• 回答数

    7

  • 浏览数

    241

诠释0525
首页 > 论文发表 > 发表论文最少的数学家

7个回答 默认排序
  • 默认排序
  • 按时间排序

Sunny彩妆半永久

已采纳

高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星“智神星”方面也获得类似的成功。由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。

215 评论

醇香麦芽糖

欧几里德(Euclid of Alexandria),希腊数学家。约生于公元前330年,约殁于公元前260年。欧几里德是亚历山大里亚学派的成员。欧几里德写过一本书,书名为《几何原本》(Elements)共有13卷。这一著作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有极大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。欧几里德使用了公理化的方法。公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。笛卡儿笛卡儿最杰出的成就是在数学发展上创立了解析几何学。在笛卡儿时代,代数还是一个比较新的学科,几何学的思维还在数学家的头脑中占有统治地位。笛卡儿致力于代数和几何联系起来的研究,于1637年,在创立了坐标系后,成功地创立了解析几何学。他的这一成就为微积分的创立奠定了基础。解析几何直到现在仍是重要的数学方法之一。欧拉欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".伽罗华(Évariste Galois,公元1811年-公元1832年)是法国对函数论、方程式论和数论作出重要贡献的数学家,他的工作为群论(一个他引进的名词)奠定了基础;所有这些进展都源自他尚在校就读时欲证明五次多项式方程根数解(Solution by Radicals)的不可能性(其实当时已为阿贝尔(Abel)所证明,只不过伽罗华并不知道),和描述任意多项式方程可解性的一般条件的打算。虽然他已经发表了一些论文,但当他于1829年将论文送交法兰西科学院时,第一次所交论文却被柯西(Cauchy)遗失了,第二次则被傅立叶(Fourier)所遗失;他还与埃科尔综合技术学院(école Polytechnique)的口试主考人发生顶撞而被拒绝给予一个职位。在父亲自杀后,他放弃投身于数学生涯,注册担任辅导教师,结果因撰写反君主制的文章而被开除,且因信仰共和体制而两次下狱。他第三次送交科学院的论文亦为泊松(Poisson)所拒绝。伽罗华死于一次决斗,可能是被保皇派或警探所激怒而致,时年21岁。他被公认为数学界两个最具浪漫主义色彩的人物之一。彭加勒,法国数学家。1854年4月29日生于南锡,1912年7月17日卒于巴黎。彭加勒在读中学时,已显示出很高的数学才能。1873年10月以第一名考入巴黎综合工科学校;1875年入国立高等矿业学校学习工程,后任工程师;1879年以数学论文获博士学位,旋即去卡昂大学理学院任讲师;1881年为巴黎大学教授,直到去世;他是全能的数学家,在算术、代数、几何和分析四个数学领域的研究成果都是第一流的,成功地解决了太阳、地球、月亮间相互运动的三体问题;他是现代物理的两大支柱-相对论和量子力学的思想先驱;他研究科学哲学提出的“约定论”着重分析了人类理性认识的基本法则,日益受到当代科学家的重视。在他从事科学研究的34年里,发表论文500篇,著作30多部,获得法国、英国、俄国、瑞典、匈牙利等国家的奖赏,被聘为三十多个国家的科学院院士。彭加勒的研究涉及了数论、代数学、几何学、拓扑学等许多领域。彭加勒对经典物理学有深入而广泛的研究,对狭义相对论的创立有一定的贡献。他从1899年开始研究电子理论,最先认识到洛伦茨变换构成群。希尔伯特,D.(Hilbert,David,1862~1943)德国数学。希尔伯特于1900年8月8日在巴黎第二届国际数学家大会上,提出了新世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,对这些问题的研究有力推动了20世纪数学的发展,在世界上产生了深远的影响。希尔伯特领导的数学学派是19世纪末20世纪初数学界的一面旗帜,希尔伯特被称为“数学界的无冕之王”。熊庆来,字迪之,清代光绪十七年(公元1891年)出生于云南省弥勒县息宰村。他自幼养成勤奋好学的良好习惯,再加上非凡的记忆力与天才的语言接受能力,常令教育过他的中外教师惊叹不已。1913年他以优异成绩考取云南教育司主持的留学比利时公费生,但因第一次世界大战爆发,只得转赴法国,在格诺大学、巴黎大学等大学功读数学,获理科硕士学位。他用法文撰写发表了《无穷极之函数问题》等多篇论文,以其独特精辟严谨的论证获得法国数学界的交口赞誉。华罗庚(1910-1985)中国数学家、教育家,中国解析数论、典型群、矩阵几何学、自守函数论与多服变函数论等方面的创始人与开拓者。江苏金坛人。他的关于完整三角和的研究成果被国际数学界称为“华氏定理”。著有《对垒素数论》《数论导引》《高等数学引论》以及《优选法评话及其补充》《统筹法评话及补充》等陈建功(1893—1971)数学家,数学教育家。早年在浙江大学数学系任教20余年,1952年后被强行调往上海执教,后曾任杭州大学副校长。研究领域涉及正交函数,三角级数,函数逼近,单叶函数与共形映照等。是我国函数论研究的开拓者之一。丘成桐1981年,他32岁时,获得了美国数学会的维布伦(Veblen)奖——这是世界微分几何界的最高奖项之一;1983年,他被授予菲尔兹(Fields)奖章——这是世界数学界的最高荣誉;1994年,他又荣获了克劳福(Crawford)奖。除此之外,他还获得过美国国家科学奖章和加利福尼亚州最优秀的科学家的称号,是美国科学院院士、哈佛大学名誉博士、中国科学院外籍院士、香港中文大学名誉博士……

211 评论

我叫歪歪

高斯生于布伦瑞克,卒于哥廷根。德国著名数学家、物理学家、天文学家、几何学家,大地测量学家。享有“数学王子”的美誉。

高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。他经常对他的同事表示,该同事的结论已经被自己以前证明过了,只是因为基础理论的不完备而没有发表。批评者说他这样做是因为喜欢抢出风头。事实上高斯把他的研究结果都记录起来了。他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。一般人认为,20部笔记并非高斯笔记的全部。

下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数位化,并放置于互联网上。

高斯的肖像曾被印刷在从1989年至2001年流通的10元德国马克纸币上。

扩展资料

虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的戴德金和黎曼。

高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。

18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。

在高斯19岁时,仅用尺规便构造出了17边形。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。

参考资料来源:百度百科-约翰·卡尔·弗里德里希·高斯

115 评论

sunshieeos

卡尔.弗里德里希.高斯(Carl Friedrich Gauß,1777.4.30~1855.2.23),德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。 在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。 在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。 罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。 7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。 在全世界广为流传的一则故事说,高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?” 。这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。 当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。 高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。 1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。 布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。 1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。 1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。” 慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。 为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。 高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。 高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。 虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。 1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。 高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。 在处理相片的软件 photoshop 中,有一种菜单叫高斯模糊,这种功能对模糊一些不必要的地方很有作用。高斯(Gauss 1777~1855)生於Brunswick,位於现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什麽东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终於找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。 1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对於正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。 事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。 在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由於钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。 当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。 高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」(Method of Least Square)。 1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。 1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。 1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关於测地学的书,由於测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。 1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」 在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber) 一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。 1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。 高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。 1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。 高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。其中一个有名的例子是关於非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺於平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道: to preise it would mean to praise myself. 我无法夸赞他,因为夸赞他就等於夸奖我自己。 早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics)一书里曾经这样批评高斯: 在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。 在1855年二月23日清晨,高斯在他的睡梦中安详的去世了 [2]物理单位 高斯(G),非国际通用的磁感应强度单位。为纪念德国物理学家和数学家高斯而命名。 一段导线,若放在磁感应强度均匀的磁场中,方向与磁感应强度方向垂直的长直导在线通有1电磁系单位(emu)的稳恒电流(等于10安培)时,在每厘米长度的导线受到电磁力为1达因,则该磁感应强度就定义为1高斯。 高斯是很小的单位,10000高斯等于1特斯拉。 补充 高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。 他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。 高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。 1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星”智神星”方面也获得类似的成功。 由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。

161 评论

冷扇画屏

李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。 朱世杰:《四元玉鉴》 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法) 华罗庚 “数学,如音乐一样,以奇才辈出而著称,这些人即便没有受过正规的教育也才华横溢。虽然华罗庚谦虚地避免使用奇才这个词,但它却恰当地描述了这位杰出的中国数学家。” --G·B·Kolata 华罗庚是一个传奇式的人物,是一个自学成才的数学家。 他1910年11月12日出生于江苏省金坛县一个城市贫民的家庭,1985年6月12日,中国数学届陨灭一颗巨星-华罗庚在日本讲学时不幸因心肌梗塞逝世了。 华罗庚是蜚声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守与多复便函数等多方面研究的创始人与开拓者。他的著名学术论文《典型域上的多元复变函数论》,由于应用了前人没有用过的方法,在数学领域内做了开拓性的工作,于1957年荣获我国科学一等奖。他研究的成果被国际数学界命名为“华氏定理”,“布劳威尔-加当-华定理”。华罗庚一生精勤不倦,奋斗不息,著作很多,研究领域很广。他共发表学术论文约二百篇,专著有《堆垒素数论》、《高等数学引论》、《指数和的估计及其在数论中的应用》、《典型群》、《多复变数函数论中的典型域的分析》、《数论引导》、《数值积分及其应用》、《从单位圆谈起》、《优选法》、《二阶两个自变数两个未知函数的常系数偏微分方程》、《华罗庚论文选集》等12部。 名师与高徒——陈省生和丘成桐 当今世界数坛,设有两项奖励,可谓举世瞩目,堪于诺贝尔奖相比.一项是在国际数学家大会颁发的菲尔兹(Fields)奖,这项奖只授予不超过40岁的年轻数学家;一项是由以色列沃尔夫基金会于1978年颁发的沃尔夫奖;每奖10万美元(数目最初于诺贝尔奖接近),授予当代最大的数学家. 1983年,旅美中国年轻数学家丘成桐教授荣获沃尔夫大奖,而他的老师美籍中国数学家陈省身教授则获沃尔夫大奖. 陈省身教授是美国科学院院士,1975年美国国家科学奖获得者,当代世界最有影响的数学家之一,现代微分几何的奠基人. 陈省身1911年10月26日出生于浙江省嘉兴县,陈省身教授是国际数学届整体微分几何研究的领导人物. 他1931年在清华大学研究发表的第一篇研究论文,其题材就是有关"投影微分几何"的. 他写的积分几何,把希拉克学派的积分几何工作推到了更高的阶段. 陈省身对当时数学界知之甚少的示性类理论很感兴趣.1945年他发现复流上有反映复结构特征的不变量,后来被命名为陈省身示性类是微分几何学、代数几何学、复解析几何学中最重要的不变量。“它的应用及于整个数学及理论物理”。(沃尔夫奖评语)魏伊说:“示性类的概念被陈的工作整个地改观了。”陈省身因建立代数拓补与微分几何的联系,推进了整体几何的发展彪炳于数学史册。 在将近半个世纪里,陈省身教授在微分几何研究中,取得了一系列丰硕的成果,其最突出的有:(1)关于卡勒(Kahleian)G结构的同调和形式的分解定理:(2)欧几里得空间中闭子流的全曲率和紧嵌入的理论;(3)满足几何条件的子流形成唯一性定理;(4)积分几何中的运动公式。(5)他同格里菲恩(P.Griffiths)关于网上几何(Web geometry)的工作使这方面获得新生命,最近的发展(I.Gelfand,R.Mcpherson);(6)他同莫泽(J.Moser)关于CR-流形的工作最近多复变函数论进展的基础;(7)他同西蒙斯(J.Simons)的特征式是量子力学异常(anomaly)现象的基本数学工具;(8)他同沃尔夫森(J.Wolfson)关于调和映射的工作是整体微分几何的一个问题,在理论物理有重要应用.1959年他在芝加哥大学所撰写的《微分几何》是一部经典名著。 丘成桐1949年4月4日出生在广东省,不久他们全家移居香港,1976年,年仅27岁的丘成桐就解决了微分几何中的一个著名难题-“卡拉比猜想”。卡拉比猜想的解决,使丘成桐成为数学天空新升起的一颗名星,他除解决了卡拉比猜想外,他还解决了许多停多年毫无进展的问题,例如:(1)正质猜想,(2)实与复的蒙日-安培方程。(3)丘成桐的一系列文章对某些紧流形(或有边界的流型)上的拉普拉斯算子的第一特征值,以及其它的特征值都作了深刻的估计。(4)丘成桐和肖荫堂合作,利用极小曲面对弗兰克尔猜想给出一个漂亮的证明,也就是证明了完备的单连通的、具有正的全纯截面曲率的恺勒流形与一个复射空间双全纯等价;(5)丘成桐和米斯克利用三维流形的拓补方法解决极小曲面的经典理论中一些老问题。反过来,他们利用极小曲面理论得出三维拓补学的一些结果:得恩引理和等变环圈定理及等球定理等。 由于丘成桐的出色成就,他1981年获美国数学颁发的维布伦奖,1983年,他在华沙举行的国际数学家大会上荣获菲尔兹奖是当之无愧的. 吴文俊 数学家。1919年5月12日生于上海市。1940年毕业于上海交通大学。1947年赴法国留学。在巴黎法国国家科学研究中心进行数学研究,1949年获法国国家科学博士学位。1951年回国。1957年被聘选为中国科学院院士(学部委员)。历任北京大学数学系教授,中国科学院数学研究所研究员及副所长,中国科学院系统科学研究所研究员及副所长、名誉所长、数学机械化研究中心主任。曾任中国数学会理事长、名誉理事长,中国科学院数学物理学部副主任、主任等职。 吴文俊主要从事拓扑学、机器证明学等方面的研究并取得多项突出成果,是中国数学机械化研究的创始人,为中国数学研究和科学事业的发展作出了重要贡献。1952年刊印出版的博士论文《球纤维示性类》是对球纤维理论基本问题的重要贡献。从40年代起示性类、示嵌类等研究方面取得一系列突出成果,并有许多重要应用,被国际数学界称为“吴文俊公式”、“吴文俊示性类”,已被编入许多名著。这方面成果曾获1956年度国家自然科学奖(中国科学院自然科学奖金)一等奖。60年代继续进行示嵌类方面的研究,独创性地发现了新的拓扑不变量,其中关于多面体的嵌入和浸入方面的成果至今仍居世界领先地位。在庞特雅金示性类方面的成果,是拓扑学纤维丛理论和微分流形的几何学的一项基本理论研究,有深刻的理论意义。近年来创立了定理机器证明的吴文俊原理(国际上称为“吴方法”),实现了初等几何与微分几何定理的机器证明,居于世界领先地位。这一重要创新改变了自动推理研究的面貌,在定理机器证明领域产生了巨大影响,并有重要的应用价值,它将引起数学研究方式的变革。这方面的研究成果曾获1978年全国数学大会重大成果奖和1980年中国科学院科技进步奖一等奖。在机器发现和创造定理的研究方面,以及代数几何、中国数学史、对策论等研究中也作出了重要贡献。 杨乐 数学家。1939年11月10日生于江苏南通。1956年考入北京大学数学系,1962年毕业,同年考取中国科学院数学研究所研究生,1966年研究生毕业后留所工作。曾任中国科学院数学研究所所长、中国数学会秘书长、理事长。现任中国科学院数学研究所研究员、学术委员会主任。1980年当选为中国科学院院士(学部委员)。 杨乐在函数模分布论、辐角分布论、正规族等领域,以其众多极富创造性的重要贡献,20年来一直站在世界最前列,是国际上的领头数学家之一。 一、对整函数、亚纯函数的亏值、亏量函数进行了深入研究 与张广厚合作在亚纯函数的亏值数目与Borel方向数目间首次建立了密切联系;在引进亏函数后,给出有穷下级亚纯函数总亏量的估计,从而证明了其亏函数是可数的;给出亚纯函数结合于导数的总亏量的估计,彻底解决了著名学者D.Drasin70年代提出的3个问题。 二、对正规族作了系统研究,获得了一些新的重要的正规定则 杨乐建立了正规族与不动点之间的联系正规族与微分多项式之间的联系,解决了著名学者W.K.Hayman提出的一个正规族问题等。 三、对整函数和亚纯函数的辐角分布进行了系统、深入的研究 杨乐研究在亚纯函数涉及的导数的辐角分布时,获得了一种新型的奇异方向;对辐角分布与重值间的关系得到了深入的结果;完全刻划了亚纯函数Borel方向的分布规律;与Hayman合作解决了Littlewood的一个猜想。 杨乐的上述各项重要研究成果受到国内外同行的高度评价与许多引用,他所得到的亏量关系,被国外学者称为“杨乐亏量关系‘等。 刘徽】中国古代数学家,魏晋时期山东人 个人简介 魏晋时期山东人,出生在公元3世纪20年代后期。据《隋书·律历志》称:“魏陈留王景元四年(263)刘徽注《九章》”。他在长期精心研究《九章算术》的基础上,采用高理论,精计算,潜心为《九章》撰写注解文字。他的注解内容详细、丰富,并纠正了原书流传下来的一些错误,更有大量新颖见解,创造了许多数学原理并严加证明,然后应用于各种算法之中,成为中国传统数学理论体系的奠基者之一。如他说:“徽幼习《九章》,长再详览。观阴阳之割裂,总算术之根源,探赜之暇,遂悟其意。是以敢竭顽鲁,采其所见,为之作注”。又说:“析理以辞,解体用图。庶亦约而能周,通而不黩,览之者思过半矣。”他除为《九章》作注外,还撰写过《重差》一卷,唐代改称为《海岛算经》。他的主要贡献在于创造了割圆术,运用极限观念计算圆面积和圆周率;创造十进分数、小单位数及求微数思想;定义许多重要数学概念,强调“率”的作用;运用直角三角形性质建立并推.广重差术,形成特有的准确测量方法;提出“刘徽原理”,形成直线型立体体积算法的理论体系,在例证方面,他采用模型、图形、例题来论证或推广有关算法,加强说服力和应用性,形成中国传统数学风格;他采用严肃、认真、客观的精神,差别粗糙、错误的论述,创造精细、有逻辑的观点,以理服人,为后世学人树立良好的学风;在等差、等比级数方面也有一些涉及和创意。经他注释的《九章算术》影响、支配中国古代数学的发展1000余年,是东方数学的典范之一,与希腊欧几里得(约前330-275)的《原本》所代表的古代西方数学交相辉映。 刘徽从事数学研究时,中国创造的十进位记数法和计算工具“算筹”已经使用一千多年了。在世界各种各样的记数法中,十进位记数法是最先进、最方便的。中国古代数学知识的结晶“九章算术”也成书三百多年了。“九章算术”反映的是中国先民在生产劳动、丈量土地和测量容积等实践活动中所创造的数学知识,包括方田、粟米、哀分、少广、商功、均输、盈不足、方程、勾股九章,是中国古代算法的基础,它含有上百个计算公式和246个应用问题,有完整的分数四则运算法则,比例和比例分配算法,若干面积、体积公式,开平方、开立方程序,方程术--线性方程组解法,正负数加减法则,解勾股形公式和简单的测望问题算法。其中许多成就处于世界领先地位。公元元年前年,盛极一时的古希腊数学走向衰微,“九章算术”的出现,标志着世界数学研究中心从地中海沿岸转到了中国,开创了东方以应用数学为中心占据世界数学舞台主导地位千余年的局面。在编排上,“九章算术”或者先提出术文(命题),后列出几个例题,或者先列出一个或几个例题,后提出术文。然而它对所用的概念没有定义,对所有的术文没作任何推导证明,个别的公式尚有不精确或失误之处。东汉以后的许多学者都研究过“九章算术”,但理论建树不大。刘徽著作的“九章算术注”,主要是给“九章算术”的术文作解释和逻辑证明,更正其中的个别错误公式,使后人在知其然的同时又知其所以然。有了刘徽的注释,“九章算术”才得以成为一部完美的古代数学教科书。 在“九章算术注”中,刘徽发展了中国古代“率”的思想和“出入相补”原理。用“率”统一证明“九章算术”的大部分算法和大多数题目,用“出入相补”原理证明了勾股定理以及一些求面积和求体积公式。为了证明园面积公式和计算园周率,刘徽创立了割园术。在这徽之前人们曾试图证明它,但是不严格。刘徽提出了基于极限思想的割园术,严谨地证明了园面积公式。他还用无穷小分割的思想证明了一些锥体体积公式。在计算园周率时,刘徽应用割园术,从园内接正六边形出发,依次计算出园内接正12边形、正24边形、正48边形,直到园内接正192边形的面积,然后使用现在称之为的“外推法”,得到了园周率的近似值3.14,纠正了前人“周三径一”的说法。“外推法”是现代近似计算技术的一个重要方法,刘徽遥遥领先于西方发现了“外推法”。刘徽的割园术是求园周率的正确方法,它奠定了中国园周率计算长期在世界上领先的基础。据说,祖冲之就是用刘徽的方法将园周率的有效数字精确到7位。在割园过程中,要反复用到勾股定理和开平方。为了开平方,刘徽提出了求“微数”的思想,这与现今无理根的十进小数近似值完全相同。求微数保证了计算园周率的精确性。同时,刘徽的微数也开创了十进小数的先河。 刘徽治学态度严肃,为后世树立了楷模。在求园面积公式时,在当时计算工具很简陋的情况下,他开方即达12位有效数字。他在注释“方程”章节18题时,共用1500余字,反复消元运算达124次,无一差错,答案正确无误,即使作为今天大学代数课答卷亦无逊色。刘徽注“九章算术”时年仅30岁左右。北宋大观三年(1109)刘徽被封为淄乡男。 冯·诺伊曼(1903-1957)美国数学家。生于匈牙利。早年以集合论和数学基础的工作著称,二次大战中参与同反法西斯战争有关的各项科学计划,担任过制造原子弹的顾问。他的科学足迹遍及纯粹数学、应用数学、力学、经济学、气象学、理论物理学、计算机科学及脑科学、他的成就相当于30年科学发展史的概要。他集中研究纯粹数学,涉及到集合论公理系统、元数学、冯·诺伊曼代数算子环等,解决了希尔伯特第五问题,对量子力学加以公理化。1940年他由纯粹数学家转为应用数学家,并应召参与许多重要军事科学计划和工程项目,帮助设计了原子弹的最佳结构,研究空气动力学,转向航空技术。二战后期,他开始计算机研究,在电子计算机逻辑体制中引入代码,编制各种程序,把崭新的科学思想付诸实践,是第一台电子计算机ANIAC诞生的催产师。现代计算机许多基本设.计中都带有他的思想标记。冯·诺伊曼还创立了对策论,抛弃传统的经典力学方法处理经济问题,而代之以新颖的策略思想和组合工具。晚年则致力于自动机理论,意识到计算机和人脑机制的某种类似,为人工智能研究打下了基础。 图灵,英国数学家。早年兴趣集中在"可计算数"上,他的理论奠定了计算机科学理论的基础。二次大战时,图灵奉召到英国外交部通讯部所属的密码学校从事破译工作,他领导的数学家,语言学家和计算人员共同研制了一种快速计算机,能高速分析密码--各种可能的组合。图灵的理想计算机的思想导致了世界上第一台数字式专用"巨人"电子计算机的研制成功,也为二次大战的最后胜利建立了不朽功勋。大战结束后,图灵致力于研制大型电子计算机,写出了计算机总体设计方案,包含了仿真系统、子程序和子程序库、错误自检系统、机器自动编译程序等。图灵在机器智能方面做出了许多开创性的工作。并论述了智能机器的可能性,以他特有的理论彻底性对包括智能计算机在内的所有机器作了严密的分类,把数学计算机分为"有组织的"和"无组织的",两大类。图灵一生的工作覆盖了几个重要领域:数理逻辑、群论、破译码机、计算机、机器智能,并做出了巨大的贡献,他还对与生命起源有密切关系的"形态发生"的化学理论进行了可贵的探索。他的独创性和预见性愈来愈受到人们的敬佩。 笛卡儿(René Descartes 1596~1650),出生于法国,父亲是法国一个地方法院的评议员,相当于现在的律师和法官。一岁时母亲去世,给笛卡儿留下了一笔遗产,为日后他从事自己喜爱的工作提供了可靠的经济保障。8岁时他进入一所耶稣会学校,在校学习8年,接受了传统的文化教育,读了古典文学、历史、神学、哲学、法学、医学、数学及其他自然科学。在学校读书时,校长特许笛卡儿每天早晨在床上读书思考,养成了“晨思”的习惯,一直保持到晚年。笛卡儿后来回忆说,这所学校是“欧洲最著名的学校之一”,但他对所学的东西颇感失望。因为在他看来教科书中那些微妙的论证,其实不过是模棱两可甚至前后矛盾的理论,只能使他顿生怀疑而无从得到确凿的知识,惟一给他安慰的是数学。在结束学业时他暗下决心:不再死钻书本学问,而要向“世界这本大书”讨教。于是1612年到巴黎的普瓦捷大学攻读法学,4年后获博士学位。1618年从军,到过荷兰、丹麦、德国。1621年回国,正值法国内乱,又去荷兰、瑞士、意大利旅行,1625年返巴黎。由于笛卡儿曾独立解决了几道公开征答的数学难题而使他结交了许多科学界的朋友,使他对自己的数学与科学的能力有了信心,于是他决定避开战争,远离社交活动频繁的都市,寻找一处适于研究的环境。1628年,他从巴黎移居荷兰,开始了长达20年的潜心研究和写作生涯,先后发表了许多在数学和哲学上有重大影响的论著。1649年冬,应邀为瑞典女王克里斯蒂娜(1626-1689)讲课,因生活习惯被破坏,数月后患肺炎逝世。(16年后,遗骨运回巴黎)。他的著作在生前就遭到教会指责,死后又被梵蒂冈教皇列为禁书,但这并没有阻止他的思想的传播。 笛卡儿是欧洲近代哲学的创始人之一。黑格尔称他为“现代哲学之父”,恩格斯称他为“辩证法的卓越代表”。同时笛卡儿又是一勇于探索的科学家,在物理学、生理学等领域都有值得称道的创见,特别是在数学上他创立了解析几何,从而打开了近代数学的大门,在科学史上具有划时代的意义。 在笛卡儿之前,几何与代数是数学中两个不同的研究领域。笛卡儿站在方法论的自然哲学的高度,认为希腊人的几何学过于依赖于图形,束缚了人的想象力。对于当时流行的代数学,他觉得它完全从属于法则和公式,不能成为一门改进智力的科学。因此他担出必须把几何与代数的优点结合起来,建立一种“真正的数学”。笛卡儿的思想核心是:把几何学的问题归结成代数形式的问题,用代数学的方法进行计算、证明,从而达到最终解决几何问题的目的。依照这种思想他创立了我们现在称之为的“解析几何学”。笛卡儿的具体作法是:引进坐标的概念,建立平面上的点与数对的对应关系;从解决几何作图的问题入手,担出用代数方程表示几何曲线的方法;用求解代数方程的根,解决几何作图问题。用这种办法,笛卡尔轻而易举地解决了古典几何学家用纯几何方法没解决的问题。沿着用代数方程研究几何典线的思路,笛卡儿还得到了一系列新颖的想法与结果。最为可贵的是,笛卡儿用运动的观点,把曲线看成点的运动的轨迹,不仅建立了点与实数的对应关系,而且把形(包括点、线、面)和“数”两个对立的对象统一起来,建立了典线和方程的对应关系。这种对应关系的建立,不仅标志着函数概念的萌芽,而且标明变数进入了数学,使数学在思想方法上发生了伟大的转折--由常量数学进入变量数学的时期。笛卡儿的这些成就,为后来牛顿、莱布尼兹发现微积分,为一大批数学家的新发现开辟了道路。笛卡儿的主要数学成果集中在他的“几何学”中。值得指出的是,在“几何学”中,笛卡儿根据问题特点选用他的坐标轴系,这是一种斜坐标系,没有出现过标准的现在称为笛卡儿坐标的直角坐标系,后者是由杰出的德国哲学家和数学家G.W.莱布尼茨引入的。

223 评论

吃货迷思

还有更全的:卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss),德国数学家、物理学家和天文学家。 高斯学习非常勤奋,11岁时发现了二项式定理,17岁时发明了二次互反律,18岁时发明了用圆规和直尺作正17边形的方法,解决了两千多年来悬而未决的难题。21岁大学毕业,22岁时获博士学位。1804年被选为英国皇家学会会员。从1807年到1855年逝世,一直担任格丁根大学教授兼格丁根天文台台长。他还是法国科学院和其他许多科学院的院士,被誉为历史上最伟大的数学家之一。他善于把数学成果有效地应用于天文学、物理学等科学领域,又是著名的天文学家和物理学家,是与阿基米德、牛顿等同享盛名的科学家。 高斯出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德•迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。 在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。 在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。她性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。 罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,她也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。 7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。 在全世界广为流传的一则故事说,高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?” 。这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E•T•贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。 当然,这也是一个等差数列的求和问题。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E•T•贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。 高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。 1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。 布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。 1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的格丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。 1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。” 慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。 为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的格丁根大学数学和天文学教授,以及格丁根天文台台长的职位。1807年,高斯赴格丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在格丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。 高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。 高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。 虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。 1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。 高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。 在处理相片的软件photoshop中,有一种菜单叫高斯模糊,这种功能对模糊一些不必要的地方很有作用。高斯生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶尔会给他一些指导,而父亲可以说是一名大老粗,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终于找到了资助人--布伦斯维克公爵费迪南,答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」、质数分布定理、及算术几何平均。 1795年高斯进入格丁根大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对於正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:1、n = 2^k,k = 2, 3,… 2、n = 2^k × (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 2^(2^k)+1 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有根。这结果称为「代数学基本定理」。 事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。 在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的著作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。 当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。 高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」(Method of Least Square)。 1802年,他又准确预测了小行星二号--智神星的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。 1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数,并且把研究结果写成专题论文,呈给哥廷根皇家科学院。 1820到1830年间,高斯为了测绘汗诺华公国的地图,开始做测地的工作,他写了关於测地学的书,由於测地上的需要,他发明了日观测仪。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。 1827年他发表了《曲面的一般研究》,涵盖一部分现在大学念的「微分几何」。 在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber) 一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。 1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。 高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。 1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。 高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 罗巴切乌斯基,波埃伊。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺於平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道: to preise it would mean to praise myself. 我无法夸赞他,因为夸赞他就等于夸奖我自己。 早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。美国的著名数学家贝尔,在他着的《数学工作者》一书里曾经这样批评高斯: 在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔和雅可比可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。 在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。

259 评论

楠木青城……

1、古代:墨子 惠施 张苍 耿寿昌 刘歆 许商 张衡 刘洪 徐岳 赵爽 刘徽 王蕃 何承天 张邱建 祖冲之 祖日桓 甄鸾 刘焯 王孝通 李淳风 僧一行 边冈 沈括 贾宪 刘益 秦九韶 李冶 王恂 杨辉 郭守敬 朱世杰 陶宗仪 吴敬 王文素 顾应祥 程大位 徐光启朱载堉 李之藻 王锡阐 梅文鼎家族 年希尧 明安图 董佑诚 焦循 汪莱 李锐 项名达 阮元 徐有壬 戴煦 李善兰 邹伯奇 夏鸾翔 华蘅芳 丁取忠 黄宗宪 左潜 曾纪鸿 周达 2、现当代:胡明复 冯祖荀 姜立夫 陈建功 熊庆来 苏步青 江泽涵 许宝騄 华罗庚 陈省身 林家翘 吴文俊 陈景润 丘成桐 冯康 周伟良 萧荫堂 钟开莱 项武忠 项武义 龚升 王湘浩 伍鸿熙 严志达 陆家羲 苏家驹 百度自己找

306 评论

相关问答

  • 发表论文字数最少是多少

    论文的不同字数也会不同。 1、首先是摘要,不论是普刊论文还是核心期刊论文,摘要字数控制在200到300字之间,摘要的写作需要简明扼要,中心突出,摘要是编辑审

    切尔西爱吃鱼 4人参与回答 2023-12-11
  • 论文发表数量最多的国家

    尽管排在前十位的很多都是西方大国,但是他们发表的论文数量在减少,中国、巴西、印度等国发表的研究论文越来越多。中国1999年--2003年(居第六位占总数4.4%

    吃货201510 5人参与回答 2023-12-06
  • 发表论文最少的科学家

    世界顶级科学家发表论文数和被引用数粗略分析无意中发现电脑上有份之前下载的数据,一份“世界科学家发表论文数和被引用数及其他判断标准的数据汇总表(1960-2017

    大唐帝国皇帝 7人参与回答 2023-12-08
  • 史上发表论文最多的数学家

    西方公认的四大数学家是:阿基米德、牛顿、欧拉、高斯。再比如 欧几里得、阿波罗尼奥斯、笛卡尔、费马、黎曼、希尔伯特、庞加莱、弗雷格、罗素等等也很牛。你可以参考《古

    狂爱KIKI 4人参与回答 2023-12-06
  • 发表论文最多的中国数学家

    华罗庚于1910年生于江苏省金坛县一个小商人家庭。 1925年,初中毕业后就因家境贫困无法继续升学。1928年,18岁的华罗庚在他的数学老师王维克的推荐下,到金

    默默一个人旅行 4人参与回答 2023-12-06