• 回答数

    4

  • 浏览数

    83

就叫小胖
首页 > 论文发表 > 发表关于方程式的论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

海琦maggie

已采纳

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大贝祖(Bezout Etienne 1730.3.31~1783.9.27)法国数学家。少年时酷爱数学,主要从事方程论研究。他是最先认识到行列式价值的数学家之一。最早证明了齐次线性方程组有非零解的条件是系数行列式等于零。他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法。他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理。1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究。 十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。 十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。 十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角。 十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。 十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。 1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。 1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例。 1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。 1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。 1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。 1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。 1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。 十四世纪中叶前,中国开始应用珠算盘。 1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。 1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学。 1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识。 1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式。 1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题。 1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论。 1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表。 1614年,英国的耐普尔制定了对数。 1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积。 1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分。 1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”。 1638年,法国的费尔玛开始用微分法求极大、极小问题。 1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就。 1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作。 1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”。 1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱。 1654年,法国的帕斯卡、费尔玛研究了概率论的基础。 1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学。 1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》。 1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究。 1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分。 1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法。 1670年,法国的费尔玛提出“费尔玛大定理”。 1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线。 1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》。 1686年,德国的莱布尼茨发表了关于积分法的著作。 1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究。 1696年,法国的洛比达发明求不定式极限的“洛比达法则”。 1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线。 1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》。 1711年,英国的牛顿发表《使用级数、流数等等的分析》。 1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》。 1715年,英国的布·泰勒发表《增量方法及其他》。 1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试。 1733年,英国的德·勒哈佛尔发现正态概率曲线。 1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机。 1736年,英国的牛顿发表《流数法和无穷级数》。 1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作。 1742年,英国的麦克劳林引进了函数的幂级数展开法。 1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面。 1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。 1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一。 1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷。书中包括微分方程论和一些特殊的函数。 1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。 1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法。 1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始。 1772年,法国的拉格朗日给出三体问题最初的特解。 1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学。 1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》。 1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表。 1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学。 1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多。 1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根。 微分方程:大致与微积分同时产生 。事实上,求y′=f(x)的原函数问题便是最简单的微分方程。I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,完全解决了它的求解问题。17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。总之,力学、天文学、几何学等领域的许多问题都导致微分方程。在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。因而微分方程的研究是与人类社会密切相关的。当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布�6�1贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

187 评论

奕彩彩绘

16 世纪,在意大利数学家塔塔利亚(Tartaglia)、卡尔达诺(Cardano)、费拉利(Ferrari)等人的努力下,用根式求解三次方程与四次方程的方法终获解决。这样,利用代数符号,无论是二次方程、三次方程还是四次方程,都能通过根式求出它的一般解。于是,数学家们开始寻找一元五次方程的公式解法。虽屡遭挫折,但人们相信,五次方程的解就隐藏在某个角落。在随后三百多年,破解五次方程成了数学中最迷人的挑战之一,很多数学家和数学爱好者,都把它作为检验自己才能的试金石。可是毫无例外,他们都失败了。五次及以上方程的根式解虽然没有找到,人们却积累了很多的经验和知识,特别值得一提的是法国数学家拉格朗日(Lagrange)。1770 年,拉格朗日发表了《关于代数方程解的思考》,他讨论了人们所熟知的解二、三、四次方程的一切方法,并且指出这些成功解法所根据的情况对于五次以及更高次的方程是不可能发生的。拉格朗日试图得出这种不可能性的证明,然而,经过顽强的努力之后,拉格朗日不得不坦言这个问题“好像是在向人类的智慧挑战”。一元五次方程不能用根式求解的第一个证明出现在意大利人鲁菲尼严格的证明:如果方程的次数 n≥5,并且系数a1,a2,…… ,an 看成字母,那么任何一个由这些字母组成的根式都不可能是方程的根。这样,五次和高于五次的一般方程的求解问题就被阿贝尔“否定”的解决了。阿贝尔证明了一般一元五次方程不能用根式解,也举例说有的方程能用根式解。问题是,能用根式解或者不能用根式解的方程,到底怎么来判断呢?阿贝尔没有给出证明。换句话说,阿贝尔没有完全解决一元五次方程的求根问题,遗憾的是,对于什么样的特殊方程能用根式解,他还未及得到的答案就因病去世了。一元五次方程的可解性理论,19 世纪法国天才数学家伽罗瓦(Galois)完成1830 年初,伽罗瓦向法国科学院提交一篇关于五次方程的论文,去竞争一项数学大奖。虽然论文中没有提供五次方程的解法,但却展示了伽罗瓦的数学天分,就连柯西(Cauchy)都认为很可能得奖。这篇文章交给科学院秘书傅立叶(Fourier)评审,不料傅立叶未及写出评审报告就去世了,此文下落不明。伽罗瓦也因参加学生闹事,被学校开除。不过,伽罗瓦仍然对数学倾注了极大的热情,他写出了将成为他最著名的论文“关于方程可用根式求解的条件”,于 1831 年 1月送交科学院。这是伽罗瓦希望被数学界承认的最后机会,但是三、四个月过了,仍然杳无音讯。这位受挫的数学天才参加了国民卫队,去保卫共和。结果两次被捕,第一次无罪释放,而第二次被判了六个月的监禁。获得假释不久,他陷入了与一位女人有关的恋情,于 1832 年 5 月 30 日清晨决斗身亡—他才 21 岁。法国数学家刘维尔(Liouville)阅读了伽罗瓦的论文后,惊喜地发现伽罗瓦在论文中给出了代数方程可解性的最终判定,而且独创了一个崭新的数学概念:群。伽罗瓦工作的核心部分是可解性判别准则:当且仅当多项式方程的群是可解群(伽罗瓦群),这个方程可用代数的方法求解。这一准则可用以下过程来简单描述。第一步,确定方程的伽罗瓦群。多项式方程的 n 个根构成一个置换群,也叫做伽罗瓦群 G。第二步,选取伽罗瓦群 G 的极大正规子群 G1,然后再选取 G1 的极大正规子群 G2,如此下去,最后一个必然是{I}。(注:子群 K 与母群 G 中任意元素可交 换,K 叫做正规子群)第三步,构造合成指数列。设 G, G1, G2,…., Gr ,I 的各个群的阶数(即群的 元素个数)分别为:g, g1, g2 , …., gr ,1;那末每个正规子群在它前面子群中的指定理,有限群 G 的子群的阶是 G 的阶的因子,故合成指数列一定是整数。)第四步, 伽罗瓦可解性理论:一个可解群是一个群,它的合成指数列中各个数全为素数。据此可以列出 2 次到 7 次方程的合成指数列: 方程的次数 合成指数列 2 2 3 2, 3 4 2, 3, 2, 2 5 2, 60 6 2, 36 7 2, 2520 由上表格可以看出,当方程的次数大于 4 时,它的合成指数列中的项不全为素数。那么根据伽罗瓦可解性定理,该方程所对应的伽罗瓦群不是可解群,因而由伽罗瓦可解性判定准则可知五次及以上方程没有根式解。“五次方程”引出了华罗庚1926 年 7 卷 10 期的上海《学艺》杂志上发表了一篇苏家驹的论文《代数的五次方程式之解法》,前文已述,这个问题已经由阿贝尔、伽罗瓦证明是不可解的,所以“苏文”与阿贝尔、伽罗瓦的理论相矛盾,必定是有错。华罗庚在阅读了苏家驹的文章之后,写信给《学艺》杂志指出“苏文”的错误。而《学艺》在1929 年 5 月出版的 9 卷 7 期上只刊载了一则简短的“更正声明”,承认“苏文”有误。华罗庚对《学艺》这种半遮半掩的做法并不满意,他把质疑苏家驹论点的文章寄呈《科学》编辑部。不久,1930 年 12 月出版的《科学》15 卷 2 期上以“来件”的方式发表了《苏家驹之代数的五次方程式解法不能成立之理由》。华罗庚在论文的开头写道:五次方程经 Abel,Galois 之证明后,一般算学者均认为不可以代数解矣,而《学艺》7卷 10 号载有苏君之《代数的五次方程式之解法》一文,罗欣读之而研究之,于去年冬也仿得‘代数的六次方程式之解法’矣,罗对此欣喜异常,意为果能成立则于算学史中亦可占一席之地,惟自思若不将 Abel 言论驳倒,终不能完全此种理论,故罗沉思于 Abel 之论中,阅一月,见其条理精严,无懈可击,后经本社编辑员之暗示,遂从事于苏君解法确否之工作,与6 月中遂得其不能成立之理由。罗安敢自秘,特公之于世,尙祈示正焉。这段简短文字透露出两个重要信息,一是华罗庚曾经撰写了一篇“代数的六次方程式之解法”,但在精心研读阿贝尔的论文后,确信其“条理精严,无懈可击”;二是,在杂志社编辑的启发下,转向查考苏文,进而发现苏文中的“破绽”。有意思的是,华罗庚所说“本社编辑员”是《学艺》社的?还是“《科学》社的?由于华文刊登在《科学》,这段话又在文章的“篇首”,所以这个“本社”应当是《科学》杂志编辑部。其实,华罗庚与《科学》杂志已有姻缘。华罗庚的第一篇论文《Sturm 氏定理的研究》,就发表 1929 年 12 月出版的《科学》14 卷 14 期上。《科学》编辑部重视文章的质量,并不在乎作者的身份。华罗庚此文章只是对求代数方程实根数的 Sturm 定理做了简化,虽算不上重要发现,但有新意,还是被编辑部接受了。因此,正是《科学》不拘一格,以质选文,才使一位自学青年展露头角。熊庆来教授正是读了《科学》杂志这篇文章,发现了华罗庚。

228 评论

虎娃妈jsz

1.变分法这是拉格朗日最早研究的领域,以欧拉的思路和结果为依据,但从纯分析方法出发,得到更完善的结果。他的第一篇论文“极大和极小的方法研究”(Recherches sur la méthode demaximis et minimies)是他研究变分法的序幕; 1760年发表的“关于确定不定积分式的极大极小的一种新方法”(Essai d'unenouvelle méthode pour déterminer les maxima et les minima desformules integrales indéfinies)是用分析方法建立变分法的代表作。发表前写信给欧拉时,称此文中的方法为“变分方法”(themethod of variation)。欧拉肯定了,并在他自己的论文中正式将此方法命名为“变分法”(the calculus of variation)。变分法这个分支才真正建立起来。拉格朗日方法是对积分进行极值化,函数y=y(x)待定。他不像欧拉和前人用改变极大或极小化曲线的个别坐标的办法,而是引进通过端点(x1,y1),(x2,y2)的新曲线y(x)+δy(x),δy(x)叫曲线y(x)的变分。J相应的增量△J按δy,δy′展开的一、二阶项叫一次变分δJ和二次变分δ2J。他用分析方法证明了δJ为零的必要条件就是欧拉方程他达继续讨论了端点变动时的情况以及两个自变量的重积分的情况,使这个分支继续发展。1770年以后,拉格朗日达研究了被积函数f包含高阶导数的单重和多重积分时的情况,已发展成为变分法的标准内容。2.微分方程早在都灵时期,拉格朗日就对变系数常微分方程研究做出重大成果。他在降阶过程中提出了以后所称的伴随方程,并证明了非齐次线性变系数方程的伴随方程的伴随方程,就是原方程的齐次方程。他还把欧拉关于常系数齐次方程的结果推广到变系数情况,证明了变系数齐次方程的通解可用一些独立特解乘上任意常数相加而成;而且在知道方程的m个特解后,可以把方程降低m价。在柏林时期,他对常微分方程的奇解和特解做出历史性贡献,在1774年完成的“关于微分方程特解的研究”(Sur les intégralesparticulieres des equations différentielles)中系统地研究了奇解和通解的关系,明确提出由通解及其对积分常数的偏导数消去常数求出奇解的方法;还指出奇解为原方程积分曲线族的包络线。当然,他的奇解理论还不完善,现代奇解理论的形式是由G.达布(Darboux)等人完成的。常微分方程组的研究在当时结合天体力学中的课题进行。拉格朗日在1772年完成的“论三体问题”(Essai sur le problémedes trois corps)中,找出了三体运动的常微分方程组的五个特解:三个是三体共线情况;两个是三体保持等边三角形;在天体力学中称为拉格朗日平动解。他同拉普拉斯一起完善的任意常数变异法,对多体问题方程组的近似解有重大作用,促进了摄动理论的建立。拉格朗日是一阶偏微分方程理论的建立者,他在1772年完成的。“关于一阶偏微分方程的积分”(Sur l'integration des équationau differences partielles du premier order)和1785年完成的“一阶线性偏微分方程的一般积分方法”(Méthode génèrale pourintégrer les equations partielles du premier order lorsque cesdifferences ne sont que linèaires)中,系统地完成了一阶偏微分方程的理论和解法。他首先提出了一阶非线性偏微分方程的解分类为完全解、奇解、通积分等,并给出它们之间的关系。还对形如的非线性方程,化为解线性方程后来又进一步证明了解线性方程Pp+Qq=R(P,Q,R为x,y,z的函数)与解等价,而解式又与解常微分方程组等价。至今仍称为拉格朗日方程。有趣的是,由上面已可看出,一阶非线性偏微分方程,可以化为解常微分方程组。但拉格朗日自己却不明确,他在1785年解一个特殊的一阶偏微分方程时,还说不能用这种方法,可能他忘记了自己在1772年的结果。现代也有时称此方法为拉格朗日方法,又称为柯西(Cauchy)的特征方法。因拉格朗日只讨论两个自变量情况,在推广到n个自变量时遇到困难,而后来由柯西在1819年克服。3.方程论18世纪的代数学从属于分析,方程论是其中的活跃领域。拉格朗日在柏林的前十年,大量时间花在代数方程和超越方程的解法上。他在代数方程解法中有历史性贡献。在长篇论文“关于方程的代数解法的思考”(Réflexions sur le resolution algébrique desequations,《全集》Ⅲ, pp 205—421)中,把前人解三、四次代数方程的各种解法,总结为一套标准方法,而且还分析出一般三、四次方程能用代数方法解出的原因。三次方程有一个二次辅助方程,其解为三次方程根的函数,在根的置换下只有两个值;四次方程的辅助方程的解则在根的置换下只有三个不同值,因而辅助方程为三次方程。拉格朗日称辅助方程的解为原方程根的预解函数(是有理函数)。他继续寻找5次方程的预解函数,希望这个函数是低于5次的方程的解,但没有成功。尽管如此,拉格朗日的想法已蕴含着置换群概念,而且使预解(有理)函数值不变的置换构成子群,子群的阶是原置换群阶的因子。因而拉格朗日是群论的先驱。他的思想为后来的N.H.阿贝尔(Abel)和E.伽罗瓦(Galois)采用并发展,终于解决了高于四次的一般方程为何不能用代数方法求解的问题。拉格朗日在1770年还提出一种超越方程的级数解法。设p为方程,这就是后来在天体力学中常用的拉格朗日级数。他自己没有讨论收敛性,后来由柯西求出此级数的收敛范围。4.数论拉格朗日到柏林初期就开始研究数论,第一篇论文“二阶不定问题的解”(Sur la solution des problémès in détèrminésdu seconde degrés)和送交都灵《论丛》的“一个算术问题的解”(Solution d'un problème d'arithmetique)中,讨论了欧拉多年从事的费马(Fermat)方程x2-Ay2=1(x,y,A为整数),不定问题解的新方法”(Nouvelle méthode pour resoudveles problèmes indéteminés en nombres entiers)中得到更一般的费马方程x2-Ay2=B(B也为整数)(10)的解。还讨论了更广泛的二元二次整系数方程ax2+2bxy+cy2+2dx+2ey+f=0,(11)并解决了整数解问题。拉格朗日还在1772年的“一个算术定理的证明”(De monstration d'un théorème d'arthmétique,《文集》Ⅲ,pp。189—201)中,把欧拉40多年没有解决的费马另一猜想“一个正整数能表示为最多四个平方数的和”证明出来。在1773年发表的“质数的一个新定理的证明”(Démonstation d'un theorem nouveau concernant les nombres premiers)中,证明了著名的定理:n是质数的充要条件为(n-1)!+1能被n整除。拉格朗日不仅有大量成果,还在方法上有创新。如在证明式研究”(Recherches d'arithmétiques,《文集》Ⅲ,pp。695—795)中,研究式解时采用的方法和结果,是二次型理论的基本文献。5.函数和无穷级数同18世纪的其他数学家一样,拉格朗日也认为函数可以展开为无穷级数,而无穷级数则是多项式的推广。他还试图用代数建立微积分的基础。在他的《解析函数论……》(《文集》Ⅸ)中,书名上加的小标题“含有微分学的主要定理,不用无穷小,或正在消失的量,或极限与流数等概念,而归结为代数分析艺术”,表明了他的观点。由于回避了极限和级数收敛性问题,当然就不可能建立真正的级数理论和函数论,但是他们的一些处理方法和结果仍然有用,他们的观点也在发展。拉格朗日就在《解析函数论……》中,第一次得到微分中值定理(书中第六章)f(b)-f(a)=f′(c)(b-a)(a≤c≤b),后面并用它推导出泰勒(Taylor)级数,还给出余项Rn的具体表达式(第二十章)Rn就是著名的拉格朗日余项形式。他还着重指出,泰勒级数不考虑余项是不能用的。虽然他还没有考虑收敛性,甚至各阶导数的存在性,但他强调Rn要趋于零。表明他已注意到收敛问题。他同欧拉、达朗贝尔等在任意函数能否表为三角级数的长期争论,虽未解决,但为以后三角级数理论的建立打下了基础。最后要提一下他在《师范学校数学基础教程》中,提出了著名的拉格朗日内插公式。直到现在计算机计算大量中点内插时仍在使用。另外在求多元函数相对极大极小及解微分方程中的拉格朗日任意乘子法,至今也在用。除了对数学分析在18世纪建立的主要分支有开拓性贡献外,他对严格化问题也开始注意。尽管回避了极限概念,但他仍承认可以在极限基础上建立微积分(《文集》Ⅰ,p.325)。但正是对严格化重视不够,所建立的分支到一定阶段就很难深入。这可能是他晚年研究工作少的原因。他在1781年9月21日给达朗贝尔的信中说:“在我看来,似乎(数学)矿井已挖掘很深了,除非发现新矿脉,否则势必放弃它……”(《文集》XⅢ368)这说出了他和其他同事们的心情。事实表明,19世纪在建立数学分析严格基础后,数学更迅速地发展。分析力学的创立者 牛顿的力学理论仍用几何方法讨论。到18世纪中期,欧拉和达朗贝尔开始用分析方法,而拉格朗日在使力学分析化方面最出色,他在1788年出版的《分析力学》一书,就是分析力学这门学科建立的代表作。他一生的全部力学论文以及同时代人的力学贡献,都归纳到这部著作中。他的研究目的是使力学成为数学分析的分支。他在《分析力学》的序言中说:“……我在其中阐明的方法,既不要求作图,也不要求几何的或力学的推理,而只是一些按照一致而正规的程序的代数(分析)运算。喜欢分析的人将高兴地看到,力学变成了它的一个新分支,并将感激我扩大了它的领域。”实际情况正是这样。拉格朗日在这方面的最大贡献是把变分原理和最小作用原理具体化,而且用纯分析方法进行推理,成为拉格朗日方法。他首先引入广义坐标概念,故广义坐标又称为拉格朗日坐标。一个力学系统可用有限个坐标qj(j=1,2,…,N)表示;qj= dqj/dt为相应的广义速度。力学系统总动能T(拉格朗日称之为活力)表为qj·qj和时间t的函数后,定义为作用,最小作用原理成为δI=0。拉格朗日用变分法讨论δI=0时,导出了力学系统的运动方程为其中Qj为力学系统受到的作用力在广义坐标中的表达式,称为广义力。如力为保守的,则存在势函数V,就是第二类拉格朗日方程。后来S.D.泊松(Poisson)等引入函数L就取名为拉格朗日函数。拉格朗日还把这些方法用于研究质点组,刚体和流体。在流体力学中讨论流体内各点的运动方法仍称为拉格朗日方法。最后收集到《文集》中的《分析力学》是第二版,共分两卷,785页。第一卷中一半讲述“静力学”,主要讨论质点组和流体的平衡问题。从分析静力学原理开始,讨论了质点组和流体的平衡条件,并用于研究行星的形状。第一卷后半和第二卷全部讨论“动力学”。动力学部分共分为十三章,前四章讲述动力学原理和建立质点系统运动方程的拉格朗日方法,包括(16),(17)式的推导以及运动的一般性质。第五章“用任意常数变化解动力学问题的一般近似方法”中,把他在微分方程解法中的任意常数变异法用于解动力学方程。后面讨论了一阶近似的求积方法。第七章“关于能看作质点的自由物体系统在引力作用下的运动”主要讲天体力学的基本问题。第八、九章讨论不动中心吸引问题和刚体动力学。第十章讨论地球自转和月球天平动。最后三章讨论流体动力学基本问题,作为拉格朗日方法的应用。拉格朗日创立分析力学使力学发展到新的阶段。拉格朗日方程式推广了牛顿第二运动定律;使得在任意坐标系下有统一形式的运动方程,便于处理各种约束条件等优点,至今仍为动力学中的最重要的方程。在《分析力学》第二版印出(第二卷1816年)后不久,W.R.哈密顿(Hamilton)于1834年提出广义动量并建立哈密顿正则方程,又同K。G。雅可比(Jacobi)一起建立哈密顿-雅可比方法(1837)后,分析力学正式奠基建成,很快用到各学科领域。天体力学的奠基者 天体力学是在牛顿发表万有引力定律(1687)时诞生的,很快成为天文学的主流。它的学科内容和基本理论是在18世纪后期建立的。主要奠基者为欧拉,A.C.克莱罗(Clairaut)、达朗贝尔、拉格朗日和拉普拉斯。最后由拉普拉斯集大成而正式建立经典天体力学。拉格朗日一生的研究工作中,约有一半同天体力学有关,但他主要是数学家,他要把力学作为数学分析的一个分支,而又把天体力学作为力学的一个分支对待。虽然如此,他在天体力学的奠基过程中,仍有重大历史性贡献。首先在建立天体运动方程上,拉格朗日用他在分析力学中的原理和式,建立起各类天体的运动方程。其中特别是根据他在微分方程解法的任意常数变异法,建立了以天体椭圆轨道根数为基本变量的运动方程,仍称作拉格朗日行星运动方程,并在广泛应用,此方程对摄动理论的建立和完善起了重大作用,方程在1780年获巴黎科学院奖的论文“彗星在行星作用下的摄动理论研究”(Recherches sur la théorie des perturbations queles comètes peuvent éprouver par l'action des planètes)中给出,得到达朗贝尔和拉普拉斯的高度评价。另外在一篇有关三体问题的获奖文章中,把三体问题的运动方程组第一次降到七阶。拉格朗日点在天体运动方程解法中,拉格朗日的重大历史性贡献是发现三体问题运动方程的五个特解,即拉格朗日平动解。其中两个解是三体围绕质量中心作椭圆运动过程中,永远保持等边三角形。他的这个理论结果在100多年后得到证实。1907年2月22日,德国海德堡天文台发现了一颗小行星[后来命名为希腊神话中的大力士阿基里斯(Achilles),编号588],它的位置正好与太阳和木星形成等边三角形。到1970年前,已发现15颗这样的小行星,都以希腊神话中特洛伊(Troy)战争中将帅们的名字命名。有9 颗位于木星轨道上前面60°处的拉格朗日特解附近,名为希腊人(Greek)群;有6颗位于木星轨道上后面60°处的解附近,名为脱罗央(Trojan)群。1970年以后又继续发现40多颗小行星位于此两群内,其中我国紫金山天文台发现四颗,但尚未命名。至于为什么在特解附近仍有小行星,是因为这两个特解是稳定的。1961年又在月球轨道前后发现与地月组成等边三角形解处聚集的流星物质,是拉格朗日特解的又一证明。至今尚未找到肯定在三个拉格朗日共线群(三体共线情况)处附近的天体,因为这三个特解不稳定。另外,拉格朗日在一阶摄动理论中也有重要贡献,提出了计算长期摄动方法(《文集》Ⅴ,pp.125—414),并与拉普拉斯一起提出了在一阶摄动下的太阳系稳定性定理(参见《世界著名科学家传记·天文学家Ⅰ》中“拉普拉斯”条)。此外,拉格朗日级数(8)式在摄动理论中有广泛应用。拉格朗日点在具体天体的运动研究中,拉格朗日也有大量重要贡献,其中大部分是参加巴黎科学院征奖的课题。他的月球运动理论研究论文多次获奖。1763年完成的“月球天平动研究”(Recherches sur laLibration de la lune)获1764年度奖,此文较好地解释了月球自转和公转的角速度差异,但对月球赤道和轨道面的转动规律解释得不够好。后来在1780年完成的论文解决得更好。获1772年度奖的就是著名的三体问题论文,也是针对月球运动研究写出的。获1774年度奖的论文为“关于月球运动的长期差”(Sur l’equation séculaire de la lune),其中第一次讨论了地球形状和所有大行星对月球的摄动。关于行星和彗星运动的论文也有两次获奖。1776年度获奖的是他在1775年完成的三篇论文其中讨论了行星轨道交点和倾角的长期变化对彗星运动的影响。1780年度的获奖论文就是提出著名的拉格朗日行星运动方程的那篇。获1766年度奖的论文是“木星的卫星运动的偏差研究……”(Recherches sur les inégualités des satellites de Jupiter…),其中第一次讨论了太阳引力对木星的四个卫星运动的影响,结果比达朗贝尔的更好。拉格朗日从事的天体力学课题还有很多,如在柏林时期的前半部分,还研究了用三个时刻的观测资料计算彗星轨道的方法,所得结果成为轨道计算的基础。另外他还得到了一种力学模型——两个不动中心问题的解,这是欧拉已讨论过的,又称为欧拉问题。是拉格朗日推广到存在离心力的情况,故后来又称为拉格朗日问题。这些模型仍在应用。有人用作人造卫星运动的近似力学模型。此外,他在《分析力学》中给出的流体静力学的结果,后来成为讨论天体形状理论的基础。总的看来,拉格朗日在天体力学的五个奠基者中,所做的历史性贡献仅次于拉普拉斯。他创立的“分析力学”对以后天体力学的发展有深远的影响。

117 评论

穿风衣的猫2012

约瑟夫·拉格朗日(Joseph-Louis Lagrange,1736~1813)全名为约瑟夫·路易斯·拉格朗日,法国著名数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。

主要贡献如下:

117 评论

相关问答

  • 关于论文的发表流程

    一、个人发表论文的程序:1.有了自己的学术成果后,按其研究方向在中国知网等论文收录网站上查找和你所研究领域相关的文献。确认你的核心内容前人没有研究发表后,选择该

    啾啾大神 5人参与回答 2023-12-06
  • 关于发表论文的官方声明

    原创性声明,格式举例如下:本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人

    古董的杂货铺 5人参与回答 2023-12-07
  • 发表关于电厂方面的论文

    电力是人们日常生活当中不可或缺的一部分,现在人们对于用电量的需求与日俱增,这也要求我们做好电厂的安全管理工作。下文是我给大家整理收集的关于的内容,欢迎大家阅读参

    j解y语h花 3人参与回答 2023-12-10
  • 关于论文发表方面的建议

    大致有几种方法: 1.利用网络寻找发表原创文章的网站,发表你的代表作。优点:容易走红,点击率高。缺点:鉴于网络的特点,也容易被别人抄袭。 2.通过邮件投稿。优点

    臭美的小女人 5人参与回答 2023-12-08
  • 关于发表电梯方面的论文

    电梯作为现代智能建筑内的代步工具。越来越显示出它的重要作用,为了适应电梯的迅速发展。由PLC控制代替传统继电器控制已成为发展定局PLC是集计算机控制、自动控制技

    重叠的岁月 3人参与回答 2023-12-09