hanrui2008
你说的可能是这三个吧:2003年发表了《The Google File System》2004年发表了《MapReduce: Simplified Data Processing on Large Clusters 》2006年发表了《Bigtable: A Distributed Storage System for Structured Data》
大熊是个小太阳
Google在科学杂志《自然》上发表的一篇新文章中正式宣布已实现“量子霸权” ,这离公司最初泄漏该事件的发生刚好一个月,当时,Google的论文被意外地提前发表。不过,Google现在的正式宣布则意味着这项研究的全部细节都会被公开的,科学界可以更广泛地审查Google所说的成就。
谷歌表示,其54比特Sycamore处理器能够在200秒内完成世界上最强大的超级计算机花费10000年所需的随机数计算量,这让目前所有的非量子计算机相形见绌。
而就在今天,另一家超级计算机公司IBM正在对谷歌的说法提出异议。在周一抢先发表的博客文章中,该公司表示,在传统系统上可以在2.5天之内完成相同的任务,而不是Google声称的10000年。 IBM说,在估算其传统超级计算机执行计算所需的时间时,Google“未能充分考虑大量磁盘存储”的开销。
尽管IBM试图淡化Google的成就,但研究界人士对此消息表示欢迎,《纽约时报》引述科学家的话将Google的突破与莱特兄弟1903年的首次飞机飞行相提并论。
距离量子计算开始逐渐被运用,我们可能还需要数年的时间,但是Google的发现最终可以提供证据,证明量子计算的未来已经有了可能。
芬琳漆厦门站
江湖传说永流传:谷歌技术有"三宝",GFS、MapReduce和大表(BigTable)!
谷歌在03到06年间连续发表了三篇很有影响力的文章,分别是03年SOSP的GFS,04年OSDI的MapReduce,和06年OSDI的BigTable。SOSP和OSDI都是操作系统领域的顶级会议,在计算机学会推荐会议里属于A类。SOSP在单数年举办,而OSDI在双数年举办。
那么这篇博客就来介绍一下MapReduce。
1. MapReduce是干啥的
因为没找到谷歌的示意图,所以我想借用一张Hadoop项目的结构图来说明下MapReduce所处的位置,如下图。
Hadoop实际上就是谷歌三宝的开源实现,Hadoop MapReduce对应Google MapReduce,HBase对应BigTable,HDFS对应GFS。HDFS(或GFS)为上层提供高效的非结构化存储服务,HBase(或BigTable)是提供结构化数据服务的分布式数据库,Hadoop MapReduce(或Google MapReduce)是一种并行计算的编程模型,用于作业调度。
GFS和BigTable已经为我们提供了高性能、高并发的服务,但是并行编程可不是所有程序员都玩得转的活儿,如果我们的应用本身不能并发,那GFS、BigTable也都是没有意义的。MapReduce的伟大之处就在于让不熟悉并行编程的程序员也能充分发挥分布式系统的威力。
简单概括的说,MapReduce是将一个大作业拆分为多个小作业的框架(大作业和小作业应该本质是一样的,只是规模不同),用户需要做的就是决定拆成多少份,以及定义作业本身。
下面用一个贯穿全文的例子来解释MapReduce是如何工作的。
2. 例子:统计词频
如果我想统计下过去10年计算机论文出现最多的几个单词,看看大家都在研究些什么,那我收集好论文后,该怎么办呢?
方法一:我可以写一个小程序,把所有论文按顺序遍历一遍,统计每一个遇到的单词的出现次数,最后就可以知道哪几个单词最热门了。
这种方法在数据集比较小时,是非常有效的,而且实现最简单,用来解决这个问题很合适。
方法二:写一个多线程程序,并发遍历论文。
这个问题理论上是可以高度并发的,因为统计一个文件时不会影响统计另一个文件。当我们的机器是多核或者多处理器,方法二肯定比方法一高效。但是写一个多线程程序要比方法一困难多了,我们必须自己同步共享数据,比如要防止两个线程重复统计文件。
方法三:把作业交给多个计算机去完成。
我们可以使用方法一的程序,部署到N台机器上去,然后把论文集分成N份,一台机器跑一个作业。这个方法跑得足够快,但是部署起来很麻烦,我们要人工把程序copy到别的机器,要人工把论文集分开,最痛苦的是还要把N个运行结果进行整合(当然我们也可以再写一个程序)。
方法四:让MapReduce来帮帮我们吧!
MapReduce本质上就是方法三,但是如何拆分文件集,如何copy程序,如何整合结果这些都是框架定义好的。我们只要定义好这个任务(用户程序),其它都交给MapReduce。
在介绍MapReduce如何工作之前,先讲讲两个核心函数map和reduce以及MapReduce的伪代码。
3. map函数和reduce函数
map函数和reduce函数是交给用户实现的,这两个函数定义了任务本身。
论文从初稿到发看需要三四个月左右。 一般的省级、国家级论文审稿需要1~2天,出刊需要1~3个月。个别快的0.5个月,还有个别慢的需要4~7个月。 质量水平高一些
她不喜欢开会、经常远程为数据中心当医生、获得过CTO的推荐信、每年为全球超过百万块硬盘测算寿命、每天大部分时间都在研究数据等,而她为女性科技工作者的杰出代表。
翻译论文软件推荐:Google翻译、掌桥科研、网络金山词霸、在线英语词典、Grammarly。 1、Google翻译 Google翻译生成译文时,会在数百万篇文
完了 你这个题目偏窄 做毕业论文很难,给你个建议:题目 :网络多媒体在地理教学中的应用研究——以GOOGLE EARTH 为例这样你就比较好写。否则你的内容不只
因为,Google是大数据鼻祖。很多人提起大数据,必然会想起Google 的“三驾马车”(也称谷歌三宝):GFS、MapReduce、BigTable。正所谓三