• 回答数

    5

  • 浏览数

    179

妞妞love美丽
首页 > 论文发表 > 3D打印投稿期刊推荐

5个回答 默认排序
  • 默认排序
  • 按时间排序

会发光的欧巴i

已采纳

确切的说,3d打印是一种以金属或者塑料等粘合剂作为打印材料,以数字模型为基础进行逐层打印的一种技术。通过电脑与3d打印机连接起来便可以将绘制的图纸打印出模型的一种手段。如今这一技术在多个领域得到应用,人们用它来制造服装、建筑模型、汽车、巧克力甜品等。 3d打印技术的优点 3d打印与传统的通过模具生产有很大的不同,3d打印最大的优点是无需机械加工或任何模具,就能直接从计算机图形数据中生成任何形状的零件,从而极大地缩短产品的研制周期,提高生产率和降低生产成本。同时,3d打印还能够打印出一些传统生产技术无法制造出的外型,同时,3d打印技术还能够简化整个生产流程,具有快速有效的特点。 3d打印技术的运用领域 目前,3d打印主要运用于传统制造业、医疗行业、文物保护行业、建筑设计行业和配件饰品行业,而且在这些行业中已经运用的比较广泛,在医疗行业中,3d打印还可以为器官移植患者量身打造所需器官,当然,打印人体器官需要特殊的高分子材料,才能做到不对人体排异!

278 评论

多多121015

出品:科普中国

制作:大阪大学张昊监制:中国科学院计算机网络信息中心

近日,媒体报道,研究人员利用水凝胶打印出多孔支架,并将卵泡细胞填充进孔洞中,成功组成人造卵巢。含有生物假体的卵巢,让小鼠成功诞下了健康的幼崽。

不禁令人想问:神奇的3D打印,还有什么是“你”做不到的?

3D打印 不能盲目迷信

不知从何时起,3D打印这个名词开始被媒体铺天盖地的提及。

如今,不知道这个词的年轻人简直是有如上古神兽一般的化石级存在。但是要真的刨根问底的话,恐怕就没有几个人能把3D打印到底是个什么东西说清楚了,甚至从来没见过3D打印机或者3D打印产品的人也绝对是大有人在。可谓是没吃过猪肉,也没见过猪跑,光知道猪咋叫唤。

从形式上来看,3D打印确实比较高大上,机器轰鸣、热火朝天的场面变成了轻点鼠标、纤尘不染,大汗淋漓、脸颊黢黑的工人师傅变成了一切尽在掌握的都市白领,一杯咖啡的功夫,任务完成,so easy!

图1左:某工业用3D打印机,成型材料应为塑料(来源网络);图1右:以金属作为原材料3D打印成的饰品(来源网络)

那么,3D打印真的像媒体渲染的那么神乎其技吗?

首先明确一点,3D打印绝非21世纪的新生事物。上世纪八十年代相关概念就已提出,商用产品也早已面世了。十多年以前我还是大学一年级的懵懂少年,在金工实习的基地就曾经见过利用3D打印手段成型的产品。那是一个白色的人头雕塑,类似于美术生临摹的石膏像。

只不过,当年3D打印这么洋气的叫法还没有流传开来,我们所用的说法是相对土气的“三维成型”(实际上3D打印是三维成型技术中比较有代表性的一种)。

于是乎,3D打印被媒体热炒的起初,笔者是不屑一顾的。

我的英文名叫xiao shen yang

说白了,3D打印就是一种材料成型(机械制造)技术,跟锻造、铸造、轧制、冲压以及包括车钳洗刨磨在内的机械加工手段一样,都可以把材料加工成具有某种形状的部件。

与传统加工手段相比 3D打印确实独具特色

不过,3D打印又具有诸多独到之处,不然也绝对不会与上述这些一直与人类同成长、共进退的元老级技术相提并论,并在媒体上大出风头了。

比如,用传统的冲压方式生产一个小型的车用零件,“拢共”要分几步呢?

首先得有冲压用的模具,这个模具好比月饼印一样,决定了零件的形状。一般是用专门的模具钢制造,硬度高而且韧性好。模具分为上模和下模,上模安装在压力机上,可以以很高的速度压向下模。要加工的材料好比是做月饼的面团,被这么瞬间一压,就变成了模具的形状,之后用车床除去多余的部分,再进行一些研磨抛光一类的机械加工,零件就完成了。

图2:冲压工艺制成的车用小型零件(来源:名古屋丰田博物馆参观纪念)

那么3D打印制作同样的零件又是个什么套路呢?

首先,在电脑上绘制好零件的设计图,然后将设计数据导入3D打印机,就可以开始制造零件了。以熔融沉积式3D打印机为例,事先准备好的低熔点线材如塑料,石蜡等经由3D打印机的喷嘴加热后喷出。

图3左:某塑料熔融沉积式低端工业用3D打印机,白色线卷即为塑料原料;图3右:该打印机的喷头部位特写,双喷头设计,可同时打印两种不同塑料

在电脑的控制下,喷嘴在空间中由低到高逐层进行描画,最后形成零件,基本无须任何的后处理。

上面这个例子已经把3D打印最为本质的两个特点反映得很清楚了。

首先,3D打印与计算机辅助设计(CAD)以及计算机辅助制造(CAM)密不可分,任何3D打印的零件都要从电脑设计图开始自己的生命历程。假如事先只有图纸,没有电脑可以直接利用的造型数据,也得重新在电脑中建立模型,绘制设计图。

其次,3D打印是一种增材制造技术,也就是说与传统的车床机械加工一类减材制造技术不同,产品是由原料直接在空间中堆砌而成。可以把车床机械加工比作石雕,刀斧锤凿齐上阵,最终的作品比起最初的原石只少不多。另外一方面,3D打印好比泥塑,塑造形象的组成部分不断叠加,最终的作品比起最初的泥胚只多不少。有了这迥异于其他前辈的两大特色,3D打印能在机械制造技术的武林之中自立门户也就不足为奇了。

3D打印为制造业带来的变革

那么,3D打印到底为制造业带来了怎样的变革呢?下面的几个例子可以提供一些参考。

铸造技术,作为有着上千年历史的古老技术,堪称制造业的基石之一。中国先民们在两千年前的商代就已经掌握了大型青铜器的铸造技术,也留下了司母戊大方鼎,四羊方尊等等无价之宝。铸造技术的优点是可以形成复杂的形状,也方便制造空心形态的产品,如发动机机箱等。

图4左:司母戊大方鼎(来源网络)图4中:四羊方尊(来源网络);图4右:四羊方尊局部,体现出铸造便于形成复杂形状的特点(来源网络)

传统铸造的通常工序是,首先利用容易成型的材料,比如石蜡,木头等,加工出一个与产品有着类似外型的母模。然后,在这个母模的四周覆盖上具有一定粘度的型砂,用机器震实后再取出母模,型砂中就会自然形成母模也就是产品的形状,这样的铸模称为砂型。最后,通过预留的浇注孔把熔融的金属液灌入砂型中,冷却后去掉周围的砂型再进行一定程度的机械加工即可。图4左:司母戊大方鼎(来源网络)图4中:四羊方尊(来源网络);图4右:四羊方尊局部,体现出铸造便于形成复杂形状的特点(来源网络)

图5:典型的铸件生产过程,木制母模取出后形成浇注空腔(来源网络)

3D打印的出现,首先给铸造行业带来了前所未有的变革。

图6左:传统木制母模(来源网络)图6右:利用3D打印技术制成的塑料母模(来源网络)

传统工艺中的母模不需要再特意去加工了,用3D打印技术可以轻松的调整设计并实时生成母模,极大的节省了制作母模的时间和效率。好比用活字印刷代替了雕版印刷,无需因为一个制版错误就废弃整块板,可以随时方便的进行调整。同时,3D打印生成的母模可以根据具体情况选择不同的材质,对耐久度要求高的场合可以采用金属材料,对成本要求高的场合可以采取树脂材料,无论是哪种情况都不存在传统木模对温度湿度敏感,易变形寿命低的缺陷。甚至制作母模的工序都可以略过,利用3D打印技术能够直接生成铸造砂型,当然这个时候所用的原料就是可以耐高温的陶瓷了。这种3D打印砂型可以最大限度的还原铸件原本的形态,极大的提高了成品的精度和良率。

生物相关的3D打印也是该项技术的亮点应用。

比如文初提到的3D打印人造卵巢。现在,医用钛合金人工骨,人工关节等已经广泛采用了3D打印技术。首先通过CT或者核磁共振等成像技术获知患者身体的精确三维结构,然后将数据利用计算机进行处理并完成个性化设计。之后利用3D打印生成独一无二的专属人工骨,极大的提升了患者的治疗质量。

图7左:利用3D打印技术制成的人工骨(白色部分)(来源网络);图7右:利用3D打印技术制成的隐形牙套(来源网络)

又如,3D打印在口腔医学,尤其是口腔正畸医学界也呈现星火燎原之势。时下十分流行的隐形牙套,就无法缺少3D打印技术的支持。该技术利用功能强大的行业软件,精确分析患者经过佩戴正畸牙套后牙齿的移动情况,再配合3D打印技术生产出一系列适应于不同阶段的牙套。这样的隐形牙套不影响美观,对牙齿和口腔伤害很小,并且不影响进食,患者只需要遵照电脑计算的结果定期更换牙套即可。

最后的一个例子来自于较为前沿的一项研究。美国西北大学的一个课题组上周在国际顶级期刊上发表了关于3D打印的最新研究成果,他们利用3D打印技术将明胶打印成类似于卵巢组织的结构,然后将从小鼠体内提取出的卵泡和激素生成细胞植入这种明胶骨架,得到3D打印的人工卵巢组织。该人工卵巢在移植入摘除卵巢的小鼠体内后,表现出了功能健全卵巢的特性,可以正常排卵,在小鼠经过多代繁殖后也未见后代异常(图8)。虽然离人工制造组织或者器官这样的人类终极梦想仍然遥远,3D打印还是帮助我们迈出了开拓性的一步。

图8左:将明胶用3D打印技术制成与卵巢组织类似的结构(来源网络);图8右:人工卵巢排出的卵子繁殖出的小鼠,利用基因编辑技术,处理植入人工卵巢的卵子,繁殖后的小鼠将通体呈现荧光。绿色荧光作为标记,以便于确定小鼠确实繁殖于该人工卵巢(来源网络)

3D打印绝非完美 缺陷不少

3D打印虽然在特定的领域具有独到的应用价值,目前该技术本身仍然存在诸多缺陷。

首先,3D打印可以成型的材料虽然种类日渐广泛,离我们生活较近的消费级3D打印机却只能打印塑料。这是因为无论是陶瓷成型还是金属成型,都需要极高的温度和能耗,适用于上述两种材料的激光加热和电子束加热方式,很难出现在消费级产品上。

此外,一台几千人民币的消费级电子打印机可以给你带来什么呢?笔者个人除了打印一些劣质DIY手办以外基本想不出别的点子来。

拿笔者实验室的一台加热熔融式塑料电子打印机为例,起初购买的目的是为了能制造一些实验中可能用到的小型夹具,治具等等。后来打印了一个电镀用夹具后,发现了一个严重的问题,这个塑料小零件的致密度太低,低到漏水。这是因为3D打印机在工作时都是以层为单位向上堆积,为了实现最经济的堆积,并不是整个空间都会填充上塑料。

图9左:外弱中干,年少体虚的3D打印小兔子;图9右:3D打印的逐层扫描叠层堆积构造,可见致密度相当低

这就好比建筑房屋,想让房顶不塌下来只要有几道承重墙就好了。这个例子从一个侧面说明现阶段的消费级3D打印机在性能上的表现仍然不够出色,成本和价格方面尚存大量下行空间。

在传统的重工业领域,3D打印机虽然已有一定的高光表现,仍然不能作为主流技术看待,大型零件的首选加工方式在很长一段时间内仍然会是以铸造、锻造等为代表的传统技术。

比如,C919大型客机的机翼已经有部分钛合金构件采用了3D打印技术。这固然可喜可贺,不过要说3D打印已经全面进军大型零件制造这一领域,恐怕是言之过早。

首先,即便是最为大型的金属3D打印设备,也只能制造大概一个长沙发那么大的零件。而实际工业生产中的大型零件,却远远超过这一尺寸。比如包裹核电站堆芯的压力容器,就是直径数米,高度几十米的庞然大物,且在几十年的服役期间内,不能有任何的质量隐患,目前为止也只有传统的锻造方式可以加工(图10)。

又如三峡各个机组的水轮机,每片叶轮都高达十几米,因为形状特殊,目前只能采用铸造的方式加以生产,每片叶轮价格达到两百万元。所以,我们在听取媒体关于3D打印的报道时,一定要区分真正的技术进展和商业噱头。比如所谓的3D打印蛋糕,技术上毫无新意,不过是满足公众猎奇心理的营销手段罢了。

图10左:核电站压力容器吊装(来源网络);图10中:三峡水电站某水轮机转轮出厂仪式(来源网络);图10右:该水轮机转轮叶片铸造完成后的形态(来源网络)

机械制造技术的江湖上风起云涌,门派众多,各大帮会瓜分天下,目前谁也没有能力鲸吞寰宇,今后也很难有某种技术可以雄霸武林。3D打印作为其中的新生力量,虽有蓬勃奋起之势,却终无改天换日之能。

同时,我们必须要注意到3D打印得以兴盛的时代背景,那就是计算机运算能力的稳步前进和相关软件的功能提升。

3D打印技术诞生以来的30多年里,相关的材料和机电等领域并未发生革命性的重大突破,然而计算机的运算能力却提高到了当年的上千倍,并最终彻底的改变了我们的生活和生产形态,也极大地促成了3D打印技术的大发展。

一言以蔽之,3D打印仅仅是数字化浪潮中的一朵浪花,与其说是英雄造时势,不如说是时势造英雄。

“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。

本文由科普中国融合创作出品,转载请注明出处。

153 评论

喵喵咩咩喔喔

根据3D科学谷的市场观察,Scalmalloy 已被提议用作民用和军用飞机的增材制造 (AM) 替代铝合金材料,并可以用于增材制造卫星和空间结构。根据3D科学谷的市场研究,Scalmalloy 是一种 Sc 和 Zr 改性的 5xxx 合金。这是开发用于 LPBF 的高强度铝 (Al) 合金的第一个里程碑,凝固过程中初生 Al3(Sc1-xZrx) 核(与 Al 基体相干)的沉淀导致等轴晶粒的局部形成。

本期,3D科学谷以先前调查的结果为基础,揭示 Scalmalloy 的裂纹扩展曲线类似于与广泛用于 汽车 工业和海运船舶的铝合金 AA5754 和 AA6061-T6 相关的裂纹扩展曲线。

3D科学谷

发展中的高强度铝合金

根据吴鑫华院士,高强度3D打印铝合金在航天制造领域的应用尤为重要,主要目标是实现航天器减重以及缩短交付周期,从而降低综合生产成本、提升综合效益。高强度3D打印铝合金可使航天器零件减重20-90%不等,加工周期缩短3-12个月不等。典型应用包括:卫星射频阵列天线支架,耦合震动阻尼器,空间站中多种支架构件如:导轨支架、测控天线支架。

无论是焊接工艺还是选区激光熔化工艺,产生热裂纹的原因大体相似。在这两种情况下,工艺参数都会引起热应力,这是造成裂纹的关键因素。然而通过工艺参数控制难以实现对热应力的控制。要想显著降低热应力,就需要大幅降低温度梯度,而在选区激光熔化工艺中,无法通过工艺参数或环境的改变实现这一目标。在热处理过程中,用于产生强化相的合金元素通常会增加凝固温度范围,在之前的研究中,这一点也是十分不利的。

近年来,材料科学界的研究重点逐渐转向开发适合 LPBF 工艺独特条件的新型高性能合金,合金设计概念通常基于高冷却速率 (105-106 K/s ) 和极高的温度梯度 (G ~ 106 K/m),这提高了合金的溶解度极限,并促进亚稳态相的形成。不过在3D打印工艺中,高温度梯度通常会引起沿构造方向拉长的柱晶结构,促进热裂纹现象的产生。

控制裂纹

现在已知的Scalmalloy 具有类似于 AA7075-T7351(一种广泛用于传统飞机的铝合金)的机械性能和裂纹扩展曲线。在本文中,3D科学谷将结合市场的科研结果将其裂纹扩展行为与广泛用于航运、 汽车 车身和与化工厂相关的基础设施的铝合金 AA5754 和广泛用于轻型飞机、自行车车架、电机的 AA6061-T6 进行比较。

三种合金的机械性能比较见表 1:

表 1. Scalmalloy 和两种广泛使用的铝合金的屈服应力、极限强度和失效应变的比较。AA5754 的 σy 和 σult 值因回火程序而异。

热处理后的 LPBF基于粉末床的选区激光熔化金属3D打印加工的 Scalmalloy 具有优于 AA5754 和 AA6061-T6 的机械性能。然而,与 AA5754 和 AA6061-T6 相比,与 Scalmalloy 相关的 da/dN 与 ΔK 曲线的裂纹扩展性能如何?

之前已经看到Scalmalloy 中的裂纹扩展类似于 AA7075-T7351 合金中的裂纹扩展。可以看到 AA5754 的长裂纹和“短裂纹”曲线之间的一致性。还看到与 Scalmalloy 、AA5754 和 AA6061-T6 相关的 R = 0.1 曲线之间的相似性。

图 1. Scalmalloy 的 R = 0.1 da/dN 与 ΔK 曲线、短裂纹扩展

图 2. Scalmalloy 的 R = 0.7 da/dN 与 ΔK 曲线

图 2 显示了案例 d) 到 g) 的高 R 比 da/dN 与 ΔK 曲线,其中再次看到与 Scalmalloy 相关的 R = 0.7 曲线与与 AA5754 相关的高 R 比测试之间的相似性和 AA6061-T6。图 1 和 2 还表明,与 AA7050-T7451 相关的小裂纹 R = 0.1 和 0.7 da/dN 与 ΔK 曲线也与 Scalmalloy 中与裂纹扩展相关的相应长裂纹一致。这意味着,与 AA7050-T7451 相关的小裂纹曲线可以看作(大约)是 da/dN 与 ΔK 之间的功率关系的延伸。

图 3 显示,当考虑到不同的疲劳阈值和韧性时,各种 da/dN 与 Δκ 曲线非常相似。图 3 中用于各种 AA5754 和 AA6061-T6 测试的常数值在表 2 中给出。为了帮助将 Scalmalloy 与这些不同的铝合金进行比较,图 3 还包含 Scalmalloy 的趋势线。

裂纹的增长,即决定飞机运行寿命的那些增长最快的裂纹,可以使用方程来估计。研究发现增材制造的 Scalmalloy 的裂纹扩展曲线类似于与公认具有良好疲劳性能的常用铝合金 AA5754 和 AA6061-T6 相关的裂纹扩展曲线。这一发现增强了 Scalmalloy 的潜力,与 AA5754 和 AA6061-T6 相比,它具有卓越的机械性能,可用于制造船舶、轻型飞机和 汽车 的增材制造零件,可制造商用铝合金替代零件和军用飞机零件,以及用于卫星和空间结构的轻质铝部件。

新材料与新工艺

长期以来,在3D打印铝合金材料中,仅少数Al-Si基铸造合金已实现无裂纹加工。焊接性较差的锻造铝合金,由于高的热梯度会促进柱状生长并因此引起热裂纹,因此锻造级铝合金的增材制造应用受到了很大的限制。

根据3D科学谷的市场观察,这一限制正在被打破。2019年以来陆续商业化的高强度铝合金3D打印材料,为原来必须通过锻造来实现的零件加工打开了一扇崭新的大门,结合3D打印所释放的设计自由度,锻造铝合金增材制造技术将在压力容器、液压歧管、托架、高强度结构件领域获得想象力巨大的市场空间。

YSZ+6061铝合金

当前科研领域通过添加一定数量的钇稳定氧化锆(YSZ)可以诱导晶粒细化,改变3D打印6061铝合金材料的微观结构,从而消除热裂纹现象。

减少锻造类铝合金通过增材制造过程加工的产品的裂纹,有两种方法可以进行晶粒细化。第一种方法是在打印过程中控制热应力。第二种方法是通过改变合金成分或在基础粉末中直接添加成核剂来增强异相成核。

锆基纳米颗粒成核剂+7075和6061铝合金

根据3D科学谷的市场观察,还有一种高强度3D打印锻造铝合金材料也采用了添加锆基成核剂的方式实现晶粒细化、消除裂纹。该材料为HRL实验室所开发的3D打印用高强度7A77.60L铝粉,已正式投向市场。HRL实验室选择了锆基纳米颗粒成核剂,并将它们组合到了7075和6061系列铝合金粉末中。成型后的材料无裂纹、等轴(即晶粒在长度、宽度和高度上大致相等),实现了细晶粒微观结构,并与锻造材料具有相当的材料强度,这一3D打印的铝合金材料平均屈服强度高达580 MPa,极限强度超过600 MPa,平均伸长率超过8%。

Al-Mn-Ti-Zr 合金

而在3D科学谷此前的分享中,科研领域还提出了一种专门为 LPBF 工艺开发的低成本、无 Sc 且可广泛使用的 Al-Mn-Ti-Zr 合金。该合金旨在用作 AlSi10Mg 替代品并具有类似的广泛应用窗口。通过利用高凝固速率,非常规大量 Mn(3.7 0.5 wt%)在 α-Al 基体内亚稳态冻结,显着促进固溶硬化(~104 MPa 37% 屈服强度份额)。最终获得的试样的屈服强度为 284 3 MPa,极限抗拉强度为 320 1 MPa,断裂伸长率为 16.9 0.2%。这种新合金具有双峰微观结构,由交替分布的细等轴和粗柱状晶粒区域组成。

参考资料:

知之既深,行之则远,3D科学谷为业界提供全球视角的增材与智能制造深度观察,有关3D打印在细分应用领域的更多分析,深入了解铝金属市场供应链分析,铝金属3D打印,打印工艺、建模、仿真、专利,铝合金与高强度铝合金复合材料,请前往3D科学谷发布的《铝金属3D打印白皮书1.0》。

网站投稿请发送至

217 评论

北条真理

导读

背景

超材料(metamaterial),通常是指通过人工设计结构实现,具有天然材料无法具备的超常物理特性的复合材料。举例来说,超材料可以操控光波、声波、电磁波等,使它们改变通常的性质,这样的效果是普通材料所无法实现的。超材料的奇特性质来源于独特的结构和尺寸。它通常具有以重复图案排列的几何特征,这些微结构的尺寸小于可被检测或影响的能量波长。

典型的超材料包括左手材料、光子晶体、超磁性材料、金属水等,它们时常表现出“超常”的物理特性,例如负磁导率、负介电常数、负折射率等。

如今,超材料已经成为一项非常热门且应用范围极广的前沿技术。超材料的应用领域包括光纤、医疗设备、航空航天、传感器、基础设施监控、智能太阳能管理、雷达罩、雷达天线、声学隐身技术、废热利用、太赫兹、微电子、吸波材料、全息技术等。

3D打印技术,是快速成型技术的一种。它以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体。

然而,3D打印技术的新进展,使得在更小的尺度上创造更多的超材料形状和图案变得可能。

创新

近日,美国塔夫茨大学(Tufts University)的工程师团队开发出一系列3D打印的超材料。这些超材料具有独特的微波或者光学特性,这些特性超越了传统的光学或电子材料所能实现的。

无论是现在还是未来,研究人员们开发出的制造方法都表明,3D打印技术有望拓展几何设计与复合材料的范围,带来具有新颖光学特性的设备。在一个案例中,研究人员们从飞蛾复眼中汲取灵感,创造出一种半球状设备,能以选定波长从任何方向上吸收电磁信号。

这项研究于4月8日发表在由 Springer Nature 出版的《微系统和纳米工程(Microsystems & Nanoengineering)》期刊上。

技术

在这项研究中,塔夫茨大学纳米实验室的研究人员们描述了一种采用3D打印、金属涂覆与蚀刻的混合制造方案,创造出波长处于微波范围、具有复杂几何结构和新颖功能的超材料。

例如,他们创造出微型蘑菇状结构阵列,每一个结构在茎的顶部都具有一个小型图案化的金属谐振器。这种特殊的排列使得处于特定频率的微波被吸收,这取决于所选“蘑菇”的几何形状和它们的间距。这种超材料的使用对于医疗诊断传感器、通信天线、成像探测器等应用都有着重要的价值。

这篇论文作者们开发出的其他设备包括抛物面反射器,它可以选择性地吸收和传输特定的频率。这样的概念通过将反射和过滤功能结合成一体来简化光学设备。

塔夫茨大学工学院电气与计算机工程系教授、纳米实验室领头人、这篇论文的通讯作者 Sameer Sonkusale 表示:“采用超材料合并功能的能力非常有用。我们可以采用这些材料减小光谱仪和其他光学测量设备的尺寸,使得它们能被设计用于便携式的现场研究。”

底层衬底的“3D制造工艺”结合“光学或电子的图案化加工”所形成的产品,被论文作者们称为“嵌入几何光学的超材料(MEGO)”。3D打印技术创造出的其他形状、尺寸和方向的图案可用于MEGO的构思,通过难以用传统制造方法实现的途径,创造吸收、增强、反射或者弯曲各种波。

目前,一系列技术都可用于3D打印。目前的研究利用了立体光刻技术,它聚焦光线,将光固化的树脂聚合成期望的形状。其他的3D打印技术,例如双光子聚合,可提供低至200纳米的打印分辨率,制造出更精细的超材料,这些超材料可检测和操控波长更短的电磁波信号,甚至有望包括可见光。

价值

塔夫茨大学工程学院 Sankusale 实验室的研究生、这篇论文的领导作者 Aydin Sadeqi 表示:“3D打印MEGO的潜力尚未被完全发掘出来。我们对于现有的技术还可以做很多事情,3D打印技术必将释放出巨大的潜力。”

关键字

参考资料

【1】

【2】X. Liu, W.J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica, Volume 4, Issue 4, 430-433 (2017). DOI: 10.1364/optica.4.000430

【3】Sadeqi, A., Nejad, H.R., Owyeung, R.E., Sonkusale, S., "Three-dimensional printing of metamaterial embedded geometrical optics," Microsystems & Nanoengineering, (April 8, 2019). DOI: 10.1038/s41378-019-0053-6

158 评论

小菜虫娃娃

3D打印技术是快速成型技术的一种,它利用计算机三维建模软件来设计3D模型,所用材料一般为离散型的塑料、陶瓷或者金属粉末等。制造物体的方式与传统的整体加工的方式不同,是通过按照层数堆叠打印的方式来进行制造。3D打印技术由于这个特性,也被称作“增材制造”技术。这样的制造方式在加工过程中几乎不产生任何废料,对于原材料有着很高的利用率。3D打印技术作为一种新兴的快速制造技术,在很多生产制造领域都有广泛应用。机务维修是民用航空领域保障飞行安全的重要措施,随着我国民航快速发展,机务维修领域受到民航业的高度关注。在汉斯出版社《机械工程与技术》期刊中,作者对如何将3D打印技术应用于机务维修领域的问题进行了一下探讨。欧美发达国家很早就将目光锁定在3D打印技术行业。美、英、德等国的3D打印技术已经可以被应用方面到实际的生产制造领域。上述几个发达国家也是首先将3D打印技术应用于高精尖制造领域。在民航领域,3D打印技术已经得到了国外航空公司的广泛关注。波音、空客、通用电气等全球领先的航空制造企业都将3D打印技术列入企业的战略性发展计划。我国的3D打印技术起步较晚,但是也在航空领域取得了辉煌的成果。成飞与沈飞在歼击机的研制过程中融入了3D打印技术,利用该项技术制造的钛合金复合零部件大幅度的减轻了飞机结构重量。在民航领域,中商飞设计制造的国产大飞机C919在设计过程中也大量采用了3D打印技术制造的钛合金技术部件。随着我国民航业不断发展,随之机务维修领域暴露出的问题也越来越多,例如人力资源与人员培养问题、制造企业缺少核心技术、航空公司航材管理的问题。这些问题在很大程度上阻碍了我国机务维修领域的高效发展,利用3D打印技术可以有效解决机务维修领域目前阶段存在的部分问题。因为3D打印技术解决航空发动机维修中零备件采购,可以术提升航空发动机维修中零部件再制造能力,还可以在高压涡轮叶片维修中的应用,在零部件制造的应用,在机务维修人员培训方面的应用等等领域上的应用。尽管,有关3D打印行业在机务维修领域可应用的行业标准不明确,我国的相关适航审定法律法规也对这方面的规定不全面,这导致了3D打印技术在机务维修领域得不到大范围的应用。同时,因为3D打印技术还没有完全实现产业化,3D打印的成本、性价比问题也一直困扰着各个公司。这些问题无疑在很大程度上阻碍了3D打印在机务维修领域的发展。相信随着3D打印技术和机务维修领域的不断发展,我国的适航审定方面的法规将会更加完善,利用3D打印技术制造的各种零部件以及维修技术也会完全应用到机务维修领域,带动机务维修领域更加快速的发展。

97 评论

相关问答

  • 3D打印方向容易投稿的期刊

    如果您想发表C刊,我建议您去应用研究,因为应用研究是一种以研究为基础,以应用为目的的研究,其目的是为了帮助改善实际问题,改善实际应用,最终改善社会的状况,并为社

    优优来来 7人参与回答 2023-12-10
  • 3d打印sci期刊

    个人资料如下: 黄卫东,1956年出生,西北工业大学教授、博士生导师。 国家杰出青年科学基金获得者,教育部长江学者奖励计划特聘教授,凝固技术国家重点实验室主任,

    nono521521 3人参与回答 2023-12-10
  • 3d打印好发论文吗

    看看你感觉哪些好些了 看到好多人在写3D打印机的呢 而且很多人写iMaker3D打印机的论文 根据你的情况而定 希望对你有帮助

    suki子雅 2人参与回答 2023-12-09
  • 期刊投稿照片打印

    DPI 打印分辨率 Dot Per Inch Dot Per Inch的缩写。每英寸所打印的点数或线数,用来表示打印机打印分辨率。这是衡量打印机打印精度的主要参

    超级懒喵喵 3人参与回答 2023-12-11
  • 3d打印论文发表

    3D快速打印技术在近年来得到了快速发展,应用领域也在不断的增加。下面是我为大家精心推荐的快速成型3d打印技术论文,希望能对大家有所帮助。快速成型3d打印技术论文

    Too兔rich 3人参与回答 2023-12-08