huangduanhua
Catherine Goldstein, Institute of Mathemat-ics of Jussieu, FranceNorbert Schappacher, FranceJoachim Schwerrner, AustraThe Shaping of ArithmeticAfter C.F.Gauss’s Disquisitiones Arithmeticae2007, 578pp.Hardcover EUR 70.00ISBN 978-3-540-20441-1Springer 1801年Gauss发表了他的著作《算术研究》,对数论的形成和发展产生决定性的影响、被认为是数论成为独立学科的历史性标志。其后两个多世纪,该书不仅成为后世伟大的数论学家数学思想的源泉,而且也是数学史中一个经久不衰的研究课题。 在1999年及2001年两次关于数论及其历史的国际专业会议的基础上,由来自数论、数学史和拓扑学不同领域的数十位学者撰写的20篇论文汇编而形成了本书。这些论文独立成篇,划分为八个部分,第一部分(共2篇)叙述了高斯这本著作成书过程,不同文字版本情况,概述了书的基本内容,该书在不同时期与数论、代数、分析、函数论等的发展之间的关系,以及对Kummer,Helxnite,Kronecher,Hillert等数论大家的工作的影响。第三、六、七三个部分(共7篇)分别论述高斯在他的故乡德国,以及在法国意大利、俄国和其他西方国家的数论发展过程中产生的影响和作用。第二、四、五三个部分(共8篇)就代数方程、二次型、高次同余、理想数、椭圆函数及算术化等专题研究了高斯的数学思想及与后世数论大家的研究成果间的关系。第八部分(共3篇)论述了高斯理论中的三个范例,即长期被后世数论学家研究的二次型的约化理论、高斯和及主亏格定理。 本书内容丰富,史料翔实,立论精辟,是数学史研究人员有价值的参考资料,也可供有关数学研究人员阅读。 朱尧辰,研究员 (中国科学院应用数学研究所) Zhu Yaochen,Professor (Institute of Applied Mathematics, the Chinese Academy of Sciences)
得帮小赵
高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。
高斯的小故事 、高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师出了一道算术难题:计算1+2+3+……+100=? 这下可难倒了刚学数
高斯是德国数学家,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大,能够和阿基米德、牛顿、欧拉并列,有数学
高斯的小故事 、高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师出了一道算术难题:计算1+2+3+……+100=? 这下可难倒了刚学数
高斯是德国数学家,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大,可以和阿基米德、牛顿、欧拉并列,有“数
18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算