吃了个肚歪
爱因斯坦在1905年发表了四篇论文。
1905年,爱因斯坦在科学史上创造了一个史无前例奇迹。这一年他写了六篇论文,在三月到九月这半年中,利用在专利局每天八小时工作以外的业余时间,在三个领域做出了四个有划时代意义的贡献,他发表了关于光量子说、分子大小测定法、布朗运动理论和狭义相对论这四篇重要论文。
1921年演讲中的爱因斯坦。
这时间完全长于现今的通用时间,欧洲攻读博士学位的五年时间很长,尽管这在当时并不罕见但如今平均时间却为三年。
爱因斯坦于1902年开始在瑞士专利局工作,您会注意到这年他刚刚获得博士学位。 他之所以这样做,是因为他找不到让满意的教学岗位,所以他需要另一个收入来源来维持生计。
爱美食的NANA
继“九章”量子计算机原型机发布后,我国首个可操纵的超导量子计算机体系“祖冲之号”问世。该成果将为促进中国在超导量子系统上实现量子优越性奠定了技术基础,也为后续具有重大实用价值的通用量子计算的研发提供支持。 中国科学技术大学潘建伟院士团队近日成功研制出全球超导量子比特数量最多的量子计算原型机 “祖冲之号”,宣告全球最大量子比特数的超导量子体系的诞生。这篇名为《在可编程二维62比特量子处理器上的量子行走》( Quantum walks on a programmable two-dimensional 62-qubit superconducting processor )的论文5月7日发表在《科学》杂志。 量子计算机是全球 科技 前沿的重大挑战之一,也是世界各国角逐的焦点。超导量子计算已成为最具希望的候选者之一,它的核心目标是增加 “可操纵” 的量子比特数量,通过提升操纵精度来实现落地应用。 “祖冲之号” 可操纵的超导量子比特多达62个,而此前谷歌实现 “量子优越” 的“悬铃木”53个量子比特。研究团队在大尺度晶格上首次实现了量子行走的实验观测,并实现对量子行走构型的精准调控,构建了可编程的双粒子量子行走。 量子行走是经典随机行走的量子力学模拟,是实现量子模拟、量子搜索算法甚至通用量子计算极为强大的工具。研究团队表示:“在我们的工作中,我们设计和制造了一个由62个功能性量子位比特组成的8x8二维方形超导量子位阵列。我们使用该设备演示了高保真单粒子和两个粒子的量子步态。” 由于量子处理器的高度可编程性,研究者还实现了一个被称为马赫-曾德尔(Mach-Zehnder)的干涉仪。“通过调整进化路径上的障碍,我们观察到了单行和双行的干扰条纹。”研究团队在论文中写道,“我们的工作是该领域的重要里程碑,使未来的大规模量子应用更接近在这些嘈杂的中型量子处理器上实现。” 之所以命名为 “祖冲之号”,研究团队共同通讯作者、中国科学技术大学上海研究院教授朱晓波表示,这是为了纪念我国杰出的数学家祖冲之。祖冲之首次将圆周率精算到小数第七位,他提出的“祖率”对数学研究有重大贡献。 潘建伟和朱晓波、彭承志等带头的团队多年来专注于研究超导量子计算,此次“祖冲之号”的最新成果是建立在12个比特超导量子芯片、24个比特的高性能超导量子处理器等成果之上。 不过上述研究仍为科学实验阶段,仅演示了系统功能,尚未实现所谓的“量子优越”,这区别于此前谷歌的量子计算机悬铃木。朱晓波表示,目前团队正在开展相关工作,以实现“量子优越性”。 2019年9月,美国谷歌公司推出53个量子比特的计算机“悬铃木”,对一个数学算法的计算只需200秒,并宣称相较于当时世界最快的超级计算机“顶峰”实现了“量子优越性”。 一位量子计算领域专家在接受采访时表示:“祖冲之号和悬铃木都是使用了超导量子比特,但是祖冲之号执行的任务是相对简单的,对于操纵精度等要求仍然低于悬铃木。” 量子计算和经典计算的竞争是一个长期的动态过程。量子计算机与经典计算机的显著差异在于,传统的计算机存储数据的方式是0或者1,这就好比一个开关,只有“开”和“关”两种状态;而量子计算机存储数据方式是依赖量子比特,可以是介于0和1之间的任何状态,这令其速度更快。 超导量子计算具备较好的工艺可扩展性,因此也被广泛认为是最有可能率先实现通用量子计算的方案之一。在原理上,量子计算机具备超快的并行计算能力,未来有望通过特定算法,提供高于传统计算机指数级别的加速能力,并有望用于天气预报、材料设计、密码破译、大数据优化、药物分析等领域。 来 源 | 第一 财经 商务合作: 请致电 / 或致件 电子技术应用官方微店小程序版上线啦 欢迎逛店 一键下单
木易洛洛
编译 | 未玖
Nature , 11 February 2021, VOL 590, ISSUE 7845
《自然》 2021年2月11日,第590卷,7845期
物理学 Physics
A quantum enhanced search for dark matter axions 量子增强搜索暗物质轴子 作者:K. M. Backes, D. A. Palken, S. Al Kenany, B. M. Brubaker, S. B. Cahn, A. Droster, et al. 链接: 摘要 在暗物质轴子搜索中,量子不确定性表现为一个基本噪声源,限制了用于探测的正交可观测值的测量。对暗物质的研究很少接近这个极限,到目前为止也无人超越。研究组利用真空压缩来突破量子极限寻找暗物质。通过制备一个压缩状态下的微波频率电磁场,并以近乎无噪声的方式读出压缩正交曲线,研究组可在质量范围内将轴子的搜索速度提高一倍。在16.96-17.12和17.14-17.28微伏的轴子剩余能量窗口中,研究组没有发现暗物质存在的证据。突破量子极限带来了一个基础物理 探索 的时代,与接近量子极限的收益递减相比,降噪技术将带来极大益处。
A universal 3D imaging sensor on a silicon photonics platform 基于硅光子学平台的通用三维成像传感器 作者:Christopher Rogers, Alexander Y. Piggott, David J. Thomson, Robert F. Wiser, Ion E. Opris, Steven A. Fortune, et al. 链接: 摘要 精确的三维(3D)成像对于机器绘制地图和与物理世界交互至关重要。由于难以为每个像素提供电子和光子连接,以前的系统限制在20个像素以下。研究组演示了一个由512个像素组成的大规模相干探测器阵列在3D成像系统中的操作。利用光子和电子电路单片集成的最新进展,将密集的光学外差探测器阵列与集成的电子读出结构相结合,可直接扩展到任意大的阵列。双轴固态光束转向消除了视野和距离之间的任何权衡。在量子噪声极限下,研究组的系统仅使用4毫瓦的光时,在75米的距离可达到3.1毫米的精度,比现有固态系统在该距离内的精度高出一个数量级。未来使用最先进的组件缩小像素尺寸,可为消费者相机传感器大小的阵列提供超过2000万像素的分辨率。该研究成果为低成本、紧凑和高性能的3D成像相机的开发和普及铺平了道路,这些相机可应用于从机器人技术和自主导航到增强现实和医疗保健等领域。
材料科学 Materials Science
Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene 魔角扭曲三层石墨烯中可调谐的强耦合超导 作者:Jeong Min Park, Yuan Cao, Kenji Watanabe, Takashi Taniguchi & Pablo Jarillo-Herrero 链接: 摘要 魔角扭曲双层石墨烯仍然是唯一一种可重现强超导性的体系。研究组在魔角扭曲三层石墨烯(MATTG)中实现了莫尔超导体,它比魔角扭曲双层石墨烯具有更好的电子结构和超导性能。测量霍尔效应和量子振荡作为密度和电场的函数,研究组能够确定系统在正常金属状态下的可调谐相界。零磁场电阻率测量表明,超导性的存在与每个莫尔晶胞中两个载流子所形成的破缺对称相密切相关。研究组发现超导相被抑制,并被限制在部分环绕着破缺对称相的范霍夫奇点处,这很难与弱耦合Bardeen-Cooper-Schrieffer理论相吻合。此外,该系统广泛的原位可调谐性使其能够达到超强耦合状态,其特征是金兹堡-朗道相干长度达到平均粒子间距离,以及非常大的TBKT/TF值,超过0.1。观察结果表明,MATTG可电调谐至接近二维玻色-爱因斯坦凝聚体的交叉点。研究结果建立了一系列可调谐莫尔超导体,它们有可能彻底改变人们对强耦合超导的基本认识和应用。
Facile route to bulk ultrafine-grain steels for high strength and ductility 一种大规模制备高强度高塑性超细晶钢的简易方法 作者:Junheng Gao, Suihe Jiang, Huairuo Zhang, Yuhe Huang, Dikai Guan, Yidong Xu, et al. 链接: 摘要 亚微米晶粒尺寸的钢通常具有较高的韧性和强度,这使其在轻量化技术和节能战略方面具有广阔的应用前景。迄今为止,超细晶(UFG)合金的工业制备通常依赖于扩散相变的控制,因此仅限于制备奥氏体-铁素体相变的钢。此外,这些UFG钢有限的加工硬化和均匀延伸阻碍了其广泛应用。研究组报道了一种在Fe-22Mn-0.6C孪晶诱导塑性钢中大量制备UFG结构的简易方法,即通过微量铜合金化,以及30秒内相干无序富Cu相的晶内纳米析出控制再结晶过程。快速而大量的纳米析出不仅阻止了新的亚微米级再结晶晶粒的生长,而且还通过齐纳钉扎机制提高了所获得的UFG结构的热稳定性。此外,由于析出相完全的相干性和无序性,在载荷条件下,析出相与位错的相互作用较弱。这种方法能够制备晶粒尺寸为800 400纳米的完全再结晶UFG结构,而不会引入有害的晶格缺陷,如脆性颗粒和晶界偏析。与未添加Cu的钢相比,UFG结构的屈服强度提高了一倍,达到710兆帕左右,均匀延展性为45%,抗拉强度为2000兆帕左右。这种晶粒细化的概念亦可扩展到其他合金系统,并且制造工艺较易应用到现有的工业生产线。
Thermally reconfigurable monoclinic nematic colloidal fluids 热可重构单斜向列相胶体液 作者:Haridas Mundoor, Jin-Sheng Wu, Henricus H. Wensink & Ivan I. Smalyukh 链接: 摘要 迄今为止,除简单结构外,具有很少或没有对称操作的结构已被证明仅是固体的一种性质,而不是它们的完全流体凝聚态对应物的性质,尽管这种对称性在理论上被考虑并在磁胶体中被观察到。研究组证明了在由分子棒组成的向列相主体中分散高各向异性的带电胶体盘,为观察许多低对称相提供了一个平台。根据盘的温度、浓度和表面电荷,研究组发现向列相、近晶相和柱状组织的对称性从单轴转向正交和单斜。随着温度的升高,研究组观察到了从低序状态到高序状态、以及重入相的异常转变。最重要的是,研究组证明了可重构单斜相胶体向列相序的存在,以及低对称性自组装的热控制和磁控制的可能性。研究组的实验结果得到了向列相主体中圆盘间胶体相互作用的理论模型的支持,并有望为在具有不同形状和尺寸的构建块的系统中实现许多低对称凝聚相及其技术应用提供一条途径。
化学 Chemistry
Complex structures arising from the self-assembly of a simple organic salt 简单有机盐自组装形成的复杂结构 作者:Riccardo Montis, Luca Fusaro, Andrea Falqui, Michael B. Hursthouse, Nikolay Tumanov, Simon J. Coles, et al. 链接: 摘要 虽然分子自组装已经被广泛研究,但理解控制这种现象的规则仍具有挑战性。研究组报道了一种简单的氨吡啶盐酸盐结晶为四种不同的结构,其中两种采用了不寻常的自组装组成了氯离子和吡啶离子的多面体团簇。这两种结构代表了刚性有机小分子的Frank–Kasper(FK)相。尽管FK相在60多年前就已在金属合金中发现,但最近已在几类超分子软物质和金纳米晶体超晶格中观察到FK相,并持续至今。在这些体系中,原子或分子的球形组件被组装成配位数为12、14、15或16的多面体。该文报道的两种FK结构是从致密液相结晶出来的,显示出一种在刚性有机小分子中通常无法观察到的复杂性。通过低温电子显微镜对前驱体致密液相的研究,揭示了球形聚集体的存在,其尺寸在1.5到4.6纳米之间。这些结构,连同用于制备它们的实验程序,引起了人们对其形成的有趣猜测,并为有机晶体材料的设计开辟了不同的视角。
你在知网上下载该论文;论文上面会有标志;或者在万方上打开论文链接;往下看,会看到具体的期刊时间。
爱因斯坦在1905年发表了四篇论文。 1905年,爱因斯坦在科学史上创造了一个史无前例奇迹。这一年他写了六篇论文,在三月到九月这半年中,利用在专利局每天八小时工
量子通信详见前些年发射上天的墨子号,大概也就是独步全球的水平,量子计算也走在世界前列
樱井纯(Jun John Sakurai, 1933年1月–1982年11月),日裔美籍理论物理学家。1933年出生于东京, 1949年以高中生的身份来到美
一般来说,完成博士论文发表的时间会因国家和学校的不同而有所不同,但一般需要3至5年的时间。