、算子环理论、各态遍历定理三项作为他最重要数学工作。 1927年冯·诺依曼已经在量子力学领域内从事研究工作。他和希尔伯待以及诺戴姆联名发表了论文《量子力学基础》。该文的基础是希尔伯特1926年冬所作的关于量子力学新发展的讲演,诺戴姆帮助准备了讲演,冯·诺依曼则从事于该主题的数学形式化方面的工作。文章的目的是将经典力学中的精确函数关系用概率关系代替之。希尔伯特的元数学、公理化的方案在这个生气勃勃的领域里获得了施展,并且获得了理论物理和对应的数学体系间的同构关系。对这篇文章的历史重要性和影响无论如何评价都不会过高。冯·诺依曼在文章中还讨论了物理学中可观察算符的运算的轮廓和埃尔米特算子的性质,无疑,这些内容构成了《量子力学的数学基础》一书的序曲。 1932世界闻名的斯普林格出版社出版了他的《量子力学的数学基础》,它是冯·诺依曼主要著作之一,初版为德文,1943年出了法文版,1949年为西班牙文版,1955年被译成英文出版,至今仍不失为这方面的经典著作。当然他还在量子统计学、量子热力学、引力场等方面做了不少重要工作。 客观地说,在量子力学发展史上,冯·诺依曼至少作出过两个重要贡献:狄拉克对量子理论的数学处理在某种意义下是不够严格的,冯·诺依曼通过对无界算子的研究,发展了希尔伯特算子理论,弥补了这个不足;此外,冯·诺依曼明确指出,量子理论的统计特征并非由于从事测量的观察者之状态未知所致。借助于希尔伯待空间算子理论,他证明凡包括一般物理量缔合性的量子理论之假设,都必然引起这种结果。 对于冯·诺依曼的贡献,诺贝尔物理学奖获得者威格纳曾作过如下评价:“在量子力学方面的贡献,就是以确保他在当代物理学领域中的特殊地位。” 在冯·诺依曼的工作中,希尔伯特空间上的算子谱论和算子环论占有重要的支配地位,这方面的文章大约占了他发表的论文的三分之一。它们包括对线性算子性质的极为详细的分析,和对无限维空间中算子环进行代数方面的研究。 算子环理论始于1930年下半年,冯·诺依曼十分熟悉诺特和阿丁的非交换代数,很快就把它用于希尔伯特空间上有界线性算子组成的代数上去,后人把它称之为冯·诺依曼算子代数。 1936~1940年间,冯·诺依曼发表了六篇关于非交换算子环论文,可谓20世纪分析学方面的杰作,其影响一直延伸至今。冯·诺依曼曾在《量子力学的数学基础》中说过:由希尔伯特最早提出的思想就能够为物理学的量子论提供一个适当的基础,而不需再为这些物理理论引进新的数学构思。他在算子环方面的研究成果应验了这个目标。冯·诺依曼对这个课题的兴趣贯穿了他的整个生涯。 算子环理论的一个惊人的生长点是由冯·诺依曼命名的连续几何。普通几何学的维数为整数1、2、3等,冯·诺依曼在著作中已看到,决定一个空间的维数结构的,实际上是它所容许的旋转群。因而维数可以不再是整数,连续级数空间的几何学终于提出来了。 1932年,冯·诺依曼发表了关于遍历理论的论文,解决了遍历定理的证明,并用算子理论加以表述,它是在统计力学中遍历假设的严格处理的整个研究领域中,获得的第一项精确的数学结果。冯·诺依曼的这一成就,可能得再次归功于他所娴熟掌握的受到集合论影响的数学分析方法,和他自己在希尔伯特算子研究中创造的那些方法。它是20世纪数学分析研究领域中取得的最有影响成就之一,也标志着一个数学物理领域开始接近精确的现代分析的一般研究。 此外冯·诺依曼在实变函数论、测度论、拓扑、连续群、格论等数学领域也取得不少成果。1900年希尔伯特在那次著名的演说中,为20世纪数学研究提出了23个问题,冯·诺依曼也曾为解决希尔伯特第五问题作了贡献。编辑本段一般应用数学1940年,是冯·诺依曼科学生涯的一个转换点。在此之前,他是一位通晓物理学的登峰造极的纯粹数学家;此后则成了一位牢固掌握纯粹数学的出神入化的应用数学家。他开始关注当时把数学应用于物理领域去的最主要工具——偏微分方程。研究同时他还不断创新,把非古典数学应用到两个新领域:对策论和电子计算机。
柔情似水9999
电脑之父冯·诺依曼��这是关于第一台电脑埃历阿克巧遇"电脑父"的小故事。1944年仲夏的一个傍晚,戈德斯坦中尉来到阿伯丁车站,等候去费城的火车,突然看见前面不远处有个熟悉的身影向他走过来。来者正是闻名世界的大数学家冯·诺依曼。��天赐良机,戈德斯坦感到决不能放过这次偶然的邂逅,他把早已埋藏在心中的几个数学难题,一古脑儿倒出来,向数学大师讨教。大数学家和蔼可亲,耐心地讲解。讲着讲着,冯·诺依曼不觉流露出吃惊的神色,敏锐地从数学问题里,感到眼前这位青年身边正发生着什么不寻常的事情。他开始反过来向戈德斯坦发问,戈德斯坦毫不隐瞒地告诉了他莫尔学院的电子计算机课题和目前的研究进展。��冯·诺依曼真的被震惊了,随即又感到极其兴奋。从1940年起,他就是阿伯丁试炮场的顾问,同样的计算问题也曾使数学大师焦虑万分。他急不可耐地向戈德斯坦表示,希望亲自到莫尔学院看一看那台尚未出世的机器。��莫契利和埃克特高兴地等待着冯·诺依曼的来访,他们也迫切希望得到这位著名学者的指导。埃克特私下对莫契利说道:"你只要听听他提的第一个问题,就能判断出他是不是真正的天才。"��骄阳似火的8月,冯·诺依曼风尘仆仆地赶到了莫尔学院的试验基地,马不停蹄地约见攻关小组成员。莫契利想起了埃克特的话,竖着耳朵静听数学大师的第一个问题。当他听到冯·诺依曼首先问及的是机器的逻辑结构时,不由得对埃克特心照不宣地一笑,两人都被这位大科学家的睿智所折服!从此,冯·诺依曼成为莫尔学院电子计算机攻关小组的实际顾问,与小组成员频繁地交换意见。年轻人机敏地提出各种设想,冯·诺依曼则运用他渊博的学识,把讨论引向深入,并逐步形成电子计算机的系统设计思想。人们后来把"电脑之父"的桂冠戴在冯·诺依曼头上,而不是第一台电脑的两位实际研制者,这并不是没有根据的。��冯·诺依曼,美籍匈牙利人,1913年出生,曾被称为"数学神童"--他6岁能心算8位数除法,8岁学会微积分,12岁读懂了函数论。在17岁那年,他发表第一篇数学论文,不久又在最新数学分支--集合论、泛函分析等理论研究中取得突破性进展。22岁时,他获瑞士苏黎士联邦工业大学化学工程师文凭;一年之后,又获得了布达佩斯大学的数学博士学位。他继而转攻物理,为量子力学研究数学模型,使他在理论物理学领域也占据了突出的地位。1933年,与爱因斯坦一起被聘为普林斯顿高等研究院的第一批终身教授。��当然,往日的辉煌不足以说明冯·诺依曼在电子计算机上做出的贡献。埃历阿克虽然威力强大,但是它毕竟还很不完善,比如存在着耗电多、费用高的缺点。它的耗电量超过174千瓦,据说那些年,只要埃历阿克一开动,整个费城市的所有灯光顿时黯然失色。那些个电子管发光又发热,平均每隔7分钟就要损坏一只。虽然当初只花了军械部40万元的研制费用,可谁能料到,维护它的费用后来竟超过200万之巨!埃历阿克最致命的缺点是程序与计算两分离。指挥埃历阿克2万电子管工作的程序指令,被存放在机器的外部电路里。需要计算某个题目前,埃克特必须分派几十员精兵强将,把数百条线路用手接通,像一群电话接线员那样手忙脚乱地忙活好几天,才能进行几分钟运算。��现在的人不应该因此而责难莫契利和埃克特,因为电子计算机的设计毕竟是前无古人的。这时,冯·诺依曼仗剑而出,用高超的十八般"武功",一举攻克了巨大的难关。��在埃历阿克尚未投入运行前,冯·诺依曼就已开始着手起草一份新的设计报告,要对这台电子计算机进行脱胎换骨的改造。他把新机器的方案命名为"离散变量自动电子计算机",英文缩写译音是"埃德瓦克"(EDVAC)。正是这份方案,奠定了现代电脑体系结构坚实的根基。1945年6月,冯·诺依曼带领他的"得意门徒"戈德斯坦等人,撰写完成了埃德瓦克方案。他明确规定出计算机的五大部件,并用二进制替代十进制运算,大大方便了机器的电路设计。埃德瓦克方案的革命意义在于"存储程序"---程序也被当作数据存进了机器内部,以便电脑能自动依次执行指令,再也不必去接通什么线路。长达101页纸洋洋万言的埃德瓦克方案,是现代计算机发展里程碑式的文献,人们后来把按这一方案思想设计的机器统称为"诺依曼机"。��自冯·诺依曼设计的埃德瓦克始,直到今天我们用"奔腾"芯片制作的多媒体计算机为止,电脑一代又一代的"传人",大大小小千千万万台计算机,都没能跳出诺依曼机"如来佛"的手掌心。在这个意义上,冯·诺依曼是当之无愧的"电脑之父"。当然,随着人工智能和神经网络计算机的发展,诺依曼机一统天下的格局已经被打破,但是,冯·诺依曼对发展电脑作出的巨大功绩,永远也不会因此而泯灭其光辉!
露西亞嘉利
数学史上出现的三次数学危机,与其说是“数学的危机”,不如说是“数学哲学的危机”.下面我给你分享三次数学危机论文,欢迎阅读。
摘要:本文主要通过数学史上的三次危机的产生与消除,针对它们的本质浅谈自己的认识,实际导致这三次危机原因在与人的认识。第一次数学危机是人们对万物皆数的误解,随着无理数的发现,把第一次数学危机度过了。第二次数学危机是人们对无穷小的误解,微积分的出现产生了一种新的方法,即分析方法,分析方法是算和证的结合。是通过无穷趋近而确定某一结果。罗素悖论的发现,给数学界以极大的震动,导致了数学史上的第三次危机。为了探求其根源和解决难题的途径,在数学界逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。
关键词:危机;万物皆数;无穷小;分析方法;集合
一、前言
数学常常被人们认为是自然科学中发展得最完善的一门学科,但在数学的发展史中,却经历了三次危机,人们为了使数学向前发展,从而引入一些新的东西使问题化解,在第一次危机中导致无理数的产生;第二次危机发生在十七世纪微积分诞生后,无穷小量的刻画问题,最后是柯西解决了这个问题;第三次危机发生在19世纪末,罗素悖论的产生引起数学界的轩然大波,最后是将集合论建立在一组公理之上,以回避悖论来缓解数学危机。本文回顾了数学上三次危机的产生与发展,并给出了自己对这三次危机的看法,最后得出确定性丧失的结论。
二、数学史上的第一次“危机”
第一次数学危机是发生在公元前580-568年之间的古希腊。那时的数学正值昌盛,忒被是以毕达哥拉斯为代表的毕氏学派对数的认识进行了研究,他们认为“万物旨数”。所谓数就是指整数,他们确定数的目的是企图通过揭示数的奥秘来探索宇宙的永恒真理,信条是:宇宙间的一切现象都能归结为整数或整数之比,即世界上只存在整数与分数,除此之外他们不认识也不承认别的数。在那个时期。上述思想是绝对权威、是“真理”。但是不久人们发现即使边长为1的正方形对角线不是可比数。这样毕达哥拉斯“万物皆数”是不成立的,绝对的权威受到了严重的挑战:一方面证明单位正方形对角线的长不是整数分数,按照他们的观点,这种长度不是数!另一方面,他们不承认自己的观点有问题,这就陷入了极大的矛盾之中,这是第一次数学危机。
三、第二次数学危机
第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到很多年后。牛顿和莱布尼兹开辟了新的天地――微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾。直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。
四、数学史上的第三次危机
1.悖论的产生及意义
(1)什么是悖论
悖论来自希腊语,意思是“多想一想”。这个次的意义比较丰富,它包括一切与人的知觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。悖论是自相矛盾的命题,即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出原命题成立。如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。古今中外有不少著名的悖论,他们震撼了逻辑学和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。
(2)悖论产生的意义
疏忽学悖论是在数学学科理论体系发展到相当高的阶段才出现的。它是对数学学科理论体系可能存在的内在矛盾的揭示。虽然暂时引起人们的思想混乱,对正常的科学研究可能会形成一定的冲击,但它对于揭露原有理论体系中的逻辑矛盾,对于揭露原有理论的缺陷或局限性,对于这一步深入理解,任何和评价原有科学理念,对于原有的科学概念或理论的进一步充实完善和促进科学管理的产生都有相当重要的意义,同时也为科学研究提供新的课题和研究方向。
2.第三次数学危机的产生与解决
(1)第三次数学危机的产生
第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。
罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。事实虽是这样但原因却又是什么呢?这是由于R是集合,若R含有自身作为元素,就有R R,那么从集合的角度就有RR。一个集合真包含它自己,这样的集合显然是不存在的。因为既要R有异于R的元素,又要R与R是相同的,这显然是不可能的。因此,任何集合都必须遵循R R的基本原则,否则就是不合法的集合。这样看来,罗素悖论中所定义的一切R R的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。归根结底,R也就是包含一切集合的“最大的集合”了。因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。
(2)第三次数学危机的解决
罗素的悖论产生后,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓zF公理系统),这场数学危机到此缓和下来。
现在,我们通过离散数学的学习,知道集合论主要分为Cantor集合论和Axiomatic集合论,集合是先定义了全集I,空集,在经过一系列一元和二元运算而得来的。而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。
三次数学危机是我们数学史发展中的一个奠基,他为我们日后更详细、深入的研究数学做了很好的铺垫,我我想以后也许会有第四次数学危机,但数学家也会把它化解掉,只有出现危机,才能使我们的数学研究达到更高的境界。
数学的产生和发展,始终与人类社会的生产和生活有着密不可分的联系。在新教材中,任何一个新概念的引入,都特别强调它的现实背景、数学理论发展背景或数学发展的历史背景,只有这样才能让学生感到知识发展水到渠成。所以特别希望在教学中能不时渗透数学史的相关知识,充分发挥和利用数学史的教育价值,使学生通过了解数学史,而更加全面更加深刻地理解数学、感悟数学。
一、集合论的诞生
一般认为,集合论诞生于1873年底。1873年11月29日,康托尔(G.Gsntor,1845-1918)在给戴德金(JuliusWilhelmRichardDedekind,1831—1916)的信中提问“正整数集合与实数集合之间能否一一对应起来?”这是一个导致集合论产生的大问题。几天后,康托尔用反证法证明了此问题的否定性结果,“实数是不可数集”,并将这一结果以标题为《关于全体实代数数集合的一个性质》的论文发表在德国《克莱尔数学杂志》上,这是“关于无穷集合论的第一篇革命性论文”,在其系列论文中,他首次定义了集合、无穷集合、导集、序数、集合运算等,康托尔的这篇文章标志着集合论的诞生。
二、集合论成为现代数学大厦的基础
康托尔的集合论是数学史上最具革命性和创造性的理论,他处理了数学上最棘手的对象——无穷集合,让无数因“无穷”而困扰许久的数学家们在这种神奇的数学世界找回了自己的精神家园。它的概念和方法渗透到了代数、拓扑和分析等许多数学分支,甚至渗透到物理学等其他自然学科,为这些学科提供了奠基的方法。几乎可以说,没有集合论的观点,很难对现代数学获得一个深刻的理解。
集合论诞生的前后20年里,经历千辛万苦,但最终获得了世界的承认,到了20世纪初,集合论已经得到数学家们的普遍赞同,大家一致认为,一切数学成果都可以建立在集合论的基础之上了,简言之,借助集合论的概念,便可以建立起整个数学大厦,就连集合论诞生之初强烈反对的著名数学家庞加莱(JulesHenriPoincaré,1854-1912)也兴高采烈地在1900年的第二次国际数学家大会上宣布:“借助集合论概念,我们可以建造整个数学大厦。今天,我们可以说绝对的严格性已经达到了。”然而,好景不长,一个震惊数学界的消息传出,集合论是有漏洞的!如果是这样,则意味着数学大厦的基础出现了漏洞,对数学界来说,这将是多么可怕啊!
三、罗素(BertrandRussell,1872-1970)悖论导致第三次数学危机
1903年,英国数学家罗素在《数学原理》一书上给出一个悖论,很清楚地表现出集合论的矛盾,从而动摇了整个数学的基础,导致了数学危机的产生,史称“第三次数学危机”。
罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R,现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不属于自身,即R不属于R。另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R,这样,不论任何情况都存在矛盾,这就是有名的罗素悖论(也称理发师悖论)。
罗素悖论不仅动摇了整个数学大厦的基础,也波及到了逻辑领域,德国的著名逻辑学家弗里兹在他的关于集合的基础理论完稿而即将付印时,收到了罗素关于这一悖论的信,他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟,他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”这样,罗素悖论就影响到了一向被认为极为严谨的两门学科——数学和逻辑学。
四、消除悖论,化解危机
罗素悖论的存在,明确地表示集合论的某些地方是有毛病的,由于20世纪的数学是建立在集合论上的,因此,许多数学家开始致力于消除矛盾,化解危机。数学家纷纷提出自己的解决方案,希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。
在20世纪初,大概有两种方法。一种是1908年由数学家策梅洛(Zermelo,ErnstFriedrichFerdinand,1871~1953)提出的公理化集合论,把原来直观的集合概念建立在严格的公理基础上,对集合加以充分的限制以消除所知道的矛盾,从而避免悖论的出现,这就是集合论发展的第二阶段:公理化集合。
解铃还须系铃人,在此之前,危机的制造者罗素在他的著作中提出了层次的理论以解决这个矛盾,又称分支类型化。不过这个层次理论十分复杂,而策梅洛则把这个方法加以简化,提出了“决定性公理(外延公理)、初等集合公理、分离公理组、幂集合公理、并集合公理、选择公理和无穷公理”,通过引进这七条公理限制排除了一些不适当的集合,从而消除了罗素悖论产生的条件。后来,策梅洛的公理系统又经其他人,特别是弗兰克尔(A.A.Fraenkel)和斯科伦(T.Skolem)的修正和补充,成为现代标准的“策梅洛——弗兰克尔公理系统(简称ZF系统)”,这样,数学又回到严谨和无矛盾的领域,而且更促使一门新的数学分支——《基础数学》迅速发展。
五、危机的启示
从康托尔集合论的提出至今,时间已经过去了一百多年,数学又发生了巨大的变化,而这一切都与康托尔的开拓性工作密不可分,也和数学家们的艰辛努力密不可分。从危机的产生到解决,我们可以看到,数学的发展跟提出问题和面对困难是离不开的,期间要经历无数的挫折和失败,但是只要坚持,终会走向成功。
矛盾的消除,危机的化解,往往给数学带来新的内容,新的变化,甚至革命性的变革,这也反映出矛盾斗争是事物发展的历史性动力的基本原理。正如数学家克莱因(FelixChristianKlein1849-1925)在《数学——确定性丧失》中说:“与未来的数学相关的不确定性和可疑,将取代过去的确定性和自满,虽然这次悖论已经找到解释,危机也已化解,但是更多的还是未知,因为只要仔细分析,矛盾又将会被认识更为深刻的研究者发现,这种发现不应该被认为是‘危机’,而应该感到,下一个突破的机会来到了。”
参考文献:
1.《普通高中课程标准实验教科书——数学必修1》教师教学用,人民教育出版社
2.胡作玄,《第三次数学危机》
中华人民共和国的诞生,为中国数千年的文明史揭开了新的篇章,我国数学科学的研究出现了生机勃勃的景象,以下是我搜集的一篇关于三次数学危机探讨的论文范文,供大家阅读参考,
从我国数学的发展看三次数学危机。
1 引言
数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整个数学的基础时,就产生数学危机。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。
2 三次数学危机
第一次数学危机发生在古希腊,源于毕达哥拉斯的以数为基础的宇宙模型和数是可公度的信条。毕达哥拉斯认为,事物的本质是由数构成的,并以数为基础,构造了宇宙模型[1].在毕达哥拉斯看来,数就是整数或整数之比。但这一信条后来遇到了困难。因为有些数是不可公度的。这一矛盾,导致了毕达哥拉斯关于数的信条的破产,并进一步导致了毕达哥拉斯以数为基础的宇宙模型的破产。这在当时产生的震动太大了,因此历史上称之为第一次数学危机。
17、18世纪关于微积分发生的激烈的争论,被称为第二次数学危机[2].在17世纪晚期,形成了微积分学。牛顿和莱布尼茨被公认为微积分的奠基者。他们的功绩主要在于把各种有关问题的解法统一成微积分,有明确的计算步骤,微分法和积分法互为逆运算[3].由于新诞生的微积分方法中隐含着逻辑推理上的严重缺陷,导致了无穷小悖论[4].当时牛顿等人不能自圆其说,而且,其后一百年间的数学家也未能有力的回答贝克莱的质问,由此而引起数学界甚至哲学界长达一个半世纪的争论,造成第二次数学危机.
19世纪末分析严格化的最高成就--集合论,似乎给数学家们带来了一劳永逸摆脱基础危机的希望。庞加莱甚至在1900年巴黎国际数学大会上宣称:现在我们可以说,完全的严格性已经达到了![5]但就在第二年,一场摇撼整个数学大厦基础的暴风雨来临了,英国数学家罗素以一个简单明了的集合论悖论打破了人们的上述希望,引起了关于数学基础的新争论。他把关于集合论的一个着名悖论用故事通俗地表述出来。
它和其它一些集合论悖论一样,对数学发展的影响是十分深刻、巨大的,甚至可以说是动摇了整个数学的基础,并导致了第三次数学危机。
3 从我国数学的发展看三次数学危机
中华人民共和国的诞生,为中国数千年的文明史揭开了新的篇章,我国数学科学的研究出现了生机勃勃的景象,这是我们国家社会主义建设的需要,也是我们党和国家非常重视科学技术的结果,
数学论文《从我国数学的发展看三次数学危机。中国科学院于1950年开始筹建数学研究所,1952年正式成立。全国各高等院校普遍设置了数学系,《数学学报》和《数学通报》复刊。1958年~1960年的大跃进时期,在极左思潮影响下,数学基础理论研究受到很大冲击,积极的一面是明确了向世界先进水平看齐的奋斗目标,也重视理论联系实际,线性规划得到大力推广并创造了切实可行的图上作业法,运筹学由此在我国发展起来。在发展我国高科技过程中,例如1965年9月17日,我国科学工作者在世界上首次用人工方法合成结晶牛胰岛素。
我们不能不承认,数学对于现实生活的影晌正在与日俱增。许多学科都在悄悄地经历着一场数学化的进程。现在,已经没有哪个领域能够抵御得住数学方法的渗透。因此,对于数学,特别是现代数学加以普及,使得数学和数学家的工作能对现实生活产生应有的积极影响,这已成为人们日益重视的课题。
4 总结
综上所述三次数学危机对数学的发展影响是巨大的。第一次数学危机中产生的欧几里德几何对树立天文学的发展起了很大的推动作用,第一次数学危机使古希腊数学基础发生了根本性的变化,使古希腊的数学基础转向几何。第二次数学危机中波尔查诺给出了连续性的正确定义;阿贝尔指出要严格限制滥用级数展开及求和;柯西指出无穷小量和无穷大量都是变量,并且定义了导数和积分;狄利克雷给出了函数的现代定义;美国数理逻辑学家罗宾逊又利用无穷小量引进超实数的概念,建立了非标准分析,同样也能精确的描述微积分,解决无穷小悖论。第三次数学危机建立了实数理论,且在此基础上建立了极限的基本定理,使数学分析建立在实数理论的严格基础之上,康托尔创立了集合论。而且还产生了公理化方法论和数理逻辑等一批新颖学科。我国以至世界各国的数学发展也都依赖于三次数学危机中产生的数学的新内容。整个数学的发展是一个层层深入、层层递进的过程。
参考文献:
[1]人民教育出版社中学数学室着.现代数学概论[M].北京:人民教育出版社,2003.
[2]张光远.现代化知识文库:二十世纪数学史话[M].知识出版社,1984.2
[3]袁小明.数学史话[M].山东教育出版社,1985.
[4]于寅.近代数学基础[M].华中理工大学出版社,1999.3.
张召忠是我最喜欢的军事讲座家,因为父亲喜欢的原因,每次小时候我要换台父亲就会瞪眼,气哄哄地朝我吼:你为什么要换台 ?!就看这个吧!我心里发毛,无奈打不过他,坐在
欧洲理事会15日批准了欧盟委员会此前提出的第九轮对俄罗斯制裁措施。美国政府同一天也宣布新一轮对俄个人和实体制裁措施。自今年2月24日俄罗斯发起对乌克兰的特别军事
同病相怜,不会是同一个学校的吧,楼下求答案。
默克尔近况很好,我很注意德国的这个铁娘子,因为她执政时对中国很好,对美国也时有说不!她是个很正直的老太太。就在这几天她还出来了,对俄罗斯乌克兰战争发表了自己的看
瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。