• 回答数

    2

  • 浏览数

    98

雪落0002
首页 > 论文发表 > 荧光材料探针投稿期刊

2个回答 默认排序
  • 默认排序
  • 按时间排序

cynthiahql

已采纳

光转换材料。光转换材料是吸收太阳光中于植物生长不利的紫外光,再转换为有利植物生产的可见光,主要是400~480nm的兰光和600~680nm的红光,从而促进作物的光合作用,达到作为增产早熟的目的。常见的有稀土有机配合物光转换剂和稀土无机发光材料光转换剂,如TTA-TOPO:Eu3+, 364nm紫外线激发下发红光,稀土(Eu、Tb)螯合物光转换剂;CaS:Eu、Cl、CaS:Cu、Eu。电致发光(EL)荧光粉。电致发光是将电能直接转化为光能,它的特点是工作电压低、能量转换效率高、体积小、重量轻、工作范围宽、响应速度快,可做成全固体化的器件。稀土掺杂的ZnS,CaS和SrS薄膜电致发光器件在平面显示中崭露头角。场致发射显示(FED)用荧光粉。FED是有可能与PDP和LCD相竞争的平板显示,它的画面质量和分辨率优于CRT,响应速度快(≤20μs), 而功耗仅是LCD的1/3,平板显示的厚度和重量也仅为LCD的1/2,其应用前景引人关注。 同时,应用市场的不断扩大,也促使这一领域的研究十分活跃。光转换材料。光转换材料是吸收太阳光中于植物生长不利的紫外光,再转换为有利植物生产的可见光,主要是400~480nm的兰光和600~680nm的红光,从而促进作物的光合作用,达到作为增产早熟的目的。常见的有稀土有机配合物光转换剂和稀土无机发光材料光转换剂,如TTA-TOPO:Eu3+, 364nm紫外线激发下发红光,稀土(Eu、Tb)螯合物光转换剂;CaS:Eu、Cl、CaS:Cu、Eu。电致发光(EL)荧光粉。电致发光是将电能直接转化为光能,它的特点是工作电压低、能量转换效率高、体积小、重量轻、工作范围宽、响应速度快,可做成全固体化的器件。稀土掺杂的ZnS,CaS和SrS薄膜电致发光器件在平面显示中崭露头角。场致发射显示(FED)用荧光粉。FED是有可能与PDP和LCD相竞争的平板显示,它的画面质量和分辨率优于CRT,响应速度快(≤20μs), 而功耗仅是LCD的1/3,平板显示的厚度和重量也仅为LCD的1/2,其应用前景引人关注。 由于发光材料的特殊晶体结构和特殊的化学物理性质决定的发光材料的生产设备必然是耐高温、弱还原、高纯、低金属、高硬度的特殊生产设备,是一般的机器设备生产厂家所没有办法生产的,故此我本中心依据多年的生产实践经验及科学的研究成果,特别生产了年产10T、50T、100T蓄能发光材料的生产设备,并可以根据客户的特殊用途进行设计生产各种荧光生产设备。 随着近年来发光材料行业的快速发展,国内检测发光材料的设备还没有形成系统,只有几所大学在实验室实验成功少数仪器,但多不能够与其他的相统一。基本上是个空白,我研究人员依据多年的生产实践经验及科学的研究成果研究开发成功了系列检测设备,可以满足国内外需求,也可以根据可户要求定做。

345 评论

小怪兽的小胖兽

荧光,又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。在日常生活中,人们通常广义地把各种微弱的光亮都称为荧光,而不去仔细追究和区分其发光原理。以下是我为大家精心准备的:纳米标记材料荧光碳点的制备探析相关论文。内容仅供参考,欢迎阅读!

纳米标记材料荧光碳点的制备探析全文如下:

近年来,半导体荧光量子点因其优良的光电性能在生物、医学及光电器件等领域得到了广泛应用. 但是用于生物和医学领域最成熟的量子点,大多是含重金属镉的CdTe,CdSe 和CdS 等量子点,限制了其在生物医学领域的应用. 因此,降低和消除荧光量子点的毒性,一直是研究者密切关注的课题. 直到2006 年,Sun 等用激光消融碳靶物,经过一系列酸化及表面钝化处理,得到了发光性能较好的荧光碳纳米粒子—碳量子点( CQDs) .

作为新型荧光碳纳米材料,碳量子点不仅具有优良的光学性能与小尺寸特性,还具有很好的生物相容性、水溶性好、廉价及很低的细胞毒性,是替代传统重金属量子点的良好选择. 水溶性碳量子点因其表面具有大量的羧基、羟基等水溶性基团,并且可以和多种有机、无机、生物分子相容而引起广泛关注,这些性质决定了碳量子点在生物成像与生物探针领域有更大的应用前景. Zhu H和王珊珊等将PEG - 200 和糖类物质的水溶液进行微波加热处理,得到了具有不同荧光性能的碳量子点,虽然利用微波合成碳量子点可以合成修饰一步实现,但是与水热法相比荧光量子的产率并没有显著地提高. 目前,该领域的科研工作主要集中在3 个方面: 碳量子点形成与其性能的机理特别是光致发光机理、如何简单快速的制备出性能优异的碳量子点以及碳量子点如何成功高效地应用于实际之中.

本文采用单因素法分析影响荧光碳量子点合成的几种因素,寻求高性能荧光碳量子点的最佳合成条件,并比较微波法和水热法合成荧光碳量子点的优劣,为制备出高性能荧光纳米标记材料性能提供一定的实验依据和科学方法.

1 实验部分

1. 1 试剂与仪器

葡萄糖( AR,中国医药集团上海化学试剂公司) 、聚乙二醇( PEG - 200,AR,中国医药集团上海化学试剂公司) 、硫代乙醇酸( TGA,AR,国药集团化学试剂有限公司) 、CS( 大连鑫蝶) 、牛血清蛋白( BSA > 99%,德国默克公司) 购自武汉凌飞生物科技公司) ; 盐酸( HCl,AR,信阳市化学试剂厂) ; 十二水合磷酸氢二钠( Na2HPO4·12H2O,AR,国药集团化学试剂有限公司) ; 二水合磷酸二氢钠( NaH2PO4·2H2O,AR,国药集团化学试剂有限公司) ; 氢氧化钠( NaOH,AR,国药集团化学试剂有限公司) .

荧光分光光度计( LS55 型,PerkinElmer,American) ; 紫外- 可见吸收光谱仪( U - 3010 型,Hitachi,Japan) ; 纯水仪( UP 型,上海优普实业有限公司) ; 台式电热恒温干燥箱( 202 - 00A 型,天津市泰斯特仪器有限公司) ; 傅立叶红外变换光谱仪( VERTEX70 型,德国BRUKER 公司) ; 透射电子显微镜( JEM -2100UHR STEM/EDS 型,日本) ; 微波反应器( Milestone, Italy) ; 电子天平( METTER - TOLEDO,梅特勒- 托利多仪器( 上海) 有限公司) ; 电动搅拌器( DJIC - 40,金坛市大地自动化仪器厂) ; 智能恒温电热套( ZNHW型,武汉科尔仪器设备有限公司) ; 数显恒温水浴锅( HH - S2s,金坛市大地自动化仪器厂) ; 紫外灯.

所有光谱分析均在室温下进行. 实验中所用水为电阻率大于18 MΩ·cm 的高纯水. 紫外- 可见吸光光度计设置为: 夹缝2 nm,扫描速度600 nm/min,扫描范围200 ~ 600 nm; 荧光分光光度计设置为: 激发波长为350 nm,扫描范围为350 ~ 650 nm,扫描速度600 nm/min. 激发夹缝: 10 nm,发射夹缝: 15 nm.

1. 2 碳量子点的制备

影响碳量子点荧光性能的因素较多,其主要因素有反应物摩尔比、反应温度和反应时间. 为更好的控制实验条件,提高碳量子点的性能,采用了三因素三水平的正交实验方法. 该方法以较少的实验次数完成多条件下最优选择. 选择碳源为葡萄糖,表面修饰剂为PEG,温度分别选择为150 ℃,160 ℃和180 ℃,时间分别选择为1. 5 min,2. 5 min 和3. 5 min,PEG 与葡萄糖的摩尔比分别选择为4,5和6. 此外在确定最佳条件时,除了考虑碳量子点的荧光强度之外,还要综合考虑实验条件、产物的毒性和生物相容性等因素.称取葡萄糖2 g,将其溶解到3 mL 水中,与不同体积的聚乙二醇( PEG - 200) 混合,得到澄清溶液,然后放在微波反应器或电热恒温水浴锅中,设定一定温度和反应时间,微波辐射或水浴加热,得到不同棕红色的溶液,即碳量子点原液; 再将碳量子点原液于不同转速下离心分离纯化,测定比较其光学性能,最后选定在6000 r /min 转速下离心分离纯化,取上层清液,稀释不同倍数用于表征.

1. 3 碳量子点的表征分析

将上述得到的碳量子点稀释不同倍数后,分别用U - 3010 型紫外- 可见吸收光谱仪和LS55 型荧光分光光度计测试制得的碳量子点的光致发光性能.

紫外可见吸收光谱测定: 将制备好的碳量子点稀释若干倍( 激发波长处吸收值为0. 1) ,先进行紫外扫描确定其吸收峰位置. 以碳量子点的紫外吸收峰波长为激发波长,激发和发射狭缝均为5. 0 nm,PMT 电压设置为700 V,激发波长是290 ~ 350 nm 进行多次荧光发射光谱扫描,确定激发波长为350 nm 时,其荧光发射峰位置为435 nm 左右,碳量子点的荧光谱峰更好.

荧光光谱测定: 取2. 5 mL 左右的待测碳量子点溶液于荧光比色皿中,在室温下用LS55 型荧光光谱仪检测其荧光,激发波长为350 nm,激发和发射狭缝宽度均为5 nm,扫描波长范围300 ~ 650 nm,扫描速度1 200 nm/min.

透射电子显微镜( 加速电压200 kV) 观察碳量子点样品的微观形态和尺寸; 将得到碳量子点原液等体积与无水乙醇混匀后滴在KBr 压片上后放到台式电热恒温干燥箱中干燥直到变干,然后放于傅立叶红外变换光谱仪中得到红外谱图.

2 结果与讨论

2. 1 微波合成碳量子点的因素分析

本实验选择反应物摩尔比( n) 、反应温度( T) 和反应时间( t) 3 种影响因素,每种因素选择3 种不同的水平,即三因素三水平正交实验方法安排试验,探讨微波法制备碳量子点时对其荧光强度的影响因素,找到最优的合成条件. 根据三因素三水平的条件,选择正交表34 型.

碳量子点合成中,不同影响因素在不同水平下的趋势变化,在同一因素下,随着水平的变化,实验指标也发生变化,根据图中趋势,可以得到微波合成碳量子点的最优条件是: PEG 与葡萄糖摩尔比为6,反应温度为180 ℃,反应时间为2. 5 min,在此条件下合成的碳量子的荧光强度最好.从趋势图还可看出,微波辅助反应时间并不是越长越好,但反应时间小于3. 5 min 时,碳量子点的的荧光强度有随反应时间减少而提高的趋势.

由以上正交实验的直观分析得到了优化条件,然后在该条件下微波合成了荧光碳量子点,优化条件下制备的碳量子点与实验组中最好的第9 号实验条件下制备的碳量子点的荧光发射光谱.在其他条件相同的情况下,优化合成的碳量子点的荧光强度为234,远远大于第9 号实验组的碳量子点的荧光强度153. 17.

改变前驱溶液pH 值( 分别为3,7和9) ,对实验结果进行分析处理,随着溶液pH 值的增加,碳量子点的荧光强度先减小再增加. 在前驱体为碱性条件即pH = 9 时,所得碳量子点荧光强度最大,在酸性条件pH = 3 时次之,在中性条件pH = 7 时最小. 其原因可能是在葡萄糖-PEG 体系中,制备出来的碳量子点表面含有丰富的羟基和羧基官能团( 在图8 中得到了证明) ,在酸性条件下,由于碳量子点表面大量羟基与H + 形成大量氢键,导致体系较为稳定,碳量子点能较好的分散,所以发出较好的荧光; 而在碱性条件下,碳量子点表面的羧基与OH - 的相互作用致使体系较为稳定,碳量子点也能很好的分散; 但是在中性条件下,生成的碳量子点由于高的表面能而发生团聚,致使粒子粒径增加,粒径分布变宽.

2. 2 微波法与水热法的比较

在上述相同的优化条件下,分别采用微波法和水热法2 种方法合成碳量子点,并对其光学性能进行初步比较.

2. 2. 1 碳量子点的紫外可见吸收光谱

2 种方式得到的碳量子点的紫外可见吸收光谱图,两者的吸收峰位置都是在280 nm 左右,吸收峰位置并没有随着加热方式的变化而变化,这说明2 种加热方式形成碳量子点的机制可能是一致的. 此外,在同等合成条件下,微波法制备的碳量子点的紫外可见吸收光谱强度小于水热法的吸收峰强度.

2. 2. 2 碳量子点的荧光发射光谱

将微波优化合成得到的一组碳量子点稀释后,依次增大激发波长,观察其荧光发射波长变化. 微波合成碳量子点在不同激发波长( 340 ~ 450 nm) 下的荧光发射光谱,随着激发波长的增大,荧光发射峰位置发生红移,荧光强度也先增大后减小,其中,激发波长为350 nm 时,碳量子点的荧光发射强度最大. 因此,选择350 nm 作为本实验中碳量子点的激发波长.

2. 2. 3 碳量子点的荧光机理探讨

碳量子点的荧光性能主要来源于2 种不同类型的发射,一种是其表面能的陷阱发射,另一种是其内在的状态发射,即电子和空穴的重新结合产生的发射,也就是通常所说的量子点的量子尺寸效应所导致的碳量子点的TEM 图射. 在本文中,一方面葡萄糖的高温热解生成的碳量子点,其表面能陷阱发射产生荧光; 另一方面,PEG 可以作为碳量子点的表面钝化剂. 而在本研究中,前驱体是葡萄糖和PEG的混合物,因此,PEG 在此合成体系中,一方面发挥了稳定剂的作用,另一方面也发挥了表面修饰剂的作用,PEG 含有大量的羟基等基团,在碱性条件下,羟基等官能团引入碳量子点表面,抑制了碳量子点的缺陷状态发射,使得能够产生荧光的电子和空穴的辐射结合更加便利,即内在的本征态发射更加容易,进而提高了碳量子点的荧光强度.

2. 2. 4 碳量子点的TEM

从中可以看出,碳量子点与半导体量子点类似,外貌呈圆球形,分散性较好,尺寸分布较均匀,平均粒径在5 ~ 8 nm 左右,表明在葡萄糖热解制备碳量子点的过程中,聚乙二醇作为分散剂和表面修饰剂起到了比较好的作用,能有效防止碳量子点团聚.

2. 2. 5 碳量子点的红外光谱

不同方法制备的碳量子点的红外光谱( a. 微波法; b. 水热法)在相同的优化条件下,微波法和水热法。

2种方法得到的碳量子点的红外谱图峰位和峰形基本一致,只是吸收峰强度略有不同,这可能与碳量子点的浓度有关.

羟基伸缩振动谱带出现在3 700 ~ 3 100cm - 1区域,在大多数含羟基的化合物中,由于分子间氢键很强,在3 500 ~ 3 100 cm - 1区域出现一条很强、很宽的谱带. 在3 370cm - 1附近2 种方法制备的碳量子点都有宽化的吸收峰,是O - H 键的伸缩振动特征峰,同时在指纹区1 101 cm - 1处和1 247cm - 1同出现较强的吸收峰,分别属于C - O - C的对称收缩和不对称伸缩振荡,证明了羟基的存在; 同时在1 643 cm - 1处观察到两者的吸收峰,这是C = O的伸缩振动,证明了羧基的存在. 由此判断,碳量子点表面带有羟基和羧基官能团,这不仅增强了量子点的水溶性和生物相容性,更为后续的修饰该类碳量子点提供了有益的指导.

3 结论

通过正交实验方法初步确定了微波法制备纳米荧光碳量子点的合适实验条件为: 反应时间为2. 5 min,反应温度为180 ℃,PEG 与葡萄糖摩尔比为6,pH = 9. 合成中影响因素从主到次顺序为: 反应时间> 摩尔比> 反应温度.同时发现极差R空白> R温度,表明实验过程中,还有其他重要的因素需要探讨,其中,最可能忽略的因素是搅拌.

在相同优化条件下,水热法合成的碳量子点的光学性能要略优于微波合成的,究其原因可能除了本文提到的是否使用搅拌装置有关外,可能还与合成时碳量子点的生长速度、表面修饰程度和状态等因素有关.这些因素的联合作用,导致荧光碳量子点晶格缺陷没有得到很好的控制,而表面缺陷、边缘效应等又会导致陷阱电子或空穴对的产生,它们反过来又会影响量子点的发光性质,有待今后进一步实验验证. 总之,2 种加热方式所制备的荧光碳量子点均具有较好的光学性能,可望用于荧光标记领域.

287 评论

相关问答

  • 材料光学有哪些期刊投稿

    看个人的学术水平。《光学材料快报》(OMEX),OSA的开放访问、快速评论杂志,主要强调传统和新型光学材料的进展,它们的特性、理论和建模、光学和光子学的合成和制

    一个胖子0528 6人参与回答 2023-12-07
  • 荧光探针可以投稿的期刊

    王伦,男,汉族,1956年11月23日出生,安徽合肥人,硕士,教授,博士研究生导师。现任安徽师范大学校长。中国化学会理事,安徽省化学会理事,教育部高等学校骨干教

    怪叔叔是绅士 4人参与回答 2023-12-06
  • 光电材料与器件期刊投稿

    1 非常优秀2 因为半导体光电期刊是涵盖半导体与光电两个学科领域的期刊,发表的论文涉及到的内容非常丰富,研究深度和广度都很高,而且所刊发的论文都经过了严格的学术

    dongdong88z 6人参与回答 2023-12-09
  • 荧光粉方向投稿期刊

    荧光量子产率是表示激发态一个光子产生多少个荧光子的指标,是荧光物质荧光效果的重要参数。如果荧光量子产率低,通常会对其应用提出一定的要求,如荧光标记、生物成像等领

    印象记忆02 3人参与回答 2023-12-11
  • 小分子荧光探针投稿期刊

    1、国家重大科学研究计划项目(973):重大疾病相关的若干重要难检活性小分子细胞内纳米传感研究,No.2013CB933800, 2013-2017。2、国家自

    劲草黑锅 1人参与回答 2023-12-11