包子熊二
经过漫长的欧几里得几何的统治,希望终于迎来了曙光。1826年2月23日,罗巴切夫斯基于喀山大学物理数学系学术会议上,宣读了他的第一篇关于非欧几何的论文:《几何学原理及平行线定理严格证明的摘要》。这篇首创性论文的问世,标志着非欧几何的诞生。然而伟大的路总是不平坦的,罗巴切夫斯基遭受了凡人难以承受的凌辱。但是可怜而愚昧的大多数终将为少数人发现的真理所折服。1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧氏空间的曲面上实现。这就是说,非欧几何命题可以“翻译”成相应的欧氏几何命题,如果欧氏几何没有矛盾,非欧几何也就自然没有矛盾。黎曼几何以欧几里得几何和种种非欧几何作为其特例。例如:定义度量(a是常数),则当a=0时是普通的欧几里得几何,当a>0时 ,就是椭圆几何(球面几何学,目前认为我们的宇宙正是如此),而当a<0时为双曲几何(罗巴切夫斯基,马鞍面上的几何学)。几何学经历了如下阶段:1.欧几里得几何2.解析几何3.(古典)微分几何4.黎曼几何5.大范围微分几何等几何学的一个重要观点是认为几何学的主要问题是研究变换群的不变量。目前,Lie群与微分几何的结合依旧是人们研究的热点(尽管它起源于三四十年代)。
魅影幽兰
非欧几何学是1829年由俄罗斯数学家尼古拉?洛巴切夫斯基(1793-1856)提出的。他试图创建一种新的几何学,否定2000多年前由希腊人欧几里德宣布的古典几何定律(原理)。认为:“在一点上只能通过一条直线平行线”的定律应改为“从一点上至少可通过两条平行直线”,从这里洛巴切夫斯基逐步修订了欧几里德的所有几何定律(原理),其结果是演绎出一种新的可以完全相容而不是对立的几何学。起初,人们还以为这只是为了迎合哲学的投机行为,后来则发现它适合几何学的一些特殊领域,比如伪球面的面积。1850年前后,德国数学家乔治?黎曼1826-1866也提出另一种非欧几何学,它的原理是从一点上不能划出任何平行直线。在洛巴切夫斯基和黎曼的非欧几何学之后,又增添了另外一些几何(原理)定律。所有这些都显示出有可能建立兼收并蓄而并非对立的几何学体系。这些几何学根据其开始选择的原理各不相同,但在一定情况下,每一“真理”都能更有利于另一“真理”,而任何一种“真理”都不会比另一种更为“真实”。当爱因斯坦向人们证实了宇宙并不是欧几里德式的时候,非欧几何原理最终被广泛认可。 希望我的回答对你有所帮助。黎曼几何,罗氏几何成立的模型: 黎曼几何:黎曼流形上的几何学。德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。1854年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量 ,空间中的点可用n个实数(x1,……,xn)作为坐标来描述。这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。这种空间上的几何学应基于无限邻近两点(x1,x2,……xn)与(x1+dx1,……xn+dxn)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。亦即 , (gij)是由函数构成的正定对称矩阵。这便是黎曼度量。赋予黎曼度量的微分流形,就是黎曼流形。 黎曼认识到度量只是加到流形上的一种结构,并且在同一流形上可以有许多不同的度量。黎曼以前的数学家仅知道三维欧几里得空间E3中的曲面S上存在诱导度量ds2=Edu2+2Fdudv+Gdv2,即第一基本形式,而并未认识到S还可以有独立于三维欧几里得几何赋予的度量结构。黎曼意识到区分诱导度量和独立的黎曼度量的重要性,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚,创立了黎曼几何学,为近代数学和物理学的发展作出了杰出贡献。 黎曼几何以欧几里得几何和种种非欧几何作为其特例。例如:定义度量(a是常数),则当a=0时是普通的欧几里得几何,当a>0时 ,就是椭圆几何 ,而当a<0时为双曲几何。 黎曼几何中的一个基本问题是微分形式的等价性问题。该问题大约在1869年前后由E.B.克里斯托费尔和R.李普希茨等人解决。前者的解包含了以他的姓命名的两类克里斯托费尔记号和协变微分概念。在此基础上G.里奇发展了张量分析方法,这在广义相对论中起了基本数学工具的作用。他们进一步发展了黎曼几何学。 但在黎曼所处的时代,李群以及拓扑学还没有发展起来,因此黎曼几何只限于小范围的理论。大约在1925年H.霍普夫才开始对黎曼空间的微分结构与拓扑结构的关系进行了研究。随着微分流形精确概念的确立,特别是E.嘉当在20世纪20年代开创并发展了外微分形式与活动标架法,建立了李群与黎曼几何之间的联系,从而为黎曼几何的发展奠定重要基础,并开辟了广阔的园地,影响极其深远。并由此发展了线性联络及纤维丛的研究。 1915年,A.爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。使黎曼几何(严格地说洛伦茨几何)及其运算方法(里奇算法)成为广义相对论研究的有效数学工具。而相对论近年的发展则受到整体微分几何的强烈影响。例如矢量丛和联络论构成规范场(杨-米尔斯场)的数学基础。 1944年陈省身给出n维黎曼流形高斯-博内公式的内蕴证明,以及他关于埃尔米特流形的示性类的研究,引进了后来通称的陈示性类,为大范围微分几何提供了不可缺少的工具并为复流形的微分几何与拓扑研究开创了先河。半个多世纪,黎曼几何的研究从局部发展到整体,产生了许多深刻的结果。黎曼几何与偏微分方程、多复变函数论、代数拓扑学等学科互相渗透,相互影响,在现代数学和理论物理学中有重大作用。 --------------------------------------------------------------------罗氏几何罗式几何学的公理系统和欧式几何学不同的地方仅仅是把欧式一对分散直线在其唯一公垂线两侧无限远离几何平行公理用“从直线外一点,至少可以做两条直线和这条直线平行”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题。我们知道,罗式几何除了一个平行公理之外采用了欧式几何的一切公理。因此,凡是不涉及到平行公理的几何命题,在欧式几何中如果是正确的,在罗式几何中也同样是正确的。在欧式几何中,凡涉及到平行公理的命题,再罗式几何中都不成立,他们都相应地含有新的意义。下面举几个例子加以说明:欧式几何: 同一直线的垂线和斜线相交。 垂直于同一直线的两条直线或向平行。 存在相似的多边形。 过不在同一直线上的三点可以做且仅能做一个圆。 罗式几何 同一直线的垂线和斜线不一定相交。 垂直于同一直线的两条直线,当两端延长的时候,离散到无穷。 不存在相似的多边形。 过不在同一直线上的三点,不一定能做一个圆。 从上面所列举得罗式几何的一些命题可以看到,这些命题和我们所习惯的直观形象有矛盾。所以罗式几何中的一些几何事实没有象欧式几何那样容易被接受。但是,数学家们经过研究,提出可以用我们习惯的欧式几何中的事实作一个直观“模型”来解释罗式几何是正确的。1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧几里得空间的曲面(例如拟球曲面)上实现。这就是说,非欧几何命题可以“翻译”成相应的欧几里得几何命题,如果欧几里得几何没有矛盾,非欧几何也就自然没有矛盾。人们既然承认欧几里是没有矛盾的,所以也就自然承认非欧几何没有矛盾了。直到这时,长期无人问津的非欧几何才开始获得学术界的普遍注意和深入研究,罗巴切夫斯基的独创性研究也就由此得到学术界的高度评价和一致赞美,他本人则被人们赞誉为“几何学中的哥白尼”。
wangbaoxin888
Non-Euclidean geometry 非欧几里得几何是一门大的数学分支,一般来讲 ,它有广义、狭义、通常意义这三个方面的不同含义。所谓广义式泛指一切和欧几里得几何不同的几何学,狭义的非欧几何只是指罗氏几何来说的,至于通常意义的非欧几何,就是指罗氏几何和黎曼几何这两种几何。欧几里得的《几何原本》提出了五条公设,长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。 有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。 因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。 由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明? 到了十九世纪二十年代,俄国喀山大学教授罗巴切夫斯基在证明第五公设的过程中,他走了另一条路子。他提出了一个和欧式平行公理相矛盾的命题,用它来代替第五公设,然后与欧式几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统为基础的推理中出现矛盾,就等于证明了第五公设。我们知道,这其实就是数学中的反证法。 但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论: 第一,第五公设不能被证明。 第二,在新的公理体系中展开的一连串推理,得到了一系列在逻辑上无矛盾的新的定理,并形成了新的理论。这个理论像欧式几何一样是完善的、严密的几何学。 这种几何学被称为罗巴切夫斯基几何,简称罗氏几何。这是第一个被提出的非欧几何学。 从罗巴切夫斯基创立的非欧几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上互不矛盾的一组假设都有可能提供一种几何学。 几乎在罗巴切夫斯基创立非欧几何学的同时,匈牙利数学家鲍耶·雅诺什也发现了第五公设不可证明和非欧几何学的存在。鲍耶在研究非欧几何学的过程中也遭到了家庭、社会的冷漠对待。他的父亲——数学家鲍耶·法尔卡什认为研究第五公设是耗费精力劳而无功的蠢事,劝他放弃这种研究。但鲍耶·雅诺什坚持为发展新的几何学而辛勤工作。终于在1832年,在他的父亲的一本著作里,以附录的形式发表了研究结果。 那个时代被誉为“数学王子”的高斯也发现第五公设不能证明,并且研究了非欧几何。但是高斯担心这种理论会遭到当时教会力量的打击和迫害,不敢公开发表自己的研究成果,只是在书信中向自己的朋友表示了自己的看法,也不敢站出来公开支持罗巴切夫斯基、鲍耶他们的新理论。[编辑本段]罗巴切夫斯基几何 罗巴切夫斯基几何的公理系统和欧几里得几何不同的地方仅仅是把欧式几何平行公理用“从直线外一点,至少可以做两条直线和这条直线平行”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题。 我们知道,罗氏几何除了一个平行公理之外采用了欧式几何的一切公理。因此,凡是不涉及到平行公理的几何命题,在欧式几何中如果是正确的,在罗氏几何中也同样是正确的。在欧式几何中,凡涉及到平行公理的命题,再罗氏几何中都不成立,他们都相应地含有新的意义。下面举几个例子加以说明: 欧式几何 同一直线的垂线和斜线相交。 垂直于同一直线的两条直线互相平行。 存在相似的多边形。 过不在同一直线上的三点可以做且仅能做一个圆。 罗氏几何 同一直线的垂线和斜线不一定相交。 垂直于同一直线的两条直线,当两端延长的时候,离散到无穷。 不存在相似的多边形。 过不在同一直线上的三点,不一定能做一个圆。 从上面所列举得罗氏几何的一些命题可以看到,这些命题和我们所习惯的直观形象有矛盾。所以罗氏几何中的一些几何事实没有像欧式几何那样容易被接受。但是,数学家们经过研究,提出可以用我们习惯的欧式几何中的事实作一个直观“模型”来解释罗氏几何是正确的。 1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧几里得空间的曲面(例如拟球曲面)上实现。这就是说,非欧几何命题可以“翻译”成相应的欧几里得几何命题,如果欧几里得几何没有矛盾,非欧几何也就自然没有矛盾。 直到这时,长期无人问津的非欧几何才开始获得学术界的普遍注意和深入研究,罗巴切夫斯基的独创性研究也就由此得到学术界的高度评价和一致赞美,他本人则被人们赞誉为“几何学中的哥白尼”。[编辑本段]黎曼几何 欧氏几何与罗氏几何中关于结合公理、顺序公理、连续公理及合同公理都是相同的,只是平行公理不一样。欧式几何讲“过直线外一点有且只有一条直线与已知直线平行”。罗氏几何讲“ 过直线外一点至少存在两条直线和已知直线平行”。那么是否存在这样的几何“过直线外一点,不能做直线和已知直线平行”?黎曼几何就回答了这个问题。 黎曼几何是德国数学家黎曼创立的。他在1851年所作的一篇论文《论几何学作为基础的假设》中明确的提出另一种几何学的存在,开创了几何学的一片新的广阔领域。 黎曼几何中的一条基本规定是:在同一平面内任何两条直线都有公共点(交点)。在黎曼几何学中不承认平行线的存在,它的另一条公设讲:直线可以无限延长,但总的长度是有限的。黎曼几何的模型是一个经过适当“改进”的球面。 近代黎曼几何在广义相对论里得到了重要的应用。在物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。在广义相对论里,爱因斯坦放弃了关于时空均匀性的观念,他认为时空只是在充分小的空间里以一种近似性而均匀的,但是整个时空却是不均匀的。在物理学中的这种解释,恰恰是和黎曼几何的观念是相似的。 此外,黎曼几何在数学中也是一个重要的工具。它不仅是微分几何的基础,也应用在微分方程、变分法和复变函数论等方面。[编辑本段]三种几何的关系 欧氏几何、罗氏几何、黎曼几何是三种各有区别的几何。这三种几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和独立性。因此这三种几何都是正确的。 在我们这个不大不小、不远不近的空间里,也就是在我们的日常生活中,欧式几何是适用的;在宇宙空间中或原子核世界,罗氏几何更符合客观实际;在地球表面研究航海、航空等实际问题中,黎曼几何更准确一些。
小囡1234
“平行线可以相交”这件事在我们现在看来,很多人都无法理解,这是因为我们知识的局限性造成的。
我们初中所学习到的平面几何学以欧几里得几何学为框架,其中对平行线的定义就是在二维平面内两条不相交的直线。
而关于直线的定义是,在二维平面上的两个点之间有且只有一条直线,也就是我们常说的两点确定一条直线。
这么看来在欧式几何学中,平行线可以无限延长,且永远不会相交。这种说法很符合人类的直觉常识,也很容易被人们接受,且深信不疑。
不仅是我们,几千年来大部分的数学家也是这样认为的。因此欧式几何学也顺势统治了人类数学史数千年的时间。
那么平行线为何又可以相交呢?这是怎么回事?这个问题涉及到了几何学的一个重大发现和突破,也不得不提一位俄罗斯数学界的牛人:罗巴切夫斯基。
1826年2月23日,34岁的罗巴切夫斯基在自己任教的喀山大学举办的一次学术讨论会上宣读了自己的一篇论文。
参加此次学术会议的都是当时数学家的大咖,其中不乏一些已经在学术界很有成就,资历比较老的前辈。
在他们眼里罗巴切夫斯基是一位在学术上非常严谨、诚实、富有才华的青年数学家,未来可期。他们也很期待罗巴切夫斯基的学术报告。
负曲率二维表面三角形内角和小于180°,且可以作已知直线的无数条平行线
在做了简短的开场白以后,接下来罗巴切夫斯基所说的话,令当时在场的所有数学家惊愕不已,罗巴切夫斯基所做的报告不仅完全超出了当时数学界的认知,且每一句话都在挑战着人们的常识。
例如罗巴切夫斯基提出:在一个二维的面上三角形的内角之和可以小于180°,当然也可以大于180°;由两条直线组成的锐角,向一边作垂线,这个垂线可以和另外一条边不相交;
正曲率表面,三角形内角和大于180°,无法作平行线
在一个二维面内,过直线外的一点,可以做多条直线与已知直线平行;当然也存在无法做平行线的情况,也就是说在一个二维面上,没有真正的平行线,任何两条直线都有一个共同的交点(平行线相交)。
看了以上的说法是不是很懵,不要慌张,当时在座的所有数学家都被惊掉了下巴,无人能理解罗巴切夫斯基在说什么。
但罗巴切夫斯基说这些看起来奇怪的说法是新的几何学,虽然和欧式几何相互冲突,但是它和欧式几何有着同等重要的地位,并请求同行对他的报告提出评议。
但此时的会场一片寂静,所有的人都流露出了怀疑、否定的态度,不敢相信这么胡扯的话能出在一位治学严谨的数学家之口。
那么罗巴切夫斯基到底说的是什么?它又发现了什么?
上文中我们不断的提到欧式几何,它是公元3世纪由古希腊学者欧几里得编写的一部数学界的旷世巨著《几何原本》。
欧几里得的几何学中,一开始写了5条公设(公理),并在此基础上进行逻辑推理导出了48个命题。公设的意思是那些不用去证明的真理。
这五条公理我们非常熟悉,这是学习几何时必须掌握的知识,其中前四条公理人们看着十分满意,但是唯独第五条(论平行线的)人们怎么看怎么不舒服。
并不是觉得它不对,就是感觉这个语句如此之长一点也不简洁,看起来更像是一条可以被证明的定理,而不是公理。
并且后来的学家也认为,是当时欧几里得无法给出这条定理的证明,投机取巧才把它写进了公理。如此想法一出,数学界就开始了长达数千年利用前四条公理去证明第5公理的道路。
在一个球面,两点之间可以作无数条直线。
但是直到19世纪初,所有的数学家都逃不过循环论证的噩梦,证明第5条公理就成为了数学家的一大历史遗留问题。
身为数学家的罗巴切夫斯基当然也加入了其中,不过他一样也发现第五条公理怎样都无法证明。但是理论的进步往往都自于一瞬间的灵光乍现。
既然无法证明,那是不是就说明证明的第五条公理的过程根本就不存在,我们去找一件本身不存的事情当然是徒劳。人类花了几千年,就算是再过上万年也会无果。
为了证明第五公理不可证明,罗巴切夫斯基首先否定了第五公理,把他更改为一条新的公理,即:过直线外的一点可以做已知直线,至少两条平行线。
将这个新的公理和前四条公理结合在一起,罗巴切夫斯基从头开始了新的逻辑推理,并发现得出来的结论虽然古怪,但是在理论上并不矛盾,而且与前四条公理完美的相容。
这只能说明,新结论和欧式几何同样具有同等的地位,且是一个完整、逻辑严密的新几何。新几何的存在也说明了第五公理并不是公理,也不是定理,它只能是一个对平行线的定义,不同的定义可以导出不同的结论,因此也无法证明。
这个新的几何学就是我们大学时学到的非欧几何,适用于弯曲的时空。罗巴切夫斯基根据他对平面内平行线的定义所得出来的几何学也被称为罗氏几何。
主要描述的是负曲率空间的几何学,虽然这是一个伟大的发现,但是由于当时人们根本找不到现实世界的类比物来理解罗氏几何。
因此罗巴切夫斯基的新发现得到的是一片冷嘲热讽,甚至是人身攻击,甚至是被当时的俄国教育部开除了公职,迫使他离开了最喜爱的大学校园。
长年的苦闷和压抑使得罗巴切夫斯基在晚年百病缠身,甚至失明。1856年罗巴切夫斯基带着遗憾和无奈走完了自己的一生。这时他的新几何学依然没有被人们认可,在追悼会上人们对他在非欧几何上的贡献也是只字不提,刻意回避。
1854年黎曼更改了第五条公理,即:在一个二维平面内,不存在平行线的存在,得出了黎曼几何。黎曼几何描述的是正曲率空间的几何学,也被称为椭球几何学。
1864闵可夫斯基提出了不同以往的绝对平坦时空,称为闵式四维时空,1868年数学家贝特拉米证明的非欧几何可以在闵式四维时空的曲面上实现。
到了二十世纪初,爱因斯坦在闵式四维时空以及非欧几何的基础上提出了相对论,为人们重新塑造了整个宇宙的时空结构。
平坦的时空只不过是宇宙中小尺度上的特例,而在大尺度上不存在所谓的平坦时空,因此非欧几何才是宇宙的本质。
宇宙曲率
整个宇宙存在一定的曲率,虽然我们观察到的宇宙近似于平坦,这只能说明我们观察的尺度较小,从整个宇宙的尺度上来说,是不存在绝对的平行线,无限延长的两条线会因为宇宙的曲率相交或者发散。
因此欧式几何就像是牛顿力学,非欧几何更像是相对论。人们当时难以接受非欧几何不亚于难以接受相对论的程度。
你好,朋友们
双曲几何的公理系统有几种直观的模型。双曲几何中的非定义概念(元名)在各种模型中被定义为具体的对象,使得双曲几何的公理被这种模型满足。 平行线是公理几何中非常重要的概念。如果两条直线没有交点,那么它们称为平行。在欧氏几何中,平行线的性质本质上由平行公理刻画。它等价于如下陈述:“过直线外一点有且只有一条直线和已知直线平行”。而在双曲几何中,平行线变多了。从“过直线外一点至少有两条不同的直线和已知直线平行”,我们可以证明过这一点有无穷多条平行线。 1893年,在喀山大学树立起了世界上第一个为数学家雕塑的塑像。这位数学家就是俄国的伟大学者、非欧几何的重要创始人——罗巴切夫斯基(Никола́й Ива́нович Лобаче́вский, Nikolai Ivanovich Lobachevskii, 尼古拉·伊万诺维奇·罗巴切夫斯基)。非欧几何是人类认识史上一个富有创造性的伟大成果,它的创立,不仅带来了近百年来数学的巨大进步,而且对现代物理学、天文学以及人类时空观念的变革都产生了深远的影响。不过,这一重要的数学发现在罗巴切夫斯基提出后相当长的一段时间内,不但没能赢得社会的承认和赞美,反而遭到种种歪曲、非难和攻击,使非欧几何这一新理论迟迟得不到学术界的公认。罗巴切夫斯基是在尝试解决欧氏第五公设问题的过程中,从失败走上他的发现之路的。欧氏第五公设问题是数学史上最古老的著名难题之一,它是由古希腊学者最先提出来的。公元前三世纪,希腊亚历山大里亚学派的创始者欧几里得集前人几何研究之大成,编写了数学发展史上具有极其深远影响的数学巨著《几何原本》。这部著作的重要意义在于,它是用公理法建立科学理论体系的最早典范。在这部著作中,欧几里得为推演出几何学的所有命题,一开头就给出了五个公理(适用于所有科学)和五个公设(只应用于几何学),作为逻辑推演的前提。《几何原本》的注释者和评述者们对五个公理和前四个公设都是很满意,唯独对第五个公设(即平行公理)提出了质疑。第五公设是论及平行线的,它说的是:如果一直线和两直线相交,且所构成的两个同侧内角之和小于两直角,那么,把这两直线延长,它们一定在那两内角的一侧相交。数学家们并不怀疑这个命题的真实性,而是认为它无论在语句的长度,还是在内容上都不大像是个公设,而倒像是个可以证明的定理,只是由于欧几里得没能找到它的证明,才不得不把它放在公设之列。为了给出第五公设的证明,完成欧几里得没能完成的工作,自公元前3世纪起到19世纪初,数学家们投入了无穷无尽的精力,他们几乎尝试了各种可能的方法,但都遭到了失败。罗巴切夫斯基是从1815年着手研究平行线理论的。开始他也是循着前人的思路,试图给出第五公设的证明。在保存下来的他的学生听课笔记中,就记有他在1816~1817学年度在几何教学中给出的一些证明。可是,很快他便意识到自己的证明是错误的。前人和自己的失败从反面启迪了他,使他大胆思索问题的相反提法:可能根本就不存在第五公设的证明。于是,他便调转思路,着手寻求第五公设不可证的解答。这是一个全新的,也是与传统思路完全相反的探索途径。罗巴切夫斯基正是沿着这个途径,在试证第五公设不可证的过程中发现了一个崭新的几何世界。那么,罗巴切夫斯基是怎样证得第五公设不可证的呢?又是怎样从中发现新几何世界的呢?原来他创造性地运用了处理复杂数学问题常用的一种逻辑方法——反证法。这种反证法的基本思想是,为证“第五公设不可证”,首先对第五公设加以否定,然后用这个否定命题和其它公理公设组成新的公理系统,并由此展开逻辑推演。首先假设第五公设是可证的,即第五公设可由其它公理公设推演出来。那么,在新公理系统的推演过程中一定会出现逻辑矛盾,至少第五公设和它的否定命题就是一对逻辑矛盾;反之,如果在“第五公设不可证”的新公理系统的推演中不出矛盾,就反驳了“第五公设可证”这一假设,从而也就间接证得“第五公设不可证”。依照这个逻辑思路,罗巴切夫斯基对第五公设的等价命题——普列菲尔公理“过平面上直线外一点,只能引一条直线与已知直线不相交”作以否定,得到否定命题“过平面上直线外一点,至少可引两条直线与已知直线不相交”,并用这个否定命题和其它公理公设组成新的公理系统展开逻辑推演。在推演过程中,他得到一连串古怪、非常不合乎常理的命题。但是,经过仔细审查,却没有发现它们之间存在任何逻辑矛盾。于是,远见卓识的罗巴切夫斯基大胆断言,这个“在结果中并不存在任何矛盾”的新公理系统可构成一种新的几何,它的逻辑完整性和严密性可以和欧几里得几何相媲美。而这个无矛盾的新几何的存在,就是对第五公设可证性的反驳,也就是对第五公设不可证性的逻辑证明。由于尚未找到新几何在现实界的原型和类比物,罗巴切夫斯基慎重地把这个新几何称之为“想象几何”。 1826年2月23日,罗巴切夫斯基于喀山大学物理数学系学术会议上,宣读了他的第一篇关于非欧几何的论文:《几何学原理及平行线定理严格证明的摘要》。这篇首创性论文的问世,标志着非欧几何的诞生。然而,这一重大成果刚一公诸于世,就遭到正统数学家的冷漠和反对。参加2月23日学术公议的全是数学造诣较深的专家,其中有著名的数学家、天文学家西蒙诺夫,有后来成为科学院院士的古普费尔,以及后来在数学界颇有声望的博拉斯曼。在这些人的心目中,罗巴切夫斯基是一位很有才华的青年数学家。可是,出乎他们的意料,这位年轻的教授在简短的开场白之后,接着说的全是一些令人莫名其妙的话,诸如三角形的内角和小于两直角,而且随着边长增大而无限变小,直至趋于零;锐角一边的垂线可以和另一边不相交,等等。这些命题不仅离奇古怪,与欧几里得几何相冲突,而且还与人们的日常经验相背离。然而,报告者却认真地、充满信心地指出,它们属于一种逻辑严谨的新几何,和欧几里得几何有着同等的存在权利。这些古怪的语言,竟然出自一个头脑清楚、治学严谨的数学家教授之口,不能不使与会者们感到意外。他们先是表现现一种疑惑和惊呆,不多一会儿,便流露出各种否定的表情。宣讲论文后,罗巴切夫斯基诚恳地请与会者讨论,提出修改意见。可是,谁也不肯作任何公开评论,会场上一片冷漠。一个具有独创性的重大发现作出了,那些最先聆听到发现者本人讲述发现内容的同行专家,却因思想上的守旧,不仅没能理解这一发现的重要意义,反而采取了冷谈和轻慢的态度,这实在是一件令人遗憾的事情。会后,系学术委员会委托西蒙诺夫、古普费尔和博拉斯曼组成三人鉴定小组,对罗巴切夫斯基的论文作出书面鉴定。他们的态度无疑是否定的,但又迟迟不肯写出书面意见,以致最后连文稿也给弄丢了。 罗巴切夫斯基的首创性论文没能引起学术界的注意和重视,论文本身也似石沉大海,不知被遗弃何处。但他并没有因此灰心丧气,而是顽强地继续独自探索新几何的奥秘。1829年,他又撰写出一篇题为《几何学原理》的论文。这篇论文重现了第一篇论文的基本思想,并且有所补充和发展。此时,罗巴切夫斯基已被推选为喀山大学校长,可能出自对校长的“尊敬”,《喀山大学通报》全文发表了这篇论文。1832年,根据罗巴切夫斯基的请求,喀山大学学术委员会把这篇论文呈送彼得堡科学院审评。科学院委托著名数学家奥斯特罗格拉茨基院士作评定。奥斯特罗格拉茨基是新推选的院士,曾在数学物理、数学分析、力学和天体力学等方面有过卓越的成就,在当时学术界有很高的声望。可惜的是,就是这样一位杰出的数学家,也没能理解罗巴切夫斯基的新几何思想,甚至比喀山大学的教授们更加保守。如果说喀山大学的教授们对罗巴切夫斯基本人还是很“宽容”的话,那么,奥斯特罗格拉茨基则使用极其挖苦的语言,对罗巴切夫斯基作了公开的指责和攻击。同年11月7日,他在给科学院的鉴定书中一开头就以嘲弄的口吻写道:“看来,作者旨在写出一部使人不能理解的著作。他已经达到了自己的目的。”接着,对罗巴切夫斯基的新几何思想进行了歪曲和贬低。最后粗暴地断言:“由此我得出结论,罗巴切夫斯基校长的这部著作谬误连篇,因而不值得科学院的注意。”这篇论文不仅引起了学术界权威的恼怒,而且还激起了社会上反动势力的敌对叫嚣。名叫布拉切克和捷列内的两个人,以匿名在《祖国之子》杂志上撰文,公开指名对罗巴切夫斯基进行人身攻击。针对这篇污辱性的匿名文章,罗巴切夫斯基撰写了一篇反驳文章。但《祖国之子》杂志却以维护杂志声誉为由,将罗巴切夫斯基的文章扣压下来,一直不予发表。对此,罗巴切夫斯基极为气愤。 罗巴切夫斯基开创了数学的一个新领域,但他的创造性工作在生前始终没能得到学术界的重视和承认。就在他去世的前两年,俄国著名数学家布尼雅可夫斯基还在其所著的《平行线》一书中对罗巴切夫斯基发难,他试图通过论述非欧几何与经验认识的不一致性,来否定非欧几何的真实性。英国著名数学家莫尔甘对非欧几何的抗拒心里表现得就更加明显了,他甚至在没有亲自研读非欧几何著作的情况下就武断地说:“我认为,任何时候也不会存在与欧几里得几何本质上不同的另外一种几何。”莫尔甘的话代表了当时学术界对非欧几何的普遍态度。在创立和发展非欧几何的艰难历程上,罗巴切夫斯基始终没能遇到他的公开支持者,就连非欧几何的另一位发现者德国的高斯也不肯公开支持他的工作。高斯是当时数学界首屈一指的数学巨匠,负有“欧洲数学之王”的盛名,早在1792年,也就是罗巴切夫斯基诞生的那一年,他就已经产生了非欧几何思想萌芽,到了1817年已达成熟程度。他把这种新几何最初称之为“反欧几何”,后称“星空几何”,最后称“非欧几何”。但是,高斯由于害怕新几何会激起学术界的不满和社会的反对,会由此影响他的尊严和荣誉,生前一直没敢把自己的这一重大发现公之于世,只是谨慎地把部分成果写在日记和与朋友的往来书信中。当高斯看到罗巴切夫斯基的德文非欧几何著作《平行线理论的几何研究》后,内心是矛盾的,他一方面私下在朋友面前高度称赞罗巴切夫斯基是“俄国最卓越的数学家之一”,并下决心学习俄语,以便直接阅读罗巴切夫斯基的全部非欧几何著作;另一方面,却又不准朋友向外界泄露他对非欧几何的有关告白,也从不以任何形式对罗巴切夫斯基的非欧几何研究工作加以公开评论;他积极推选罗巴切夫斯基为哥廷根皇家科学院通讯院士,可是,在评选会和他亲笔写给罗巴切夫斯基的推选通知书中,对罗巴切夫斯基在数学上的最卓越贡献--创立非欧几何却避而不谈。高斯凭任在数学界的声望和影响,完全有可能减少罗巴切夫斯基的压力,促进学术界对非欧几何的公认。然而,在顽固的保守势力面前他却丧失了斗争的勇气。高斯的沉默和软弱表现,不仅严重限制了他在非欧几何研究上所能达到的高度,而且客观上也助长了保守势力对罗巴切夫斯基的攻击。晚年的罗巴切夫斯基心情更加沉重,他不仅在学术上受到压制,而且在工作上还受到限制。按照当时俄国大学委员会的条例,教授任职的最高期限是30年,依照这个条例,1846年罗巴切夫斯基向人民教育部提出呈文,请求免去他在数学教研室的工作,并推荐让位给他的学生波波夫。人民教育部早就对不顺从他们意志办事的罗巴切夫斯基抱有成见,但又找不到合适的机会免去他在喀山大学的校长职务。罗巴切夫斯基辞去教授职务的申请正好被他们用以作为借口,不仅免去了他主持教研室的工作,而且还违背他本人的意愿,免去了他在喀山大学的所有职务。被迫离开终生热爱的大学工作,使罗巴切夫斯基在精神上遭到严重打击。他对人民教育部的这项无理决定,表示了极大的愤慨。家庭的不幸格外增加了他的苦恼。他最喜欢的、很有才华的大儿子因患肺结核医治无效死去,这使他十分伤感。他的身体也变得越来越多病,眼睛逐渐失明,最后终于什么也看不见了。1856年2月12日,伟大的学者罗巴切夫斯基在苦闷和抑郁中走完了他生命的最后一段路程。喀山大学师生为他举行了隆重的追悼会。在追悼会上,他的许多同事和学生高度赞扬他在建设喀山大学、提高民族教育水平和培养数学人材等方面的卓越功绩,可是谁也不提他的非欧几何研究工作,因为此时,人们还普遍认为非欧几何纯属“无稽之谈”。罗巴切夫斯基为非欧几何的生存和发展奋斗了三十多年,他从来没有动摇过对新几何远大前途的坚定信念。为了扩大非欧几何的影响,争取早日取得学术界的承认,除了用俄文外,他还用法文、德文发行了自己的著作,同时还精心设计了检验大尺度空间几何特性的天文观测方案。不仅如此,他还发展了非欧几何的解析和微分部分,使之成为一个完整的、有系统的理论体系。在身患重病,卧床不起的困境下,他也没停止对非欧几何的研究。他的最后一部巨著《论几何学》,就是在他双目失明,临去世的前一年,口授他的学生完成的。历史是最公允的,因为它终将会对各种思想、观点和见解作出正确的评价。1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧氏空间的曲面上实现。这就是说,非欧几何命题可以“翻译”成相应的欧氏几何命题,如果欧氏几何没有矛盾,非欧几何也就自然没有矛盾。直到这时,长期无人问津的非欧几何才开始获得学术界的普遍注意和深入研究,罗巴切夫斯基的独创性研究也由此得到学术界的高度评价和一致赞美,这时的罗巴切夫斯基则被人们赞誉为“几何学中的哥白尼”。
特拉斯临终的时候,毁掉了自己研究的手稿,以后的科学家们推测,怕他研究的秘密泄露出去,所以才毁掉了自己的手稿。
纵观历史不难发现,人类文明之所以能够发展得如此迅速,一方面得益于选择了正确的发展路线,即走上工业道路,而另一方面则离不开众多投身于科学事业的科学家们。 这些科学
很多朋友想起B开头的英文名字,但又怕起得不好,俗气容易被人笑话。那么,怎么起以B字母开头的英文名字呢,如何起一个好听的B字母开头的英文名字呢? 以B开头好听带寓
经过漫长的欧几里得几何的统治,希望终于迎来了曙光。1826年2月23日,罗巴切夫斯基于喀山大学物理数学系学术会议上,宣读了他的第一篇关于非欧几何的论文:《几何学
后来的科学家们都觉得是因为特斯拉自己发明的东西太过强了,如果使用在不正当的路途上面会造成人类的灾难,所以才会自己将自己的发明亲手毁掉。