lingling8826
全文链接: Convolutional Neural Networks for Sentence Classification——学术范 2012年在深度学习和卷积神经网络成为图像任务明星之后, 2014年TextCNN诞生于世,成为了CNN在NLP文本分类任务上的经典之作。 TextCNN提出的目的在于,希望将CNN在图像领域中所取得的成就复制于自然语言处理NLP任务中。 TextCNN是一种采用卷积神经网络(CNN)提取文本n-gram特征,最大池化,全连接然后进行分类的一种新型模型。它在当时对文本分类SVM老大的位置提出了挑战,虽然当时TextCNN模型效果没有完全超过SVM,但CNN的热潮使得TextCNN极受追捧,成为NLP文本分类任务的经典模型。 上论文~ 首先论文在摘要部分指出本文报告了一系列关于卷积神经网络(CNN)的实验,这些实验是在预先训练的单词向量的基础上进行的,用于句子级别的分类任务。 近年来,深度学习模型在计算机视觉和语音识别方面取得了显著的成果。在自然语言处理中,深度学习方法的大部分工作都涉及到通过神经语言模型学习单词向量表示,并对学习到的单词向量进行合成进行分类。单词向量,其中单词从一个稀疏的1- V编码(这里的V是词汇量)通过一个隐藏层投影到一个低维向量空间,本质上是一个特征提取器,在其维中编码单词的语义特征。在这种密集表示中,语义上相近的词在低维向量空间中的欧几里得距离或余弦距离也是相近的。卷积神经网络(CNN)利用卷积滤波器应用于局部特征。数据集和实验设置 使用的所有数据集:校正线性单元,过滤窗口(h)为3,4,5,每个有100个特征图,dropout率(p)为0.5,l2约束(s)为3,小批量大小为50。这些值是通过在SST-2开发集上的网格搜索选择的。 用从无监督神经语言模型中获得的词向量初始化是在没有大型监督训练集的情况下提高性能的一种流行方法。文中使用公开可用的word2vec向量,这些向量是从谷歌新闻中训练的1000亿个单词。向量的维数为300,并使用连续的词袋结构进行训练。在预先训练的词集中不存在的词将被随机初始化。 论文用模型的几个变体进行了实验 •CNN-rand:基线模型,其中所有单词都随机初始化,然后在训练期间修改。 •CNN-static:一个带有fromword2vec预训练向量的模型。所有单词(包括随机初始化的未知单词)都保持静态,只学习模型的其他参数。 •CNN-non-static:同上,但预训练向量对每个任务进行了微调。 •CNN-multichannel:一个具有两个词向量集的模型。每个向量集被视为一个“通道”,每个过滤器被应用于两个通道,但梯度只通过一个通道反向传播。因此,该模型能够在保持其他向量不变的情况下对一组向量进行微调。两个通道都用word2vec初始化。表2列出了模型与其他方法的对比结果,基线模型包含所有随机初始化的单词(CNN-rand),但它自己的表现并不好。 即使是一个简单的静态向量模型(CNN-static)也表现得非常好,与更复杂的深度学习模型相比,使用复杂的池化方案(Kalchbrenner et al., 2014)或要求预先计算解析树(Socheret al., 2013),其结果具有竞争力。这些结果表明,预先训练的向量是良好的,“通用的”特征提取器,可以跨数据集使用。对每个任务的预训练向量进行微调,还可以得到进一步的改进(CNN-non-static)。 多通道与单通道模型 我们最初希望多通道体系结构能够防止过拟合(通过确保学习到的向量不会离原始值太远),从而比单通道模型工作得更好,特别是在较小的数据集上。然而,结果是喜忧参半的,进一步规范微调过程的工作是有必要的。例如,在非静态部分,我们可以使用一个单独的通道,但使用允许在训练期间修改的额外维度,而不是使用一个额外的通道。 静态与非静态表示 与单通道非静态模型的情况一样,多通道模型能够对非静态通道进行微调,使其更适合当前的任务。例如,good和bad在word2vec中最相似,大概是因为它们(几乎)在语法上是等价的。但是对于SST-2数据集上经过微调的非静态信道中的向量来说,情况就不一样了(表3)。同样,good在表达情感方面可以说更接近于nice,而不是great,这确实反映在学习到的向量上。对于(随机初始化的)不属于预先训练的向量集合的标记,微调可以让它们学习更有意义的表示:网络学习到感叹号与热情的表达式有关,逗号是连接符(表3)。 结论 在目前的工作中,论文描述了一系列建立在word2vec之上的卷积神经网络实验。尽管很少对超参数进行调整,但带有一层卷积的简单CNN表现得非常好。研究结果进一步证明,无监督词向量的预训练是NLP深度学习的重要组成部分。
再遇见67
两篇都好发。opencv主要以实践和应用为主,同时需要研究成果可以指导应用。NLP是算法中最有挑战性的,因为在CV中,视频可以分割为一帧一帧的图像,像素点是有限的,这很适合计算机去解析。
贪吃的小四
2 月 17 日,Rob Yeung 博士发表。17 条评论
Facebook 推特 领英
什么是自然语言处理? 神经语言程序设计 (NLP) 是一种教练方法,由 Richard Bandler、John Grinder 和 Frank Pucelik 在 1970 年代设计。然而,许多循证科学家和心理学家对 NLP 持强烈批评态度,有些人甚至将其添加到所谓的“不可信疗法”列表中。
NLP 创建后,其思想主要以易于阅读的书籍和培训计划的形式传播,旨在帮助人们实现变革和成功。甚至自助作家 Tony Robbins 最初也开始教人们 NLP 技术,直到 1980 年代后期的一场诉讼(由 NLP 共同创造者理查德·班德勒(Richard Bandler)提起)。在庭外和解中,罗宾斯同意为罗宾斯在 NLP 认证的每个人向 NLP 协会支付 200 美元。和解后不久,罗宾斯停止了 NLP 技术的培训,而是创建了自己的方法,他称之为神经联想条件反射 (NAC)。
为什么 NLP 如此有争议? 在心理治疗中,有许多所谓的大师创造了自己的治疗技术。其中一些所谓的专家以一种愤世嫉俗的观点创造了自己的方法——出售疗法以赚钱。这些自称为专家的其他人可能认为他们真的做得很好——即使没有任何科学证据支持他们的说法。
2006 年,一组研究人员进行了一项调查,要求 101 名心理 健康 专业人士对数十种所谓的心理疗法的可信度进行评分。研究人员由约翰诺克罗斯领导,他从罗德岛大学获得临床心理学博士学位。在进行调查时,他是费城斯克兰顿大学的心理学教授。
诺克罗斯和他的团队要求专家(主要由美国心理学会的研究员以及心理 健康 学术期刊的现任和前任编辑)以 1 的等级对各种假设的疗法进行评分(因为“完全没有信誉”) ) 到 5(对于“肯定名誉扫地”)。例如,有一种叫做天使疗法的东西,从业者用它来治疗精神和行为障碍。天使疗法的评分为 4.98 - 非常不可信。用于治疗精神或行为障碍的前世疗法评分为 4.92。
NLP 的评分为 3.87。事实上,它被评为比其他疗法更不可信,例如治疗阴茎嫉妒的心理疗法(其得分略低,为 3.52)。甚至用于治疗精神和行为障碍的针灸也获得了 3.49 的更有利(即不那么不可信)的评分。
悉尼大学研究员 Anthony Grant 指出,许多研究人员“认为 NLP 不是基于证据的(即几乎没有同行评审的证据表明 NLP 确实有效。然后另一方可能会回应说,从业者知道它有效,因为他们已经亲眼目睹了 NLP 客户的重大变化。”
据推测,即使是使用天使疗法和前世疗法的从业者也相信他们通过他们的方法亲眼目睹了重大变化。然而,有些人可能会争辩说,没有 证据的 单纯 信念 实际上可能更好地被视为妄想。
NLP 从业者接受了多少培训? 许多商业上可用的程序表示,它们可以在大约 12 到 15 天内证明人们成为 NLP 的大师级从业者。但是,考虑到英国和美国的大多数咨询或临床心理学家需要三到五年的时间才能获得资格和认证。
NLP 的现代心理学观点是什么? 研究人员和合格的心理学家大多谴责 NLP。在 2019 年发表在 International Coaching Psychology Review 上的 一篇论文中,一组专家写道:“有许多 NLP 的批评者,他们将 NLP 视为一种伪科学、流行心理学甚至是邪教,没有任何证据证明其有效性。”
根据他们自己对 NLP 主题的 90 篇文章的调查,他们得出结论:“总而言之,没有实证研究为仅基于 NLP 工具和技术的辅导有效性提供证据。”
这很重要。他们没有发现只有少数科学研究支持 NLP。他们发现 没有 纸- 零 , 小人物 , 而不是一个 。
举一个例子,考虑由赫特福德大学心理学教授理查德·怀斯曼领导的一系列调查。NLP 认为,人们的眼球运动可以表明他们的精神状态,甚至在他们撒谎的时候。然而,怀斯曼及其同事收集的数据使他们得出结论:“三项研究的结果未能支持 NLP 的主张。”
在最近的另一篇学术论文中,亨利商学院的研究人员乔纳森·帕斯莫尔 (Jonathan Passmore) 和塔蒂亚娜·罗森 (Tatiana Rowson) 回顾了 NLP 的科学并得出结论:“我们毫不犹豫地认为教练心理学家和那些对循证教练感兴趣的人忽略 NLP 是明智之举品牌支持存在明确证据基础的模型、方法和技术。”
一个由托马斯WITKOWSKI独立检讨使用较强的语言,批评NLP“完全从科学借款或表达式提到它,没有任何科学意义的。它的名字已经可以看出——神经语言编程——这是一种残酷的欺。在神经元层面,它没有提供任何解释,它与学术语言学或编程没有任何共同之处。” 在论文的结尾,他总结道:“NLP 代表伪科学垃圾,应该永远封存起来。”
如果不是 NLP,那还有什么? 英国国民 健康 服务 (NHS) 指出,以认知行为疗法 (CBT) 为基础的自助书籍、应用程序和课程可能会有用。例如,NHS 网站推荐了一些可以免费访问的应用程序和在线工具。在书籍方面,NHS 网站建议:“检查一本书是否由具有丰富经验并在专业机构(例如英国心理学会)注册的顾问或治疗师撰写。”
不会,删除自己转发的只是删除自己转发的这条微博记录,原创作者的微博你是无法删除的
大家都知道,AI (神经网络) 连加减法这样的简单算术都做不好:可现在,AI已经懂得微积分,把魔爪伸向你最爱的高数了。 它不光会求不定积分:还能解常微分方程:一
大宋论文发表在哪?大创论文发表在公报上。或者是。奏凯上这次都可以的。
问题一:怎么在微博上发表自己的长篇文章 可以按照如下进行发表: 一,打开亲登陆新浪微博,在发表微博的窗口下方会发现有一个“长微博”按钮,进行发布微博操作。
量子位 出品 | 公众号 QbitAI 2018,仍是AI领域激动人心的一年。 这一年成为NLP研究的分水岭,各种突破接连不断;CV领域同样精彩纷呈,与四年前相