• 回答数

    3

  • 浏览数

    222

Alice兔籽宝宝
首页 > 论文发表 > 黎曼只发表8篇论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

婷婷1029

已采纳

黎曼(1826~1866),1826年9月17日,黎曼生于德国北部汉诺威的布雷塞伦茨村,父亲是一个乡村的穷苦牧师。他六岁开始上学,14岁进入大学预科学习,19岁按其父亲的意愿进入哥廷根大学攻读哲学和神学,以便将来继承父志也当一名牧师。

由于从小酷爱数学,黎曼在学习哲学和神学的同时也听些数学课。当时的哥廷根大学是世界数学的中心之一,—些著名的数学家如高斯、韦伯、斯特尔都在校执教。黎曼被这里的数学教学和数学研究的气氛所感染,决定放弃神学,专攻数学。

1847年,黎曼转到柏林大学学习,成为雅可比、狄利克莱、施泰纳、艾森斯坦的学生。1849年重回哥丁很大学攻读博士学位,成为高斯晚年的学生。

1851年,黎曼获得数学博士学位;1854年被聘为哥廷根大学的编外讲师;1857年晋升为副教授;1859年接替去世的狄利克雷被聘为教授。

因长年的贫困和劳累,黎曼在1862年婚后不到一个月就开始患胸膜炎和肺结核,其后四年的大部分时间在意大利治病疗养。1866年7月20日病逝于意大利,终年39岁。

黎曼是世界数学史上最具独创精神的数学家之一。黎曼的著作不多,但却异常深刻,极富于对概念的创造与想象。黎曼在其短暂的一生中为数学的众多领域作了许多奠基性、创造性的工作,为世界数学建立了丰功伟绩。

黎曼是复变函数论的奠基人

19世纪数学最独特的创造是复变函数理论的创立,它是18世纪人们对复数及复函数理论研究的延续。1850年以前,柯西、雅可比、高斯、阿贝尔、维尔斯特拉斯已对单值解析函数的理论进行了系统的研究,而对于多值函数仅有柯西和皮瑟有些孤立的结论。

1851年,黎曼在高斯的指导下完成题为《单复变函数的一般理论的基础》的博士论文,后来又在《数学杂志》上发表了四篇重要文章,对其博士论文中思想的做了进一步的阐述,一方面总结前人关于单值解析函数的成果,并用新的工具予以处理,同时创立多值解析函数的理论基础,并由此为几个不同方向的进展铺平了道路。

柯西、黎曼和维尔斯特拉斯是公认的复变函数论的主要奠基人,而且后来证明在处理复函数理论的方法上黎曼的方法是本质的,柯西和黎曼的思想被融合起来,维尔斯特拉斯的思想可以从柯西—黎曼的观点推导出来。

在黎曼对多值函数的处理中,最关键的是他引入了被后人称“黎曼面”的概念。通过黎曼面给多值函数以几何直观,且在黎曼面上表示的多值函数是单值的。他在黎曼面上引入支点、横剖线、定义连通性,开展对函数性质的研究获得一系列成果。

经黎曼处理的复函数,单值函数是多值函数的待例,他把单值函数的一些已知结论推广到多值函数中,尤其他按连通性对函数分类的方法,极大地推动了拓扑学的初期发展。他研究了阿贝尔函数和阿贝尔积分及阿贝尔积分的反演,得到著名的黎曼—罗赫定理,首创的双有理变换构成19世纪后期发展起来的代数几何的主要内容。

黎曼为完善其博士论文,在结束时给出其函数论在保形映射的几个应用,将高斯在1825年关于平面到平面的保形映射的结论推广到任意黎曼面上,并在文字的结尾给出著名的黎曼映射定理。

黎曼几何的创始人

黎曼对数学最重要的贡献还在于几何方面,他开创的高维抽象几何的研究,处理几何问题的方法和手段是几何史上一场深刻的革命,他建立了一种全新的后来以其名字命名的几何体系,对现代几何乃至数学和科学各分支的发展都产生了巨大的影响。

1854年,黎曼为了取得哥廷根大学编外讲师的资格,对全体教员作了一次演讲,该演讲在其逝世后的两年(1868年)以《关于作为几何学基础的假设》为题出版。演讲中,他对所有已知的几何,包括刚刚诞生的非欧几何之一的双曲几何作了纵贯古今的概要,并提出一种新的几何体系,后人称为黎曼几何。

为竞争巴黎科学院的奖金,黎曼在1861年写了一篇关于热传导的文章,这篇文章后来被称为他的“巴黎之作”。文中对他1854年的文章作了技术性的加工,进一步阐明其几何思想。该文在他死后收集在1876年他的《文集》中。

黎曼主要研究几何空间的局部性质,他采用的是微分几何的途径,这同在欧几里得几何中或者在高斯、波尔约和罗巴切夫斯基的非欧几何中把空间作为一个整体进行考虑是对立的。黎曼摆脱高斯等前人把几何对象局限在三维欧几里得空间的曲线和曲面的束缚,从维度出发,建立了更一般的抽象几何空间。

黎曼引入流形和微分流形的概念,把维空间称为一个流形,维流形中的一个点可以用个可变参数的一组特定值来表示,而所有这些点的全体构成流形本身,这个可变参数称为流形的坐标,而且是可微分的,当坐标连续变化时,对应的点就遍历这个流形。

黎曼仿照传统的微分几何定义流形上两点之间的距离、流形上的曲线、曲线之间的夹角。并以这些概念为基础,展开对维流形几何性质的研究。在维流形上他也定义类似于高斯在研究一般曲面时刻划曲面弯曲程度的曲率。他证明他在维流形上维数等于三时,欧几里得空间的情形与高斯等人得到的结果是一致的,因而黎曼几何是传统微分几何的推广。

黎曼发展了高斯关于一张曲面本身就是一个空间的几何思想,开展对维流形内蕴性质的研究。黎曼的研究导致另一种非欧几何——椭圆几何学的诞生。

在黎曼看来,有三种不同的几何学。它们的差别在于通过给定一点做关于定直线所作平行线的条数。如果只能作一条平行线,即为熟知的欧几里得几何学;如果一条都不能作,则为椭圆几何学;如果存在一组平行线,就得到第三种几何学,即罗巴切夫斯基几何学。黎曼因此继罗巴切夫斯基以后发展了空间的理论,使得一千多年来关于欧几里得平行公理的讨论宣告结束。他断言,客观空间是一种特殊的流形,预见具有某种特定性质的流形的存在性。这些逐渐被后人一一予以证实。

由于黎曼考虑的对象是任意维数的几何空间,对复杂的客观空间有更深层的实用价值。所以在高维几何中,由于多变量微分的复杂性,黎曼采取了一些异于前人的手段使表述更简洁,并最终导致张量、外微分及联络等现代几何工具的诞生。爱因斯坦就是成功地以黎曼几何为工具,才将广义相对论几何化。现在,黎曼几何已成为现代理论物理必备的数学基础。

对微积分理论的创造性贡献

黎曼除对几何和复变函数方面的开拓性工作以外,还以其对19世纪初兴起的完善微积分理论的杰出贡献载入史册。

18世纪末到19世纪初,数学界开始关心数学最庞大的分支——微积分在概念和证明中表现出的不严密性。波尔查诺、柯西、阿贝尔、狄利克莱进而到维尔斯特拉斯,都以全力的投入到分析的严密化工作中。黎曼由于在柏林大学从师狄利克莱研究数学,且对柯西和阿贝尔的工作有深入的了解,因而对微积分理论有其独到的见解。

1854年黎曼为取得哥廷根大学编外讲师的资格,需要他递交一篇反映他学术水平的论文。他交出的是《关于利用三角级数表示一个函数的可能性的》文章。这是一篇内容丰富、思想深刻的杰作,对完善分析理论产生深远的影响。

柯西曾证明连续函数必定是可积的,黎曼指出可积函数不一定是连续的。关于连续与可微性的关系上,柯西和他那个时代的几乎所有的数学家都相信,而且在后来50年中许多教科书都“证明”连续函数一定是可微的。黎曼给出了一个连续而不可微的著名反例,最终讲清连续与可微的关系。

黎曼建立了如现在微积分教科书所讲的黎曼积分的概念,给出了这种积分存在的必要充分条件。

黎曼用自己独特的方法研究傅立叶级数,推广了保证博里叶展开式成立的狄利克莱条件,即关于三角级数收敛的黎曼条件,得出关于三角级数收敛、可积的一系列定理。他还证明:可以把任一条件收敛的级数的项适当重排,使新级数收敛于任何指定的和或者发散。

解析数论的跨世纪成果

19世纪数论中的一个重要发展是由狄利克莱开创的解析方法和解析成果的导入,而黎曼开创了用复数解析函数研究数论问题的先例,取得跨世纪的成果。

1859年,黎曼发表了《在给定大小之下的素数个数》的论文。这是一篇不到十页的内容极其深到的论文,他将素数的分布的问题归结为函数的问题,现在称为黎曼函数。黎曼证明了函数的一些重要性质,并简要地断言了其它的性质而未予证明。

在黎曼死后的一百多年中,世界上许多最优秀的数学家尽了最大的努力想证明他的这些断言,并在作出这些努力的过程中为分析创立了新的内容丰富的新分支。如今,除了他的一个断言外,其余都按黎曼所期望的那样得到了解决。

那个未解决的问题现称为“黎曼猜想”,即:在带形区域中的一切零点都位于去这条线上(希尔伯特23个问题中的第8个问题),这个问题迄今没有人证明。对于某些其它的域,布尔巴基学派的成员已证明相应的黎曼猜想。数论中很多问题的解决有赖于这个猜想的解决。黎曼的这一工作既是对解析数论理论的贡献,也极大地丰富了复变函数论的内容。

组合拓扑的开拓者

在黎曼博士论文发表以前,已有一些组合拓扑的零散结果,其中著名的如欧拉关于闭凸多面体的顶点、棱、面数关系的欧拉定理。还有一些看起来简单又长期得不到解决的问题:如哥尼斯堡七桥问题、四色问题,这些促使了人们对组合拓扑学(当时被人们称为位置几何学或位置分析学)的研究。但拓扑研究的最大推动力来自黎曼的复变函数论的工作。

黎曼在1851年他的博士论文中,以及在他的阿贝尔函数的研究里都强调说,要研究函数,就不可避免地需要位置分析学的一些定理。按现代拓扑学术语来说,黎曼事实上已经对闭曲面按亏格分类。值得提到的是,在其学位论文中,他说到某些函数的全体组成(空间点的)连通闭区域的思想是最早的泛函思想。

比萨大学的数学教授贝蒂曾在意大利与黎曼相会,黎曼由于当时病魔缠身,自身已无能力继续发展其思想,把方法传授给了贝蒂。贝蒂把黎曼面的拓扑分类推广到高维图形的连通性,并在拓扑学的其他领域作出杰出的贡献。黎曼是当之无愧的组合拓扑的先期开拓者。

代数几何的开源贡献

19世纪后半叶,人们对黎曼研究阿贝尔积分和阿贝尔函数所创造的双有理变换的方法产生极大的兴趣。当时他们把代数不变量和双有理变换的研究称为代数几何。

黎曼在1857年的论文中认为,所有能彼此双有理变换的方程(或曲面)属于同一类,它们有相同的亏格。黎曼把常量的个数叫做“类模数”,常量在双有理变换下是不变量。“类模数”的概念是现在“参模”的特殊情况,研究参模上的结构是现代最热门的领域之一。

著名的代数几何学家克莱布什后来到哥廷根大学担任数学教授,他进一步熟悉了黎曼的工作,并对黎曼的工作给予新的发展。虽然黎曼英年早逝,但世人公认,研究曲线的双有理变换的第一个大的步骤是由黎曼的工作引起的。

黎曼在数学物理、微分方程等其他领域也取得了丰硕的成果。

黎曼不但对纯数学作出了划时代的贡献,他也十分关心物理及数学与物理世界的关系,他写了一些关于热、光、磁、气体理论、流体力学及声学方面的有关论文。他是对冲击波作数学处理的第一个人,他试图将引力与光统一起来,并研究人耳的数学结构。他将物理问题抽象出的常微分方程、偏微分方程进行定论研究得到一系列丰硕成果。

黎曼在1857年的论文《对可用高斯级数表示的函数的理论的补充》,及同年写的一个没有发表而后收集在其全集中的一个片断中,他处理了超几何微分方程和讨论带代数系数的阶线性微分方程。这是关于微分方程奇点理论的重要文献。

19世纪后半期,许多数学家花了很多精力研究黎曼问题,然而都失败了,直到1905年希尔伯特和Kellogg借助当时已经发展了的积分方程理论,才第一次给出完全解。

黎曼在常微分方程理论中自守函数的研究上也有建树,在他的1858~1859年关于超几何级数的讲义和1867年发表的关于极小正曲面的一篇遗著中,他建立了为研究二阶线性微分方程而引进的自守函数理论,即现在通称的黎曼——许瓦兹定理。

在偏微分方程的理论和应用上,黎曼在1858年~1859年论文中,创造性的提出解波动方程初值问题的新方法,简化了许多物理问题的难度;他还推广了格林定理;对关于微分方程解的存在性的狄里克莱原理作了杰出的工作……

黎曼在物理学中使用的偏微分方程的讲义,后来由韦伯以《数学物理的微分方程》编辑出版,这是一本历史名著。

不过,黎曼的创造性工作当时未能得到数学界的一致公认,一方面由于他的思想过于深邃,当时人们难以理解,如无自由移动概念非常曲率的黎曼空间就很难为人接受,直到广义相对论出现才平息了指责;另一方面也由于他的部分工作不够严谨,如在论证黎曼映射定理和黎曼—罗赫定理时,滥用了狄利克雷原理,曾经引起了很大的争议。

黎曼的工作直接影响了19世纪后半期的数学发展,许多杰出的数学家重新论证黎曼断言过的定理,在黎曼思想的影响下数学许多分支取得了辉煌成就。

311 评论

米果janicefeng

出品:科学大院

作者:黄逸文(中国科学院数学与系统科学研究院)

监制:中国科学院计算机网络信息中心 中国科普博览

上周五,我们在《黎曼猜想(一):通往质数的征途》一文中介绍到,黎曼针对非平凡零点提出了三个命题,今天我们就来讲讲这三个命题以及此后引发的一系列故事。

黎曼的三个命题

短短八页的论文里,黎曼给后人留下了卓绝非凡的智慧和思想,也为后世留下了魅力无穷的谜团。文章里的证明因为篇幅限制而多被省略,吝惜笔墨的黎曼却让身后数百年的数学大家费尽心思、相形见绌。这篇格局宏大、视野开阔的论文站在了时代的最前沿,其高瞻远瞩的目光和魄力直到今日仍然指引着主流数学界的方向。

在第一个命题的某一步证明里,黎曼用轻松的语气写道:这是不言而喻的普适性的结果。但就是这样一个似乎不值一提的结果,却花费了后人40年的时间苦苦探索。芬兰数学家梅林因为在这一小步上的贡献而名垂青史。此后,在黎曼眼中一笔带过的第一命题最终才由德国数学家蒙戈尔特(Mangoldt)在46年后给出完整的证明。

针对第二命题,黎曼用了相当肯定的语气指出其正确性。遗憾的是,他没有给出任何证明的线索,只是在与朋友的一封通信里提及:命题的证明还没有简化到可以发表的程度。然而黎曼毕竟高估了读者的能力,第二个命题犹如一座巍峨的大山压在了后世数学家的心中,直到今天也踹不过气来。一个半世纪过去了,人们还在为寻找第二命题的证明而陷入深思,似乎丝毫找不到破解它的希望。

更让人们绝望的是,黎曼在论及第三命题时,破天荒地没有使用肯定的语气,而是谨慎地说道:这很有可能是正确的结论。作为复变函数功彪千古的大师,黎曼此时也失去了信心,只能借助试探的口吻表达自己的观点。也正是这个让黎曼犹豫而止步的命题,终成了数学史上最为壮美险峻的奇峰。

有人曾经质疑黎曼是否真的证明了第一和第二命题,他随意写下的结论仅仅是重复法国数学家费马(Fermat)曾经的覆辙:把错误的想法当成了真理。

1637年,爱好数学的大法官费马在一本书的页边写下了他对一个问题的看法:他发现了一个简洁的证明,但是由于纸张太小无法写下来。这就是被后世称为费马猜想的问题,其完整的证明直到358年后的1995年才由英国数学家怀尔斯借助最艰深的现代工具所完成。

但是,人们很快打消了疑虑。从黎曼遗留下来的部分草稿来看,他的数学思想和功力已经远远超越同时代的数学家。即使是几十年后被陆续发现的手稿中体现出来的能力水平,也让当时的数学家难以望其项背。因此,人们有理由相信,这是一个伟大数学家的自信和坦然。

尽管黎曼猜想成立与否不得而知,数学家们还是倾向于它的正确性。一个半世纪以来,人们在假设黎曼猜想成立的情况下,以它作为基石,已经建立了一千多条定理,并且打造了无比辉煌的数论大厦。然而一旦黎曼猜想找到反例被证伪,这些精美的大楼就会如空中楼阁一样昙花一现,最终崩塌,给数论带来灾难性的结果。

质数分布规律

质数作为一类特殊的整数,任性而古怪,它们悄悄地隐藏在浩浩荡荡的自然数列里,以自己独有的奔放奏出魅力四射的音符。这曲神秘的质数音律,不知让多少追寻真理呼唤的人为之陶醉,为之倾注毕生精力,只为找到质数起舞的脚步和节拍。

遗憾的是,骄傲的质数们都是孤独的行者,在数千年的时光里静静地等待着能读懂它的真命天子。从欧拉(Euler)开始,人们终于得以在无边无际的整数世界里一瞥质数的浮光掠影。

黎曼(Riemann)一举揭示了质数最深处的秘密,优雅地给出了质数分布的精确表达式。人们第一次能够近距离窥视质数们在自然界跳舞的规律,是那样的豪放与不羁,平静时如温柔的月光洒在无波的大海,奔腾时又如滔天巨浪倾泻在一叶孤舟,让人爱恨交织、目驰神移。

然而,质数并不是完全随性而为,它的表现始终臣服在黎曼Zeta函数零点的分布规律上。因此,破译黎曼猜想就等于完全确定了质数跳舞的规律和秩序,无疑将开启数论中最激动人心的篇章。也因此,黎曼猜想成了无数人心目中梦想征服的珠穆朗玛峰。登上这座高峰的勇士,也将和历史上最伟大的名字连接在一起,成为后人敬仰和追随的英雄。

在黎曼的时代,质数定理虽然经由高斯(Gauss)和勒让德(Legendre)提出,但却是未经证实的猜想。它让最捉摸不定的质数在阳光下现出了踪迹。当时最杰出的数学大师也为此倾心,试图证明质数定理。

解决质数定理

在黎曼提出的第一个命题里,数学家很容易证明Zeta函数的零点位于实部不小于0,不大于1的带状区域上,但是无法排除实部等于0和1的两条直线。令人惊喜的是,人们很快发现如果能证明黎曼眼中显而易见的第一命题中的某一关键结论,则可以直接证明质数定理。

在黎曼提交论文的36年后,数学家哈达玛(Hadamard)等人不负众望,终于证明了该结论,也顺带解决了质数定理,从而完成了自高斯以来众多数学大师的心愿。

然而黎曼在第一命题里所轻松描述的全部结论,直到46年后的1905年才由蒙戈尔特(Mangoldt)完成。

黎曼猜想的一个小小命题里就蕴含着如此巨大的能量,自此以后,数学家把注意力都集中到了黎曼猜想的攻坚上来。

于是,1900年的巴黎,希尔伯特(Hilbert)代表数学界提出了23个影响深远的问题,黎曼猜想作为第8个问题的一部分而被世人所知。百年轮回,时至今日,23个问题中已经有19个确定解决,还有3个部分解决。黎曼猜想依然如巍峨的奇山,矗立在人类的智力巅峰之上。

鉴于黎曼猜想的巨大难度,人们无法一步征服如此雄伟的山峰,只能在山脚和山腰寻找攀登的线索。一批数学家另辟蹊径,不再驻足于寻求黎曼猜想的证明上,而是去计算黎曼猜想的零点。如果一旦发现某一个零点并不位于实部是0.5的直线上,这就等价于找到一个反例,从而证实黎曼猜想并不成立。

1903年,丹麦数学家第一次算出了前15个非平凡零点的具体数值。在黎曼猜想公布44年后,人们终于看到了零点的模样。毫无意外的是,这些零点的实部全部都是0.5。

1925年,李特尔伍德(Littlewood)和哈代(Hardy)改进了计算方法,算出前138个零点,这基本达到了人类计算能力的极限。

过于庞大的计算量,让后人放弃了继续寻找零点的努力。而为了选择更多的非平凡零点,人们还在黑暗中苦苦摸索。没想到,这一次,曙光来自于黎曼的遗稿。

167 评论

A+黎明前的黑暗

《黎曼猜想漫谈一场攀登数学高峰的天才盛宴》(卢昌海)电子书网盘下载免费在线阅读

链接:

书名:黎曼猜想漫谈一场攀登数学高峰的天才盛宴

豆瓣评分:8.7

作者: 卢昌海出版社: 清华大学出版社副标题: 一场攀登数学高峰的天才盛宴出版年: 2016-8-20页数: 270

内容简介:

史上zui富有创造性的数学家——黎曼。

他奉行恩师高斯的座右铭,宁肯少些,但要成熟。

黎曼生前只发表10篇论文,却是很多领域的开拓者。

他提出的黎曼猜想是数学史上的不朽谜语,被公认为是zui伟大的数学猜想。

作者以非常明晰的数学阐释文字与优雅、生动、有趣的传记和历史篇章交替出现,对一个史诗般的数学之谜作了迷人而流畅的叙述,而这个谜还将继续挑战和刺激着世人。大师留给我们的岂止是一些公式、原理?还有他们对未知世界的探索精神,这都将激发人们对理想和美的追求。

数学家王元院士的评价:“本书关于数学的阐述是严谨的,数学概念是清晰的。文字流畅,并间夹了一些流传的故事以增加趣味性与可读性。从这几方面来看,都是一本很好的雅俗共赏的数学科普图书。”

《黎曼猜想漫谈:一场攀登数学高峰的天才盛宴》由原点阅读出品。

作者简介:

卢昌海,出生于杭州,本科就读于复旦大学物理系,毕业后赴美留学,于2000年获美国哥伦比亚大学物理学博士学位,目前旅居纽约。

著有《那颗星星不在星图上:寻找太阳系的疆界》、《上下百亿年:太阳的故事》、《黎曼猜想漫谈》(获第七届吴大猷科学普及著作原创类金签奖)、《从奇点到虫洞:广义相对论专题选讲》、《小楼与大师:科学殿堂的人和事》(入选“2014中国好书”)、《因为星星在那里:科学殿堂的砖与瓦》、《霍金的派对:从科学天地到数码时代》等,并曾在《南方周末》、《科学画报》、《现代物理知识》、《数学文化》(任特约撰稿人)等报纸、杂志上发表一百多篇科普及专业科普作品。

124 评论

相关问答

  • 发表论文8篇

    我认为难度是非常高的, SCI的论文难度级别就是非常高的,尤其是一作的论文,老师还要求发表8篇一作的SCI论文,就说明老师对学生的期望是非常大的,也非常期待他的

    沙尘暴来袭 7人参与回答 2023-12-09
  • 黎曼发表的论文

    黎曼(1826~1866),1826年9月17日,黎曼生于德国北部汉诺威的布雷塞伦茨村,父亲是一个乡村的穷苦牧师。他六岁开始上学,14岁进入大学预科学习,19岁

    罗成or房谋杜断 4人参与回答 2023-12-12
  • 黎曼生前发表的论文

    1859年,发表的关于素数分布的论文《论小于某给定值的素数的个数》中,研究了黎曼ζ函数,给出了ζ函数的积分表示与它满足的函数方程,他指出素数的分布与黎曼ζ函数之

    Angelia8412 5人参与回答 2023-12-10
  • 黎曼发表论文不受重视

    如何让全球银行破产,是全球经济大萧条,还是战争摧毁了文明?都不是,你只需要破解黎曼猜想。 黎曼猜想是什么 简单来说,黎曼猜想究竟讲了什么呢?就是一个寻找质数的方

    Shenyangman。 3人参与回答 2023-12-06
  • 黎曼发表多少论文

    波恩哈德·黎曼旧照德国数学家,对数学分析和微分几何做出了重要贡献,其中一些为广义相对论的发展铺平了道路。他的名字出现在黎曼ζ函数,黎曼积分,黎曼引理,黎曼流形,

    wangmiao1211 2人参与回答 2023-12-05