楼兰芥末姑娘
俗话说,一图胜千言。质量上乘的SCI的图片表格无疑是论文的加分项,能极大得提高论文的质量。总体上还是建议大家先阅读目标期刊对图表投稿的具体要求,毕竟每个期刊对图表的要求都有略微的区别,这里给大家介绍一些图表的通用规则和注意要点,帮大家少走弯路。1.图表是放在正文中还是单独上传。绝大多数期刊要求正文、图片、表格、附加材料都单独上传;个别期刊要求正文里附带表格,图片另外上传;有的期刊要求将图表都添加到正文的末尾部分。2.期刊对彩色图表是否另外收费。3.版权问题。如果引用别人或者自己之前发表过的图表,要得到著作权持有者(各个作者、出版社)的许可,并说明图表的来源和用途。4.期刊对Figure legend要求是提倡详尽还是简略略写(是否需要写明缩写,图例,统计学差异等,对图表的描述是否要详细,还是体现在结果部分,还是把专业内学术常识部分省略,直接写图片要点)。最好参考已经发表的文献对图注的描述方法。5.图表的数量。大多数期刊对图表的数量没有要求,但小编也遇到有的期刊要求图表的数量总共不超过6个的情况,大家投稿前一定要按照期刊要求进行合理拼图或者删减不重要的图作为补充材料。6.图片格式。一般期刊更推荐作者提交矢量图。图片可提交的格式有:(1)矢量图格式.eps, .ai, .pdf, .svg,(2)用于位图的 .psd, .tiff, .jpeg, .png。.tiff格式的图片用PS处理后采用LZW格式无损压缩进行提交。(3) 没有格式影响可编辑的 .ppt最好将图表转换成图片时,就将图片格式设定为 .tiff或者.eps的矢量图格式。7.图片大小。出版社多采用分栏排版,分为左右两栏。一般排版的格式分为三种。图片左右最好不要留空白,或者仅留极少的空白。一般图片高度没有限制,不可过高超过20 cm;根据宽度分类,可分为三种:(1)半版图。图片总的宽度为8-9cm,(2)2/3版图。图片总宽度为12-15cm。(3)全版图。图片总宽度为17-19cm。8.图片色彩要求。RGB(red, green, blue)用于在线出版,CMYK(cyan, magenta, yellow, CMY) 为印刷业通用标准。如果期刊接受纸质出版,一般要求色彩模式为CMYK,现在越来越多期刊接受RGB模式的图片,一般不要求作者对色彩模式进行修改。如果文章按黑白模式印刷,应把所有的图片转化为灰度模式提交。9.图片的字体字号。英文标注大多使用和期刊正文相同的字体,一般是Arial, Times New Roman, Helvetica。图表上字体最大不能超过14号字,尽量使用8-12号字,尽量少使用6号以下的字体。同一张图内的字体大小尽量保持一致,如果不一致,相差字体的比例是否有要求。10.图片的标注方法,同一个大图不同小图的字母大小写;字母标注在图片内容的内部还是外部。11.图片分辨率。彩色图或者灰度图,分辨率要求300 dpi。复合型图,包括标注或者细线的图片,分辨率要求600 dpi。线条图,没有中间颜色的黑白图片,分辨率要求1200 dpi或者600 dpi。12.图片占内存容量。图片过大,会影响上传速度,有的期刊对单个附件的大小有要求。一般单张图片大小不可以超过10M。13.遵循统一和对齐原则。同一张大图的不同小图之间,尽量图片间水平和垂直对齐;相同类型的图片保持相同的规格。14.线条的粗细,一般在0.25-1.5pt之间。避免线条过粗影响美观或者线条过细出现裂痕。15.柱状图或者条形统计图的X轴、Y轴的legend部分的标注不要超过X轴和Y轴的边界两边的极值边界部分。16.图片中第一次出现的缩写、数字、字母、标注符号、不同的色彩,最好在图片的figure legend部分进行详细描述。
童鞋哈哈
图像分类是计算机视觉中最基础的任务,其中可以分为跨物种语义级别的图像分类,子类细粒度图像分类,以及实例级图像分类三大类别。 在不同物种的层次上识别不同类别的对象,例如猫狗分类,这样的分类任务的特征是,较大的类间方差,较小的类内方差,例如典型的cifar10是在交通工具以及动物内部进行区分,都是语义上完全可以区分开的对象 细粒度图像分类,是一个大类中的子类的分类,例如不同鸟类的分类,不同狗类的分类,不同车型的分类等等。例如Caltech-UCSD Birds-200-2011数据集,他是包含200类,11788张图像的鸟类书籍,为每一张图提供了15哥局部区域位置,1个标注框。这种细粒度级别的检测需要更为精细的分类器设计 如果我们需要区分不同的个体,不仅仅是物种类别或者子类,其就是一个识别问题,例如最典型的任务就是人脸识别。人脸识别对于计算机视觉领域落地是十分有意义的,它能够完成很多任务,例如安全维稳,考勤打卡,人脸解锁等应用场景都是和人脸识别这个实例级图像分类任务密切相关的。 MNIST数据集在当时是一个baseline,其包含60000个训练数据,10000个测试数据,图像均为灰度图像,大小为32*32。在这个数据集中,其实传统方法表现的也不错,例如SVM以及KNN,SVM为代表的方法可以将MNIST分类错误率降低到0.56%, 超过当时的人工神经网络。 后来经过多次迭代,LeNet5在1998年诞生,这是一个经典的卷积神经网络,饱含着一些重要的特性: 虽然LeNet5的错误率在0.7%左右,不如SVM方法,但随着网络结构的发展,神经网络方法很快的超过了其他的所有方法,有着很好的效果。 为了在工业界落地更加复杂的图像分类任务,李飞飞等人数年时间的整理下,2009年,ImageNet数据集发布了。ImageNet数据集共有1400多万张图片,共有2万多个类别,不过论文中常用的都是1000类的基准。 AlexNet在2012年时横空出世,是第一个真正意义上的深度网络,与LeNet5的5层相比,它的层数增加了3层,网络的参数量也大大增加,输入也从28变成了224,同时GPU的面世,也使得深度学习从此进行GPU为王的训练时代。 AlexNet有以下的特点: VGGNet探索了卷积神经网络的深度与其性能之间的关系,成功地构筑了16~19层深的卷积神经网络,证明了增加网络的深度能够在一定程度上影响网络最终的性能,使错误率大幅下降,同时拓展性又很强,迁移到其它图片数据上的泛化性也非常好。到目前为止,VGG仍然被用来提取图像特征。 VGGNet可以看成是加深版本的AlexNet,都是由卷积层、全连接层两大部分构成.全部使用3×3的卷积核和2×2的最大池化核,简化了卷积神经网络的结构。VGGNet很好的展示了如何在先前网络架构的基础上通过简单地增加网络层数和深度就可以提高网络的性能。虽然简单,但是却异常的有效,在今天,VGGNet仍然被很多的任务选为基准模型。 GoogLeNet也是将网络层次加深了,不过GoogLeNet做了更加大胆的网络结构的尝试,其深度只有22层,从参数数量来看,GoogleNet参数为500万个,AlexNet参数个数是GoogleNet的12倍,VGGNet参数又是AlexNet的3倍,因此在内存或计算资源有限时,GoogleNet是比较好的选择;但是从模型结果来看,GoogLeNet的性能却更加优越。 一般来说,提升网络性能最直接的办法就是增加网络深度和宽度,深度指网络层次数量、宽度指神经元数量。但这种方式存在以下问题: (1)参数太多,如果训练数据集有限,很容易产生过拟合; (2)网络越大、参数越多,计算复杂度越大,难以应用; (3)网络越深,容易出现梯度弥散问题(梯度越往后穿越容易消失),难以优化模型。 解决这些问题的方法当然就是在增加网络深度和宽度的同时减少参数,为了减少参数,自然就想到将全连接变成稀疏连接。但是在实现上,全连接变成稀疏连接后实际计算量并不会有质的提升,因为大部分硬件是针对密集矩阵计算优化的,稀疏矩阵虽然数据量少,但是计算所消耗的时间却很难减少。比较通用的方法是使用dropout的方法,相当于从原始的网络中找到一个更”瘦“的网络(有待考究) GoogLeNet团队提出了Inception网络结构,就是构造一种“基础神经元”结构,来搭建一个稀疏性、高计算性能的网络结构。 什么是Inception呢?Inception历经了V1、V2、V3、V4等多个版本的发展,不断趋于完善,下面一一进行介绍 通过设计一个稀疏网络结构,但是能够产生稠密的数据,既能增加神经网络表现,又能保证计算资源的使用效率。谷歌提出了最原始Inception的基本结构: 该结构将CNN中常用的卷积(1x1,3x3,5x5)、池化操作(3x3)堆叠在一起(卷积、池化后的尺寸相同,将通道相加),一方面增加了网络的宽度,另一方面也增加了网络对尺度的适应性。 网络卷积层中的网络能够提取输入的每一个细节信息,同时5x5的滤波器也能够覆盖大部分接受层的的输入。还可以进行一个池化操作,以减少空间大小,降低过度拟合。在这些层之上,在每一个卷积层后都要做一个ReLU操作,以增加网络的非线性特征 然而这个Inception原始版本,所有的卷积核都在上一层的所有输出上来做,而那个5x5的卷积核所需的计算量就太大了,造成了特征图的厚度很大,为了避免这种情况,在3x3前、5x5前、max pooling后分别加上了1x1的卷积核,以起到了降低特征图厚度的作用,这也就形成了Inception v1的网络结构 对上图说明如下: (1)GoogLeNet采用了模块化的结构(Inception结构),方便增添和修改; (2)网络最后采用了average pooling(平均池化)来代替全连接层,该想法来自NIN(Network in Network),事实证明这样可以将准确率提高0.6%。但是,实际在最后还是加了一个全连接层,主要是为了方便对输出进行灵活调整; (3)虽然移除了全连接,但是网络中依然使用了Dropout ; (4)为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度(辅助分类器)。辅助分类器是将中间某一层的输出用作分类,并按一个较小的权重(0.3)加到最终分类结果中,这样相当于做了模型融合,同时给网络增加了反向传播的梯度信号,也提供了额外的正则化,对于整个网络的训练很有裨益。而在实际测试的时候,这两个额外的softmax会被去掉。 Inception V2版本的解决方案就是修改Inception的内部计算逻辑,提出了比较特殊的“卷积”计算结构。 2.1 卷积分解(Factorizing Convolutions) GoogLeNet团队提出可以用2个连续的3x3卷积层组成的小网络来代替单个的5x5卷积层,即在保持感受野范围的同时又减少了参数量 2.2 降低特征图大小 如果想让图像缩小,可以有如下两种方式:先池化再作Inception卷积,或者先作Inception卷积再作池化。但是方法一(左图)先作pooling(池化)会导致特征表示遇到瓶颈(特征缺失),方法二(右图)是正常的缩小,但计算量很大。为了同时保持特征表示且降低计算量,将网络结构改为下图,使用两个并行化的模块来降低计算量(卷积、池化并行执行,再进行合并) 使用Inception V2作改进版的GoogLeNet,网络结构图如下: Inception V3一个最重要的改进是分解(Factorization),将7x7分解成两个一维的卷积(1x7,7x1),3x3也是一样(1x3,3x1),这样的好处,既可以加速计算,又可以将1个卷积拆成2个卷积,使得网络深度进一步增加,增加了网络的非线性(每增加一层都要进行ReLU)。 Inception V4主要利用残差连接(Residual Connection)来改进V3结构,得到Inception-ResNet-v1,Inception-ResNet-v2,Inception-v4网络。
腾瑞水暖卫浴
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!
图像识别技术研究综述
摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。
关键词:图像处理;图像识别;成像
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02
图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。
1 图像处理技术
图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。
5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。
2 图像识别技术
图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:
2.1 指纹识别
指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。
2.2 人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。
2.3 文字识别
文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。
3 结束语
人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。
参考文献:
[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.
[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.
[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.
[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.
[6] Sanderson C,Paliwal K K.Information Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.
点击下页还有更多>>>图像识别技术论文
中图分类号的写法可参考《中国图书馆分类法》里面的分类来写。 《中国图书馆分类法》中的分类(一共分为七编): 第一编 哲学、社会学、政治、法律、军事 A/K 马克
知乎meta发布图像分割论文segment anything,将给 cv 研究带来的影响如下: Segment Anything是Meta AI发布的一种新的A
影像综述好投稿吗关于这个问题有以下原因国内影像方面的杂志,基本上分为四类:第一类:也是最难录用的,就是中华放射学杂志。第二类:中国医学影像技术;临床放射学杂志;
随着现代化科学技术的快速发展,计算机图形图像处理技术也越来越成熟,为人们的生活、工作和学习提供了极大的便利。然而我们该如何写有关计算机图形图像处理的论文呢?下面
是。高光谱图像处理是计算机的课程之一,是计算机视觉,主要研究领域为模式识别、高光谱图像处理、计算机视觉及其在遥感、环境、农业和医疗中的应用。