xyrlovecat
如果自己研究的领域已经发表了文章, 又是同一种疾病! 如何设计实验才能让自己的文章“脱颖而出”呢? 接下来,我就以2022年2月3日在皮肤病领域排名第一的杂志 Journal of Investigative Dermatology 上发表的一篇利用 10x 单细胞关联 10x Visium 空间转录组测序的文章开始总结一下最近关于瘢痕疙瘩的单细胞及空间的3篇研究报道吧! 瘢痕疙瘩,俗称疤痕疙瘩,是皮肤伤口愈合或不明原因所致皮肤损伤愈合后所形成的过度生长的异常瘢痕组织,是一种良性皮肤纤维化疾病,但具有与恶性肿瘤相似的特征。瘢痕疙瘩缺乏药物治疗,治疗仍然是一个挑战,因此研究其致病机制对该疾病的精准治疗具有非常重要的意义。 单细胞测序技术的最新进展增强了我们对瘢痕疙瘩和其他纤维化疾病的理解,空间转录组技术的迅速发展对于我们获取细胞的空间位置并理解细胞相互作用和通信至关重要。 1、 单细胞结合空间转录组学揭示瘢痕疙瘩发病潜在机制 Integrated analysis of single-cell and spatial transcriptomics in keloids: Highlights on fibro-vascular interactions in keloid pathogenesis 【发表期刊】 J Invest Dermatol. 【影响因子】 8.551 【发表时间】 2022年2月 【发表单位】 韩国成均馆大学 【实验技术】 10x 单细胞转录组测序,Visium 空间转录组测序,mIF 等 【实验设计】 2例瘢痕疙瘩皮肤组织 vs 5例健康皮肤组织(单细胞转录组);1例瘢痕疙瘩皮肤组织 vs 配对成熟疤痕组织(单细胞转录组);2例瘢痕疙瘩皮肤组织 vs 2例健康皮肤组织(空间转录组); 研究背景 瘢痕疙瘩是一种由异常伤口愈合引起的纤维增生性皮肤疾病,导致血管过多和细胞外基质(ECM)成分的过度沉积。该疾病复发率高,临床治疗结果欠佳且难以管理。迄今为止,瘢痕疙瘩的发病机制已被广泛报道。然而,其纤维化失调的潜在机制仍然很大程度上未知。 研究思路 研究结论 1、研究对2例瘢痕疙瘩病人的皮肤组织及5例健康皮肤组织的单细胞转录组测序结果进行整合,降维分群及亚群定义; 2、研究重点对成纤维细胞(FB)进行 recluster,对 subcluster 进行 Monocle3 拟时间分析,对瘢痕疙瘩特异来源的成纤维细胞(FB1 和 FB2)及正常皮肤来源的成纤维细胞(FB4)进行差异基因分析,并进行 GO 及 GSEA 分析; 3、研究使用2种细胞通讯方法—CellphoneDB 及 NicheNet 分析 FB 与 EC 细胞通讯,发现瘢痕组织中 FB 与 EC 的通讯显著密集; 4、研究选择瘢痕疙瘩(n=2,其中一例与单细胞为同一来源)及正常皮肤(n=2)进行空间转录组测序分析,分析了 FB1 和 FB2 在空间中的分布,强调了纤维血管在瘢痕形成中的重要角色; 5、研究对内皮细胞(EC)进行 recluster,对瘢痕疙瘩特异来源的内皮细胞(EC3)及正常皮肤来源的内皮细胞进行差异基因分析,发现 EC3 具有间质激活特性;并结合 mIF 实验及 ST 实验结果进行验证; 6、研究选择一例患者同时获取其瘢痕疙瘩组织及成熟伤疤组织,进行单细胞转录测序,进一步验证了前期基于瘢痕组织 vs 正常组织差异分析得到的结论,即: 纤维细胞(FB) –血管通讯和内皮细胞(EC)的间充质激活在瘢痕疙瘩发病中具有重要的潜在作用。 2、 单细胞转录组测序揭示瘢痕疙瘩中成纤维细胞和血管内皮细胞的谱系特异性调节变化 Single-Cell RNA-Sequencing Reveals Lineage-Specific Regulatory Changes of Fibroblasts and Vascular Endothelial Cells in Keloids. 【发表期刊】 J Invest Dermatol. 【影响因子】 8.551 【发表时间】 2022年1月 【发表单位】 北京协和医院整形外科 【实验技术】 10x 单细胞转录组测序 【实验设计】 4例瘢痕疙瘩病人的皮肤组织 vs 4例配对的健康皮肤组织 研究背景 尽管瘢痕疙瘩被归类为良性真皮生长,但它们表现出与恶性肿瘤相似的生物学特征,例如过度增殖、细胞凋亡抗性和侵袭。瘢痕疙瘩给患者带来严重的生理和心理负担。尽管目前正在使用多种疗法,但就高复发率和缺乏药物疗法而言,瘢痕疙瘩仍然是治疗挑战。这部分是由于对瘢痕疙瘩发病机制的不完全了解,因此彻底了解瘢痕疙瘩发病机制的细胞和分子机制将有助于开发针对该疾病的药物疗法。 研究思路 研究结论 3 、单细胞转录组揭示人类纤维化皮肤病的发病机制 Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. 【发表期刊】 Nature Communications 【影响因子】 14.919 【发表时间】 2021年6月 【发表单位】 南方医科大学;中山大学 【实验技术】 10x 单细胞转录组测序 【实验设计】 3例瘢痕疙瘩病人疤痕组织 vs 3例正常疤痕组织 研究思路 我点评 这三篇都是研究研究瘢痕疙瘩的单细胞相关文章,相同之处是文章使用的都是皮肤组织,case 组都选择使用瘢痕疙瘩处的皮肤组织,但 control 组的选择却有不同:有使用同一批病人配对的正常皮肤组织(第二篇)或配对的成熟伤疤皮肤组织(第一篇),有使用其他健康皮肤组织(第一篇),也有选择其他人成熟(正常)伤疤皮肤组织的(第三篇)。实验技术也不同,第2篇和3篇只使用了单细胞转录组测序,第一篇却同时还选择了更新的空间转录组测序技术。 除了以上不同点,还有几处是很相似的,比如(1)文章都重点关注成纤维细胞(FB)及(血管)内皮细胞(EC),并进行了 recluster;(2)对 FB 及 EC 的 subcluster 都进行分子特征描述,差异基因分析,GO/GSEA 富集分析,Monocle2/3 拟时间分析,细胞通讯分析;(3)都有使用其他技术对单细胞所得结果进行了验证,使用 mIF 或 IF。 所以,不要太担心自己研究的领域已经发表了文章,即使是同一种疾病,只要实验设计别出“一点”心裁,照样可以持续发表高质量的文章! 参考文献 1. Shim J, Oh SJ, Yeo E, Park JH, Bae JH, Kim SH, Lee D, Lee JH. Integrated analysis of single-cell and spatial transcriptomics in keloids: Highlights on fibro-vascular interactions in keloid pathogenesis. J Invest Dermatol . 2022 Feb3: S0022-202X(22)00085-9. doi: 10.1016/j.jid.2022.01.017. Epub ahead of print. PMID: 35123990. 2. Liu X, Chen W, Zeng Q, Ma B, Li Z, Meng T, Chen J, Yu N, Zhou Z, Long X. Single-Cell RNA-Sequencing Reveals Lineage-Specific Regulatory Changes of Fibroblasts and Vascular Endothelial Cells in Keloids. J Invest Dermatol . 2022 Jan;142(1): 124-135.e11. doi: 10.1016/j.jid.2021.06.010. Epub 2021 Jul 7. PMID: 34242659. 3. Deng, CC., Hu, YF., Zhu, DH. et al. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat Commun 12, 3709 (2021).https: //doi.org/10.1038/s41467-021-24110-y.
黄二小要奋斗
在之前推送的 《聊一聊10X genomics的技术发展史》 、 《单细胞ATAC和空间转录组的原理原来是这样》 中,我们聊完了10X公司至今的发展历程。如今这么火热的10X genomics,都能发怎样的文章, 适用于怎样的研究呢?我们一起来看看吧。 10x genomics至今(2020年5月)发文特点 1. 概况 前面我们提到10X 单细胞技术的发展历史,以及它在同类技术中的优势。以下是2017年以来到2020年5月,每个季度10x genomics技术发表论文的数量,基本处于加速增长的趋势,并且正在渗透到很多原来单细胞技术没有涉及的研究领域。 接下来我们看看10x genomics的产品目前主要涉及哪些研究领域。因为10X genomics是单细胞领域目前市场占有量最高的技术,从10X genomics发文的特点也基本可以看出整个领域发展的情况。 图1 10X genomics技术每个季度发文章的数量 2. 单细胞转录组 截至2020年5月,一共发文728篇,果然是最最热门的方向,荣登10x genomics各个产品之首。 从研究方向看上,发育生物学、免疫、神经生物学、肿瘤是排名靠前的方向,这和我们平时遇到的高频研究方向基本吻合。另外,作为一个新兴的领域,10X 单细胞转录组检测到细胞多,数据庞大,信息复杂,对数据分析带来诸多困难,因此算法类的文章(Computational method)也高达76篇。对非生物信息背景的老师来说,如果选择外包公司进行相关研究,选择一家专业性强,售后好的公司就显得尤为重要。 从物种上看,小鼠和人牢牢占据主流。毕竟人类医学研究还是生物领域的最大热门,小鼠也是头号模式动物。其他“飞禽走兽”已经慢慢都有涉及,但比较少的是植物(这里只有两例拟南芥的文章)。主要原因在我们下文也会提起——植物因为细胞壁的存在,制备单细胞悬液的难度更大,从而限制了大规模应用。不过这些困难也已经慢慢在摸索中被克服,目前已经有若干客户在基迪奥成功制备了植物原生质体的单细胞悬液,正进行后续分析中。 从组织类型上看,研究内容几乎涵盖了动物体内大部分组织器官,尤其在脑、血液、实体瘤、肺等四类样本发文的数量都已经超过50篇。所以,后续在人、小鼠领域没有任何实验设计,仅仅对此类已被大量研究的热门组织直接进行测序是发不了好文章的。所以,对已被大量文献报道的热门组织开展研究,个性化的实验设计尤为重要,这部分内容在之后会展开论述。当然,对于冷门的组织或者没有文献报道过的物种(例如大部分植物),只要成功测到数据,任何结果都是创新,则可以较少考虑复杂的实验设计问题。 在已发表的文献上看,截至2020年,10X单细胞转录组的文章依然很大比例发表在高分的主流期刊上。但这样的新技术红利不会一直持续下去,所以对于关注新技术的老师,还是早关注,早启动,早发文章才能保证有好的产出。 图2 10x单细胞转录组文章涉及的领域方向 (注意,分类上会有重复,比如研究方向涉及两个,所以细分之和会超过总数) 3. 10x 免疫组库(VDJ-seq) 截至2020年5月,一共发文56篇。这是仅次于10X RNA-seq的热点方向,因为很多关心免疫细胞的老师会进行10X RNA-seq的时候,配对进行scVDJ-seq。但目前10X scVDJ-seq标准化试剂盒只针对人和小鼠,其他物种的用户如果想做只能自己去设计定制探针系统(显然难度比较大),这限制了其他动物利用该技术开展研究。10X scVDJ-seq因为通常需要先分类淋巴细胞(T/B细胞)然后进行检测,目前最多是对血液开展研究,其次是研究肿瘤浸润的淋巴细胞,其他组织则目前研究报道还比较少,不少空白还留着大家去补充。 图3 10x单细胞免疫组文章涉及的领域方向 4. 空间转录组(ST-seq) 截至2020年5月,一共发文19篇。从发表文章上看,居然排名第一的是Scientific Report,实在太“辣眼睛”了:这么好的技术,暴殄天物啊。不过不用激动,这个技术其实直到2019年才被10X genomics公司收购,当年年底优化升级后推出。再此之前,这个技术所属的瑞典公司Spatial Tranomics一直不温不火的,发文章大部分也是一些瑞典的研究机构自己在玩。 我推测(没有仔细调研过)这个技术就是瑞典研究机构自己开发的技术,然后搞了商业化公司Spatial Tranomics。由于是自己的技术,成本很低,发文章就不挑剔,随心所欲。 所以,文章要么是CNS(或者高水平的nature biotechnology, nature plant等这个高水平的子刊),要么时不时在Scientific Report水一把。不过随着空间转录技术升级后2020年全面推出,“10X ST-seq+10X RNA-seq”的套路肯定又会爆出一批高水平的文章。 图4 10x单细胞ATAC-seq文章涉及的领域方向 5. 10X ATAC-seq 截至2020年5月,一共发文12篇文章,数量还不多。而且,其中有近一半(5篇)是涉及生物信息分析方法探索的文章。这是由于对单细胞ATAC-seq这种信息庞大,噪音复杂的数据,应该如何分析还有很多值得探索的地方。 图5 10x单细胞ATAC-seq文章涉及的领域方向 从以上介绍,你可能已经发现,10X单细胞相关的转录调控组学技术目前主要围绕模式生物开展。那么10x单细胞技术是否可以研究非模式物种呢? 10X 单细胞技术可以检测哪些RNA以及应用于哪些物种 1. 10X单细胞技术是否需要参考基因组 以比较代表性的10X RNA-seq、VDJ-seq、ATAC-seq和ST-seq(空间转录组)来说。VDJ-seq受限于试剂只针对人和小鼠开发,因此其他物种目前无法开展商业化的服务。ATAC-seq作为检测基因组开放性的技术,其检测的区域大部分为非编码区,因此参考基因组不但必须要有,而且参考基因组的质量对ATAC-seq的影响非常大。 而对于RNA-seq或者ST-seq,本质上就是转录组,研究的目标分子是带ployA尾巴的RNA。因此,并非必须要有参考基因,只要有质量足够好的参考转录本就可以了。下来,我们重点剖析下10X RNA-seq和ST-seq的应用需求。 2. 10X RNA-seq/ST-seq可以检测哪些类型的RNA 从上文介绍,我们可以知道10X RNA-seq和ST-seq(空间转录组)依赖于围绕ployA结构开展扩增。那么我们分析一下10X RNA-seq/ST-seq可以检测哪些RNA。 (1)mRNA 由于真核生物mRNA都有ployA结构,所以理论上mRNA就是10X RNA-seq/ST-seq主要的检测目标。当然,由于只是扩增mRNA 3‘端或者5‘端的一小段用于定量,所以并不能能用于分析可变剪切。 (2)lncRNA 高等生物的LncRNA只有一部分有ployA结构(另外一部分自然没有),因此10X RNA-seq/ST-seq只能检测这些有ployA结构的lncRNA。另外,由于lncRNA表达量普遍毕竟低,而10X RNA-seq/ST-seq这类大规模单细胞/准单细胞测序的技术,对低丰度mRNA分子的检测能力比较弱,因此结果中lncRNA的数量将比较少。 (3)其他RNA 近年来研究大热的环状RNA由于没有ployA结构,因此不在10X RNA-seq/ST-seq的检测范围内。同样的,其他类型的小RNA,例如miRNA,也是10X RNA-seq/ST-seq无法检测的。 3. 10X RNA-seq/ST-seq可以用于哪些物种研究 10X RNA-seq/ST-seq质上就是转录组测序。某个物种是否可以用10X RNA-seq/ST-seq开展转录组研究,需要考虑两个方面的问题: (1)实验层面的问题 对于10X RNA-seq来说,主要考虑该物种是否可以制备单细胞或单细胞核悬液?大部分高等动物/植物的样本理论上都满足这个要求。而对于10X ST-seq主要要考虑该物种是否可以制作切片,以及切片中的组织是否可以被顺利解离释放RNA。对某些植物来说,在无法制作单细胞悬液的情况下,制作切片进行空间转录组测序或许是更可行的研究切入方式。这些技术的具体的实验方法,我们在后续章节讨论。 另外,细菌的细胞太小,且没有ployA结构,自然不适合10X genomics的检测。 (2)分析层面的问题 同常规RNA-seq一样,10X RNA-seq/ST-seq需要将测序数据比对到作为参考的基因组,才能实现对基因的定量。那么参考基因组是影响分析结果的主要问题。10X RNA-seq/ST-seq由于只对转录本的3‘端或者5‘端进行测序,然后通过比对参考基因组实现对RNA的定量。那么,这要求用于作为参考的基因组要有较高的质量。因为如果参考基因组组装质量差,基因注释不完整,那么会影响测序结果的比对以及基因定量。 基于参考基因组,我们可以分为3种情况: 1)参考基因组质量很高 比如,人类、小鼠、拟南芥、水稻等,参考基因组质量高,基因组注释都优化了很多版本了,开展10X RNA-seq/ST-seq分析自然没有问题了。 2)参考基因组质量值得怀疑 这10年来,基于二代测序组装技术的发展,很多非模式生物的参考基因组已经被发表。但实际上由于预算或急着发表等诸多因素,这些已经发表的基因组质量参差不齐。比如,很多基因组在注释的时候,只有CDS区注释,而缺乏5‘UTR或者3‘UTR区。而10X RNA-seq/ST-seq检测的是RNA的5’端或者3‘端序列,其实大部分就是5’UTR或者3‘UTR序列。如果参考基因组没有将UTR区域注释出来,自然就会影响测序结果的比对和定量。 所以,对哪些组装组质量较差的物种,如果比对率异常(比对在基因区的数据偏少),可以考虑人为对基因组注释文件的5’UTR区或者3‘UTR区进行延伸,这样可能会改善比对和定量的结果。另外,如果预算许可,可以考虑在实验设计中加入一些常规转录组或者3代全长转录组,用于优化参考基因组的注释(不过,10X RNA-seq/ST-seq这么贵的技术都用上了,好像也不会在乎多测几个常规转录组了吧)。 3)没有参考基因组 没有参考基因组当然没法做比对和定量,也就无法开展10X RNA-seq/ST-seq分析。对于没有参考基因组的物种,从而组装一个基因组费用比较高且周期比较长。对于无参考基因组的物种,如果老师很想进行10X RNA-seq/ST-seq研究,那么也可以考虑对转录组数据进行拼接,构建一个转录本参考用于10X RNA-seq/ST-seq数据的比对和定量。 但如果采用转录组de novo拼接构建转录组,一定要注意3个问题: a)一定要使用三代测序进行转录组拼接而非二代测序 基于常规的二代测序结果的 de novo 拼接获得的转录本大部分是不完整的,大概率缺失UTR区的序列,所以基于常规二代测序拼接的 de novo 转录组参考序列集并不适合用于作为10X RNA-seq/ST-seq的参考库。唯一合适的方法应该是基于三代全长转录组测序技术进行 de novo 拼接,去获得完整的转录本全长序列,才适合作为10X RNA-seq/ST-seq的参考库。 b)三代转录组较低的基因检出率需要数据量做保障 我们做过的大量有参考基因组物种三代转录组测序数据表明,三代全长转录组对基因的检出率平均在40%(即基因组如果有2万个基因,但三代全长转录组平均只能检出8000个基因)。这主要原因三代全长转录组只有获得mRNA全长,被算一个有效检出的完整转录本。但在全部数据里,全长转录本所占的比例并不高,尤其对低丰度基因的转录本漏检较多。 为了保证三代全长转录组能够较多检测低丰度的转录本,以保证 de novo 拼接的转录组参考集涵盖更多的基因,可以考虑适当加大测序的数据量(现在三代测序也比较便宜了)。 c) de novo 参考转录组冗余度的影响 de novo 从头拼接的结果有一个比较麻烦的问题是序列冗余度比较大,即同一个基因的多个可变剪切同时被检测和拼接出来。这会导致10X genomics数据进行比对时,多重比对(即一条测序的reads会比对上多个转录本)比例比较大。而多重比对的reads在10X RNA-seq/ST-seq定量的时候,默认要被丢弃。 所以,对于 de novo 拼接来源的转录本需要适当进行去冗余处理,从而减少多重比对的影响,提高数据量的有效率。在无参考转录组 de novo 拼接方面,基迪奥有非常丰富的项目经验。在已有的案例中,我们已经证明了无参考转录组 de novo 拼接结果在进行适当优化后,可以作为10X RNA-seq/ST-seq的参考。 参考文献 [1] Svensson V, Vento-Tormo R, Teichmann S A. Exponential scaling of single-cell RNA-seq in the past decade[J]. Nature protocols, 2018, 13(4): 599. [2] Rosenberg A B, Roco C M, Muscat R A, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding[J]. Science, 2018, 360(6385): 176-182. [3] Macosko EZ, Basu A, Satija R, Nemesh J et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 2015 May 21;161(5):1202-1214 [4] CytoSeq: Fan H. C., Fu G. K. and Fodor S. P. (2015) Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science 347: 1258367 [5] Birey F, Andersen J, Makinson C D, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652): 54-59. [6]单细胞在线课堂: 转自 风很大的10x genomics到底能发怎样的文章?_研究 (sohu.com)
首先你要写一篇高质量的论文,先阅读一下你关心领域的期刊、硕博论文,选一个方向,如何找出一个你感兴趣的点,研究在这个点上如何突破。写出文章来可以自己投也可以找代理
Animals是MDPI出版社旗下的期刊。MDPI出版社一项以审稿快、年发文量大而出名,Animals也不例外,快的只要2周就可以录用,一般从投稿到录用只需要1
中国土壤的盐化与碱化成分复杂且程度各不相同, 植物在长期进化过程中,从分子、细胞、生理生化水平等各个层面,形成了相应的机制来应对盐碱的胁迫,使其能够适应不同环境
开源类的期刊不知道你有了解过没,也还可以的,世界肿瘤研究,你去看看
中国土壤的盐化与碱化成分复杂且程度各不相同, 植物在长期进化过程中,从分子、细胞、生理生化水平等各个层面,形成了相应的机制来应对盐碱的胁迫,使其能够适应不同环境