招财KItty.
数学是一个非常考验智力的科目,也是所有科学的基础,顶级的数学家都是智商超群。
在人类历史上,有个别超一流数学家,仅凭个人之力,就把数学的发展进程推进了几十年甚至几百年,给人类留下丰富的遗产,比如下面几位。
欧拉
数学英雄欧拉,在数学领域有着非常多的贡献,他对数学的灵感和操控技巧,让世人敬佩不已,让欧拉一举成名的是一个级数————巴塞尔级数。
在欧拉之前,巴塞尔级数问题困扰了数学界一个多世纪,莱布尼茨是微积分的发明者之一,数学技巧上可谓登峰造极,加上有了微积分这一工具,他对数学级数的操控可谓随心应手,莱布尼茨甚至还对他的朋友惠更斯说:对于任何收敛的无穷级数,只要其中各项遵循一定规律,我就一定能求出和来。
然后在1673年,英国数学家佩尔拿出巴塞尔级数,一下把莱布尼茨镇住了,无论莱布尼茨如何绞尽脑汁,也没有求出巴塞尔级数之和。
然后在1734年,27岁的欧拉,突然就把这个问题解决了,为什么说突然呢?我们来看欧拉解决巴塞尔级数的方法:
整个过程只用到了两个简单的数学知识,只是欧拉使用的技巧太巧妙了,相信能看懂该证明过程的人,无不对欧拉超凡智慧敬佩不已。
黎曼
德国数学家黎曼,是大数学家高斯的学生,都说名师出高徒,高斯的这个学生是真不简单,他开创了黎曼几何、解析数论等等新领域。
1859年,黎曼被选为柏林科学院院士,为了表达感激,黎曼向柏林科学院提交了一篇名为“论小于给定数值的素数个数”的论文,正是该论文,让接下来的数学家忙碌了一百多年,其中有些黎曼看起来理所当然的结论,到现在还未解决。
这篇论文短短几页,一共出现6个猜想,然而好像黎曼并未把它们看作猜想,而是以“显而易见”等等词汇提出来,或者直接拿来用不做任何解释;后来的几十年里,有五个猜想被其他数学家单独证明出来,其中有些数学家还因此获得菲尔兹奖,然而最后一个猜想到现在还未证明,这就是大名鼎鼎的黎曼猜想。
这足以看出,黎曼是远远超过那个时代的数学家,还有他创立的黎曼几何,成为后来广义相对论的数学基础。
庞加莱
庞加莱是法国著名的数学家、物理学家,是公认的全才人物,也是19世纪末二十世纪初的数学领袖人物,庞加莱从小就是天才,学习知识的能力让世人震惊。
庞加莱在6岁就熟练掌握了七门语言,超凡的记忆力能让他清楚背出书本中某个知识点在几行几页,1870年爆发了普法战争,庞加莱为了解时局,只花了一周就学会了德文,有人评价庞加莱说:他的存在,就是证明天才是存在的,别人努力一辈子,他只需要努力一下子。
陶哲轩
陶哲轩是当今还在世的一位数学家,拥有极高的智商,4岁时他在幼儿园就把全部小学课程学完,7岁自学微积分,12岁获得国际数学奥林匹克竞赛金牌,15岁取得硕士学位,21岁取得博士学位,31岁获得菲尔兹奖。
目前数学领域已经高度细化,对数学家来说掌握所有数学领域的知识几乎是不可能的事,然而陶哲轩却是个例外,他在数学的很多领域有突破,被喻为“数学界的莫扎特”。
未央1895
1980年代末和1990年代初佩雷尔曼到美国多所大学工作。他于1995年或1996年回到俄罗斯并重新在Steklov研究所工作。到2002年秋为止他最多以他在比较几何方面的工作而知名。在这个方面他获得了一些可观的结果。
2002年11月他在预印本文献库发表了一篇文章,这是一系列文章的第一篇。这些文章似乎说明佩雷尔曼证明了几何化猜想,这个猜想的一个特殊情况就是庞加莱猜想。许多人认为,法国数学家亨利·庞加莱于1904年提出的庞加莱猜想是拓扑学最著名的未解决的问题。许多数学家试图证明这个问题。克莱数学学院为它的解决出赏金一百万美元。
佩雷尔曼于1966年6月13日出生于苏联圣彼得堡(旧称列宁格勒)的一个犹太家庭: 父亲是电子工程师,母亲是国小数学教师。平凡的父母不能给他提供优越的物质生活条件,却给了他聪明好学的头脑。
对佩雷尔曼来说,他的童年在4岁时就结束了。当同龄人尽情玩乐的时候,对数字感兴趣的他却在埋头啃著国小数学课本。"他是个怪孩子,我从来没见他和院子里的孩子玩耍过",佩雷尔曼的邻居季莫菲耶夫娜回忆道,"他对小孩子的疯闹一点儿兴趣都没有。其他孩子都在踢足球,可他不是钻到书本里,就是和父亲下象棋或玩填字游戏"。
6岁时,佩雷尔曼进入母亲任教的国小学习。当他已经能轻松自如地在脑子里进行三位数的加减乘除时,同学们刚刚学会二位数以内的笔算。他的同学叶卡捷琳娜回忆道:"我们国小有个传统,好学生要帮助差学生。老师把成绩最差的一个同学分给了他。也就是半年时间,他硬是把那个男孩子从'二分生'变成了'五分生'"。
1982年,佩雷尔曼进入圣彼得堡第239中学学习。这是一所颇具数学和物理教学特色的学校。入学才三个月,他就参加国际数学奥林匹克竞赛,并获得了金奖。当时,这个16岁的少年天才得到了有史以来的最高分---满分42分。获奖一个月后,这个数学神童就接到了美国一所大学的邀请,为他提供丰厚的奖学金。美国人当时就明白:这个天才有着不可估量的未来。然而,他却谢绝了赴美深造的邀请。
中学毕业后,佩雷尔曼免试进入圣彼得堡大学数学系学习。大学二年级时,他选择了数学中最复杂的研究方向---微分几何学。回想起大学时代的他,同学们都一致这样形容:他像外星人一样聪明,对所学的专业都很精通;在学习上,他很乐意帮助大家。一个叫格奥尔金那维奇的同学回忆说:"他只按他喜欢的方式生活。他对自己的外表漫不经心,经常拎着一个装满书的破袋子,穿着一件磨出洞的衣服,头发长长的也不去剪。他不吸菸,也不喝酒,是个乖乖仔。大学几年,他和我们除了数学什么都不谈。尽管我们身边都是这方面的优秀人材,但毫无疑问,他更出色。"另一个同学阿妮西娅说道,"他是个有爱心的人。有一次我在校门口不远的地方见到他手拉手领着一个盲人过马路,这给我留下了很深的印象。"
1987年,佩雷尔曼考取了苏联科学院斯杰克洛夫数学研究所的研究生,并于1989年获得博士学位。随后留在该所工作。周末他就回家辅导读中学的妹妹埃莱娜学习数学。晚上他就拉小提琴,妹妹唱歌跳舞,而父母就是他们的观众,一家四口其乐融融。据其母亲的好友伊万诺娃说,"他们的家长对孩子的期望并不高,只希望他们诚实做人,认真做事,快乐生活。"妹妹后来也成了一名数学家,在瑞典著名的卡罗琳医学院从事生物统计学研究工作。
苏联解体后,不少犹太人都移民以色列。1991年底,佩雷尔曼的父亲和妹妹也加入了移民的行列。可他的母亲却坚决不愿离开俄罗斯。此事对他打击很大。从那时起他就将自己封闭起来,并决心永远不离开自己的母亲。
佩雷尔曼于1993年到美国做访问学者。在美期间他解决了多个数学难题,其中包括著名的"灵魂猜想"。其成就引起美国数学界的关注:加州大学伯克利分校、史丹福大学、麻省理工学院、普林斯顿大学等一批著名学府高薪聘请他任教,但都被他谢绝了。一年后,他回到斯杰克洛夫数学研究所工作。据佩雷尔曼的同事阿夫杰伊说,"他虽然性格有点孤僻,但待人友善。无论对朋友还是同事,他都很友好。不过,当他得知有人滥用所里的科研经费时表现得非常气愤。他十分鄙视那些在学术上弄虚做假者。"由于他在数学上的成就,欧洲数学会于1996年给他颁发"杰出数学家奖",但被他拒绝。
2002年和2003年佩雷尔曼在网站上张贴三篇论文,成功破解了数学界七大难题之一---庞加莱猜想。此事震惊整个数学界。专家们认为,这一难题的解决很可能在物理和其他领域上得到"激动人心"的套用,有助于科学家弄清楚宇宙的形状。后来,佩雷尔曼应邀到麻省理工学院、纽约大学、哥伦比亚大学等著名学府做巡回演讲,受到学界的广泛好评和媒体的跟踪报导。2004年斯杰克洛夫数学研究所推荐他当选俄罗斯科学院院士,但被他拒绝了。次年,他辞掉了该所的职位;从此,他就人间蒸发,不知踪迹。
证明庞加莱猜想让佩雷尔曼很快曝光于公众视野,但他似乎并不喜欢与媒体打交道。据说,有记者想给他拍照,被他大声制止;而对像《自然》、《科学》这样声名显赫杂志的采访,他也不屑一顾。
"我认为我所说的任何事情都不可能引起公众的一丝一毫的兴趣。"佩雷尔曼说,"我不愿意说是因为我很看重自己的隐私,或者说我就是想隐瞒我做的任何事情。这里没有顶级机密,我只不过认为公众对我没有兴趣。"他坚持自己不值得如此的关注,并表示对飞来的横财没有丝毫的兴趣。
2006年8月在西班牙马德里召开的国际数学大会上,国际数学联合会(IMU)决定将有"数学诺贝尔奖"之称的菲尔茨奖授予佩雷尔曼。然而,面对这巨大的荣誉他却选择了拒绝。他也拒领"千禧年数学大奖"。潜心研究、淡泊名利、待人以诚、来去无踪是佩雷尔曼给同行最深刻的印象。
在于使用Rii流来改变理察·汉密尔顿的几何化方法。与直接的拓扑学方案相比这个方案似乎更可行。
到2004年9月为止,数学界仍在检查佩雷尔曼的证明,他本人在一些知名的大学里讲课来解释他在预印本文献库发表的文章中的证明。至今为止这些证明看上去是有理的,但还未在所有的细节上被验证。他是否会获得那一百万美元奖金。1990年代初他拒绝接受欧洲数学学会的一个奖金。有人说他"非常不物质主义",至今为止他也不打算将他的证明发表在任何同行评价的数学杂志上。而在一份同行评价的杂志上发表其证明是获得该奖金的条件之一。另一方面,迄今为止其他数学家对他在预印本文献库上发表的文章的检查已经远超过了杂志中的同行评价,该奖金的委员会表示在这种情况下它可能修改获得奖金的条件。对预印本文献库来说,这是一个非常重要的步骤,因为它将将预印本文献库提高到与传统出版物相同的地位。
21日公布了该刊评选出的2006年度十大科学进展,其中科学家证明庞加莱猜想被列为头号科学进展。
《科学》杂志说,科学家们在2006年完成了"数学史上的一个重要章节",这个"有关三维空间抽象形状"的问题终于被解决。庞加莱猜想属于数学中的拓扑学分支,1904年由法国数学家庞加莱提出,即如果一个封闭空间中所有的封闭曲线都可以收缩成一点,那么这个空间一定是圆球。百余年来,数学家们为证明这一猜想付出了艰辛的努力。
被称为数学隐士的俄罗斯数学家佩雷尔曼在证明庞加莱猜想过程中发挥了最为重要的作用。但由于个性使然,佩雷尔曼只提供了证明的草稿,且其证明内容并不止限于解决庞加莱猜想,后来三个独立的小组为了让论文更易阅读,逐步填补丰富了佩雷尔曼证明中的细节部分。百年难题终获破解。《科学》杂志称,科学家们已经达成共识,认为这一猜想已经被证明。
2006年菲尔茨奖得主之一、俄罗斯数学家格里戈里·佩雷尔曼是一个神秘人物。自从在网际网路上发表3篇庞加莱猜想的关键论文之后不久,佩雷尔曼就不再露面,甚至连菲尔茨奖可能也无法把他吸引出来。
实际上,佩雷尔曼在他的学术生涯中曾多次拒绝荣誉或奖项。1995年,他拒绝史丹福大学等一批美国著名学府的邀请;1996年,他拒绝接受欧洲数学学会颁发的杰出青年数学家奖。
自2002年11月起,佩雷尔曼先后把3页简短的论文贴到网际网路上,宣布他解决了七大数学难题之一的"庞加莱猜想"。4个月后佩雷尔曼又在网上公布了第二份报告,介绍了证明的更多细节。同时他也通过电子邮件与该领域的少数专家进行交流。
但是,镟风般地在美国进行了巡回演讲并取得成功后,佩雷尔曼于2003年春从人们的视线里消失,留下全世界数学家费尽心力一行一行地梳理他的论文,填补细节并寻找论文在逻辑上的漏洞。
"如果有人对我解决问题的方式感兴趣,它就在那。"佩雷尔曼说,"我公布了所有的计算。这是我能提供给公众的。"
美国《纽约时报》的一篇报导,开头就是"佩雷尔曼,你在哪里?"据说,美国数学界对这位天才极其佩服,但他拒绝了史丹福大学、普林斯顿高等研究院等著名学府的聘请,而宁可"在圣彼得堡附近的森林里找蘑菇"。
美国数学家说,不修边幅的佩雷尔曼"友善而害羞,对一切物质财富不感兴趣",他"似乎不是生活在这个世界的人"。纽约州立大学数学家麦可·安德森说,"佩雷尔曼来过了,解决了问题,其他的一切对于他都是肤浅的。"
佩雷尔曼的拒领大奖和深居简出引起了人们的猜疑,一些人认为他也许正在攻克其他什么学术难题。
佩雷尔曼上周在圣彼得堡接受采访时表示,自己根本不值得人们如此关注。他说:"我不认为自己说的话能引起公众的兴趣。我不说,是因为我重视隐私,而不是我隐藏了自己正在做的事情。没有什么所谓的顶级计画正在进行。我只是认为公众对我根本没有兴趣。"
佩雷尔曼还在1992年时就已开始了"庞加莱猜想"的证明,在此后漫长的过程中,佩雷尔曼除了这个猜想心中已经没有其他。
不管清贫与否,佩雷尔曼生活简单是无疑的。据邻居们说,佩雷尔曼一直过著隐居的生活。除了会定时光顾离家不远的一个副食商店外,他基本不离开自己的家。
据副食商店商品检验员奥丽加·明茨和塔季扬娜·波里亚科娃介绍,许多年来,佩雷尔曼买的东西基本没有改变过:一个黑面包,一包通心粉,比菲多克牌和比菲来弗牌优酪乳。水果部那边他几乎都不过去,进口苹果和橙子他似乎买不起。他也不买酒水和其他多余的东西。总之,"只买那些很便宜又好做的简单食品。"
是否因为像外界所言"因路费问题"佩雷尔曼才未去领奖时,基斯里亚科夫否认了这种可能,因为数学家大会组委会会为他支付一切相关费用。另外,拒绝领取奖章和接受奖金是两码事。据悉,即使佩雷尔曼没有到颁奖现场,美国克莱(Clay)数学研究所也须在2年内就该问题成立专门委员会,来最终决定是否给他颁发这笔奖金。
"一身黑色的衣服,长长的头发,长长的指甲,一成不变的食品,总是在同一个时间来商店……"
如果这笔奖金最终送达佩雷尔曼手里,也许他应该考虑整理下服饰,顺便购物时多些花样,以便奥丽加·明茨和塔季扬娜·波里亚科娃不再觉得他像上面那样,如同幽灵。
2003年,在发表了他的研究成果后不久,这位颇有隐者风范的大胡子学者就从人们的视野中消失了。据说他和母亲、妹妹一起住在圣彼得堡市郊的一所小房子里,而且这个犹太人家庭很少对外开放。对此,他的朋友并不感到奇怪。
"他有一点使自己疏离于整个数学界。"牛津大学的DuSautoy教授说,"他对金钱没兴趣。对他来说,最大的奖励就是证明自己的理论。"
佩雷尔曼的名声已经超越了他的数学成就,他成了不少流言和漫画中的角色。但在科学界,他依然是最受尊敬的人物。如同英国广播公司(BBC)评价的,他破解了庞加莱猜想,"是数学发展,也是人类思想发展的里程碑"。有趣的是,埃及《金字塔周刊》有一篇题为"佩雷尔曼:最聪明的数学家"的文章居然认为,只有金字塔设计者的后裔,才有可能破解庞加莱猜想这一百年谜题。然而,多位专门研究天才教育的美国心理学家却认为,佩雷尔曼能取得如此巨大的成就是与其性格和家教有关。
英国曾经评选出十位数学天才,认为他们的革命性发现改变着我们的世界,佩雷尔曼榜上有名。
缘起
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想像同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是"单连通的",而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
一位数学史家曾经如此形容1854年出生的亨利·庞加莱(Henri Poincare):"有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。"庞加莱作为数学家的伟大,并不完全在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。庞加莱猜想,就是其中的一个。
1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学的猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。但1905年发现提法中有错误,并对之进行了修改,被推广为:"任何与n维球面同伦等价的n维封闭流形必定同胚于n维球面。"后来,这个猜想被推广至三维以上空间,被称为"高维庞加莱猜想"。
三鲜豆皮皮
说到数学家,我们就不得不提俄罗斯最任性又最神奇的数学鬼才佩雷尔曼,他用自己的亲身经历告诉大家一个数学家能有多恐怖!
1966年,佩雷尔曼出生在苏联的一个犹太人家中,佩雷尔曼父亲是一名工程师,母亲则是一位数学老师,他还有一个妹妹,后来在佩雷尔曼的指导下,也成为了一名数学家。
在很小的时候,佩雷尔曼就展现出惊人的数学天赋以及对于数学的极大兴趣。当其他同龄人聚在一起嬉戏打闹的时候,他就一个人呆在旁边默默地翻阅数学课本,亦或是和他的父亲玩下象棋以及填字游戏。
1982年,佩雷尔曼以优异的成绩考入圣彼得堡第239中学学习,仅仅入学三个月他就代表苏联参加国际数学奥林匹克竞赛,并且创造满分的世界纪录。
因为这次比赛,美国耶鲁大学向佩雷尔曼抛出橄榄枝,许诺他如果来耶鲁大学就给予他高额的奖金以及一套房,但佩雷尔曼果断拒绝了这个诱人的条件。
高中毕业后,佩雷尔曼免试直接进入了列宁格勒国立大学数学和力学系。在大学二年级的时候,喜欢挑战的佩雷尔曼选择了当时数学研究领域中最复杂的研究方向:微分几何学。
1987年,佩雷尔曼顺利大学毕业,之后进入了斯捷克洛夫数学研究所列宁格勒分部,担任研究员,并且在顺利考取博士学位后继续留在研究所工作。
1991年,佩雷尔曼应邀参加了美国的几何节,在此期间,佩雷尔曼开始在国际数学大会上做分组报告,并且仅仅只用了四页纸就解决了当时困扰数学家界长达二十几年猜想:“灵魂问题。”
这件事情以后,整个数学界都轰动了,各国多家高等学府给佩雷尔曼开出极其优厚的条件,邀请他前来任教,结果遭到了他的拒绝;1996年,欧洲数学会授予佩雷尔曼“杰出青年数学家”奖以及一笔不菲的奖金,这是欧洲的顶级数学奖项,然而佩雷尔曼再一次拒绝了领奖。
到了2002年,佩雷尔曼给许多数学家都发了一封邮件,让他们都帮忙确定自己论文内容的合理性,而论文只有几页纸,并且其主要内容是攻克了困扰数学界足足一百多年的数学难题——庞加莱猜想。
其他数学家绞尽脑汁研究了三年,终于看懂了佩雷尔曼的证明,并且意识到他已经解决了庞加莱猜想。
2006年,佩雷尔曼获得了数学的最高奖项菲尔兹奖,然而由于他拒绝领奖,以至于在颁奖仪式上众多数学家和颁奖人员只能面对着一张衣衫简陋的佩雷尔曼的照片颁奖。
佩雷尔曼用自己的亲身经历告诉我们,一个数学家到底能有多恐怖,同样是人,咋大家差距那么大呢?
飞天大圣朱七
有的人证明了一道是不在乎!但是世界科研人员应该重视它的作用。社会整个应关注。这是关于科学发展观的前途。黎曼猜想是1859年提出的至今162年了还没有解决,但是,世界上数学家很重视,媒体也很重视整天报道发展进度。今天莪们就此发表一篇数学论文:黎曼猜想的终极证明(首创)作者何铭轩、何文馨、何世梁。黎曼猜想诞生于一八五九年。虽然知明度上,黎曼猜想不及费马猜想和哥德巴赫猜想,但它在数学上的重要性,远远超过后两者。是当今数学界最重要的数学难题。是当今数学文献中巳有超过一千条数学名题以黎曼猜想(或其握广形式)的成立为前题。黎曼写了一篇论文《论小于一个给定数值的素数个数》。后来又经推导出函数:π(x)≈Li(×)+O (√× ㏑(×))但是这个余项的常数项的具体数值还没有算出耒。素数、自然底数、虚数单位í 之间一定是存在的一些难以名状的关联。黎曼猜想实是素数定理证明的一种方式,就是找素数的分布规律。这个问题在数学史上巳经寻了二千多年了。一直引用高斯的自然对数的数值增长的速度为依据,所以一直没有解决,到了黎曼时候仍是用此方法,所以到今仍是未解之谜。我们认为用此方法是永远解不开此谜。自然对数的数值增长的速度与自然素数增长的数值的速度不一样。各有各自的规律。下面我们举数值实例证明。据数的因子分解唯一性定理引理二,所有正整数系统都是有素数乘积组成的。实例一,2×3×5=30,查对数表得≈3.4,30÷3.4=8.8;查素数表得10个素数,多了。实例二、2×3×5×7=210,查对数表得≈5.35,210÷5.35≈39.25;查素数表得46个素数,多了7个。实例三、2×3×5×7×11=2310,查对数表得≈7.75,2310÷7.75≈298.1;查素数表得343个素数。多了45个。实例四、2×33×5×7×11×13=30030,查对数表得≈10.31,30030÷10.31=2912.7;查素数表得3248个素数。多了386个。从上四实例看出问题1、素数是自然正整数没有少数的。2、素数只增加一级,它们之间就差了。再增加一级素数,就成倍增加数值越来越大。所以说它们不是一个道上的,永远不能达到证明的目的。怎么办吗?只有老实依自然素数增长的规律,想办法。我们为此找到寻找的方法,根据我们站在前人肩膀上方法,用前人的智慧就是因子分解唯一性定理中的引理四。若n是合数必有素因子p≥√n。p1,p2,…,pi;再用p1,p2,…,pi去除n中剩下的其他数(用古老筛法)又得到素数pi+1,pi+3,…,pn。这样就一个不漏地得到n中的所有素数。这样分两次提取素数法,我们称为“终极素数定理证明方法”。经验证得到的数据都是正确无误。我们并称它是解决黎曼猜想的法宝。它只用到初等数论并用到分二次提取素数法终极解决了黎曼猜想真是简洁、明了、正确、全面、唯一的。另外,我们还把这个方法作为数学工具来解决数学其他猜想:如真正的(1+1)哥德巴赫猜想证明2n=pi+pn。还有孪生素数无限对猜想证明。还有(10^n-7)/3是素数猜想的证明。等等几篇论文另作发表。以上资料发表给大家分享评论批评都可以,为了数论事业的发展愿所有数学家数学看好者共同讨论讨论。望有能力的爱好者有门路的话把它推荐给有关部门负责人,为祖国争光。证明了黎曼猜想是大事是好事望大家转载。
jiujieayiyua
菲尔兹奖据悉规则是40岁之前的数学家的数学研究在一些数学分支领域具有原创性和突破性的成果,但是在互联网信息时代,整体数学和整体数学公式也是整体宇宙学定律的发现,是在中国发生的奇迹,而且预言任何数学分支都是整体数学的一部分。什么是整体数学思维?作者:王民生小学生在做1+1=?考试题的时候,按照小学算数题标准答案是1+1=2,小学老师给满分100分,这个学生是在做小学算数题。但是当有学生好奇的问小学老师:这个1+1=2的数学公式的数字1的来源是什么?这个学生是在做大学博士也没有做过的数学题,意味着在做整体数学题,数字1的来源的论证是科学的基础。根据整体数学公式也是整体宇宙学定律知道,宇宙诞生之前的奇点,已经超出人类常识那样的时间与空间概念的经验范围,但是存在真空纯能量虚粒子量子起伏——科普,时间与空间必须具备物质粒子存在为前提条件。
易叉叉叨叨
他证明了困扰数学界100年的庞加莱猜想! 他拒绝了数学界的诺贝尔奖-菲尔茨奖、拒绝了克雷研究所悬赏100万美元的千禧年七大悬而未决难题的大奖、拒绝了欧洲的顶级数学大奖、 拒绝了普林斯顿大学和麻省理工学院等著名美国大学的教授职位、拒绝了俄罗斯的院士,他不屑发表论文、不屑奖励、不屑职称、不愿作假。 他说他对于学界松懈的道德规范感到非常沮丧。“不是那些违背道德标准的人被看作异类,”他说,“而是象我这样的人被孤立起来。 他辞去了工作,隐姓埋名消失了! 他就是佩雷尔曼!
请看YouTube视频:
2006年8月22日,3000多名数学家齐聚马德里,参加第25届国际数学家大会。这次数学大会上要颁发数学界的诺贝尔奖-菲尔茨奖,费尔兹奖被认为是年轻数学家的最高荣誉,和阿贝尔奖均被称为数学界的诺贝尔奖。和以往的菲尔茨奖大会不同,对于这次大会,所有数学界的顶级数学家都迫切地想要见到一位年轻的俄罗斯数学天才,他证明了困扰数学界100年的庞加莱猜想!
25届国际数学家大会 2:31
庞加莱猜想最早是由法国数学家庞加莱提出的,是美国克雷数学研究所2000年悬赏的七大千禧年大奖难题之一。
亨利·庞加莱(Henri Poincaré),法国数学家、天体力学家、数学物理学家、科学哲学家。1854年4月29日生于法国南锡,1912年7月17日卒于巴黎。他的成就不在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。庞加莱猜想,只是其中的一个。
庞加莱也是一个天才,搞数学研究的人都知道,庞加莱是最后一个数学全才,即指其为最后一个在数学所有分支领域都造诣深厚的数学家。庞加莱之前,最后一个数学全才是高斯。庞加莱有句名言: 数学家是天生的,而不是造就的 。
一位数学史家曾经如此形容1854年出生的亨利·庞加莱(Henri Poincare):“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。”
庞加莱精通数学、天体力学、物理、哲学,对数学,数学物理,和天体力学做出了很多创造性的基础性的贡献。他提出的庞加莱猜想是数学中最著名的问题之一。在他对三体问题的研究中,庞加莱成了第一个发现混沌确定系统的人并为现代的混沌理论打下了基础。庞加莱比爱因斯坦的工作更早一步,并起草了一个狭义相对论的简略版。庞加莱群以他命名。
物理学家洛伦兹和数学家庞加莱都已经在爱因斯坦之前已经做出了相对论的大部分结果,尽管庞加莱做了相对论的许多演讲,但他一直不接受和肯定爱因斯坦的相对论。庞加莱去世时,爱因斯坦也拒绝写纪念文章,但最后爱因斯坦在1921年的讲演中公正地肯定了庞加莱对相对论的贡献。爱因斯坦评价庞加莱为相对论先驱之一,他这么说:洛伦兹已经认出了以他命名的变换对于麦克斯韦方程组的分析是基本的,而庞加莱进一步深化了这个远见。
1904年,他在原有猜想的基础上提出了“广义庞加莱猜想”,表述如下:
每个闭n维流形,如果与n维球面Sn具有相同的同伦形,则同胚于Sn。
对于n=3的三维流形,即:
任一单连通的、封闭的三维流形与三维球面同胚。
简单来说就是:每一个没有破洞的封闭三维物体,都拓扑等价于三维的球面。粗浅的比喻即为:如果我们伸缩围绕一个柳橙表面的橡皮筋,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点;另一方面,如果我们想象同样的橡皮筋以适当的方向被伸缩在一个甜甜圈表面上,那么不扯断橡皮筋或者甜甜圈,是没有办法把它不离开表面而又收缩到一点的。我们说,柳橙表面是“单连通的”,而甜甜圈表面则不是。
该猜想是一个属于代数拓扑学领域的具有基本意义的命题,对“庞加莱猜想”的证明及其带来的后果将会加深数学家对流形性质的认识,甚至会对人们用数学语言描述宇宙空间产生影响,对于一维与二维的情形,此猜想是对的,现在已经知道,它对于任何维数都是对的。
庞加莱猜想让许多数学家为之疯狂,为之抑郁、为之崩溃。耗尽了一生,以失败而告终!
20世纪30年代以前,庞加莱猜想的研究只有零星几项。但突然,英国数学家怀特海(Whitehead)对这 庞加莱猜想个问题产生了浓厚兴趣。他一度声称自己完成了证明,但不久就撤回了论文。但是失之东隅、收之桑榆, 在这个过程中,他发现了三维流形的一些有趣的特例,这些特例被称为怀特海流形。
30年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(R.Bing)、哈肯(Haken)、莫伊泽(Moise)和帕帕奇拉克普罗斯(Papa-kyriakopoulos)均在其中。
帕帕奇拉克普罗斯是1964年的维布伦奖得主,一名希腊数学家。因为他的名字超长超难念,大家都称呼他“帕帕”(Papa)。在1948年以前,帕帕一直与数学圈保持一定的距离,直到被普林斯顿大学邀请做客。帕帕以证明了著名的“迪恩引理”(Dehn's Lemma)而闻名于世,喜好舞文弄墨的数学家约翰·米尔诺(John Milnor)曾经为此写下一段打油诗:
他和哈肯为破解庞加莱猜想展开了激烈的竞争,帕帕拒绝了普林斯顿大学的教授职位(即使答应他只要工作3个小时),每天早上8点半开始研究,一直到晚上。中午半个小时吃个饭。废寝忘食!当哈肯宣布证明了庞加莱猜想后,本来抑郁的帕帕仿佛生命被抽空了,幸好最后是一场虚惊。哈肯在准备提交论文时发现了错误,这次失败使哈肯换上了暴食症。他后来说换上了“庞加莱猜想综合征”。直到他转到四色问题并证明,才治愈了。
然而,帕帕这位聪明的希腊拓扑学家,却最终倒在了庞加莱猜想的证明上。在普林斯顿大学流传着一个故事。直到1976年去世前,帕帕仍在试图证明庞加莱猜想,临终之时,他把一叠厚厚的手稿交给了一位数学家朋友,然而,只是翻了几页,那位数学家就发现了错误,但为了让帕帕安静地离去,最后选择了隐忍不言。
事实上,三维庞加莱猜想在整个体系中是比较难证明的,1960年,斯梅尔(S. Smale)以及后续的数学家证明了五维和五维以上庞加莱猜想的正确性;1982年,美国数学家弗里德曼(M. Friedman)和英国数学家唐纳森(S. K. Donaldson)证明了四维庞加莱猜想;只剩下三维庞加莱猜想没有完成。
斯梅尔(Smale)在60年代初想到了一个天才的主意:如果三维的庞加莱猜想难以解决,高维的会不会容易些呢?
1960年到1961年,在里约热内卢的海滨,经常可以看到一个人,手持草稿纸和铅笔,对着大海思考。他,就是斯梅尔。
1961年的夏天,在基辅的非线性振动会议上,斯梅尔公布了自己对庞加莱猜想的五维空间和五维以上的证明,立时引起轰动。 斯梅尔由此获得1966年菲尔茨奖。
1983年,美国数学家福里德曼(Freedman)将证明又向前推动了一步。在唐纳森工作的基础上,他证出了四维空间中的庞加莱猜想,并因此获得菲尔茨奖。但是,再向前推进的工作,又停滞了。
拓扑学的方法研究三维庞加莱猜想没有进展,有人开始想到了其他的工具。瑟斯顿(Thruston)就是其中之一。他引入了几何结构的方法对三维流形进行切割,并因此获得了1983年的菲尔茨奖。
美国的数学家汉密尔顿(Richard Hamilton)提出“瑞奇流”(Ricci flow),Ricci流是以意大利数学家里奇(Gregorio Ricci)命名的一个方程。用它可以完成一系列的拓扑手术,构造几何结构,把不规则的流形变成规则的流形,从而解决三维的庞加莱猜想。Ricci流成为了解决庞加莱猜想提供了新的工具。但汉密尔顿未能走得更远,他的方法产生了“奇点”——密度无穷大的点。如何处理奇点,成为解决庞加莱猜想最关键的部分。
2002年11月12日,十多位数学家收到了一封信
如果是一般人说自己证明了,这些顶级数学家懒得理这些信件。但这次不一定,新的署名是格里戈里佩雷尔曼。1982年16随的佩雷尔曼代表苏联参加国际数学奥林匹配竞赛,以满分成绩获得金奖。他的解题速度非常快,别人用许多页,他只要几行。 1994年用3页纸就解决了过去22年无人能解决的“灵魂猜想”而一举成名!
1995年接触到“庞加莱猜想”后,佩雷尔曼淡淡地说道:“我能解决这个问题。”。然后回到了苏联的斯捷克洛夫研究所闭门研究,他每次去超市购物,买的永远都是黑面包、通心粉和酸奶。靠着留美期间积攒的几万美元,他和母亲就这么生活着。邻居很少见到他,外界也失去了他的信息,整整七年,他就像从这个世界消失一般。
他根本不稀罕在某某期刊上发表论文,只是在这个论文网上上提交了文章。但没有人看懂他的这篇不是正式发表的文章。佩雷尔曼于2003年在arXiv网站粘贴了自己的第二篇文章,在2003年4月期间,佩雷尔曼应邀去美国麻省理工做讲座
讲座上他向满教室的数学家展示了他的证明过程
但90分钟下来,似乎只有他一人真正懂得证明过程
但尽管这样,教室里的数学专才们仍是很认真并充满尊敬地听完了讲座
这时候,麻省理工学院热情地向他伸出了终身教授的橄榄枝,但佩雷尔曼感到很羞辱。他很生气自己对“庞加莱猜想”的贡献被外人当作是评判他是否具备终身教授资格的标准。还是和之前一样,除了数学本身,没有人可以评价他。
到2003年的7月,佩雷尔曼已经在网上公布了他的后两篇文章。两年内,佩雷尔曼行云流水般在arXiv网站上粘贴了第二、三篇论文。数学家们开始艰难地阅读逐行解读他的论文,至少有3个核心团队独立进行核实,花了3年时间,然后硬是把佩雷尔曼最初的3篇论文变成了数百页的标注解析版,然后,2006年,大家表示,亲,终于可以看懂了。
但佩雷尔曼却拒绝领奖,甚至克雷数学研究所所长詹姆斯·卡尔森亲上门劝说,他也照样拒绝!
面对众多数学同行一辈子可望而不可及的至高荣誉,佩雷尔曼显得不屑一顾,他似乎不愿被世俗的喧嚣干扰他研究的净土
此后,佩雷尔曼不再从事数学研究,并又失踪了。
一个无法理解的灵魂,不为名,不为利,只为自己喜欢的事情,他是一个传奇,也是一个神话,他就是格里戈里·佩雷尔曼。
在列宁格勒大学学习期间,佩雷尔曼和周围同学保持着良好关系,会耐心地给同学讲解如何做题。但他决不会在考试时帮助同学作弊,因为他信奉“每个人都应当自己解答自己面对的问题。”
从我们的世界观来看,他就是一个普通的不能在通的人,是一个可以被忘记,可以被忽略的人。第一没工作;第二没钱;第三没媳妇儿;第四书呆子;第五没形象;第六邋遢;第七没朋友。
他沉默寡言,彬彬有礼,而且循规蹈矩,几乎没有朋友,如果想与他交朋友,他和社会格格不入,他讨厌条条框框。他曾经有一分研究所的工作,因为研究所要求每年发表的论文数量,他认为这不是再做数学,后来辞职不干了。
撬动世界的数学隐士:格里高利·佩雷尔曼
一个无法理解灵魂---格里戈里·佩雷尔曼
他横扫数学大奖却不屑一顾,把自己活成了数学界的谜
佩雷尔曼:看破名利的数学真隐士
破解庞加莱猜想 俄罗斯科学家恐怖到什么程度?
追寻宇宙的形状--庞加莱猜想
一个无法理解灵魂---格里戈里·佩雷尔曼
《文化创意类企业办公空间室内设计研究》是由徐桦发表的论文。该论文指出,文化创意类企业的有效运营必需满足特定的空间要求,需要室内设计来激发工作者的创新能力。该论文
好。目标跟踪和相关滤波在计算机视觉和信号处理领域都是比较常见的研究方向,相关滤波是一种常用的目标跟踪算法。如果您在这个方向上进行深入的研究,有机会在相关学术期刊
诺贝尔奖的官方网址为:诺贝尔奖委员会 首页六栏为:诺贝尔奖和获得者、提名、阿尔弗雷德诺贝尔、新闻和简介、活动、教育网(从左到右) 扩展资料: 诺贝尔奖(The
是你的原创的论文,你可打电话到消费者协会 保留你所有的证据方便提供,下次还需发论文你可在工商局官网先查查这家期刊是否是实名注册的,如何查讯你可找网站QQ要公司的
《文化创意类企业办公空间室内设计研究》是由徐桦发表的论文。该论文指出,文化创意类企业的有效运营必需满足特定的空间要求,需要室内设计来激发工作者的创新能力。该论文