嘟嘟和滴滴
近日,电子 科技 大学材料与能源学院夏川教授以第一作者和共同通讯作者身份在国际著名期刊Nature Chemistry (《自然–化学》)上发表题为“General synthesis of single-atom catalysts with high metal loading using graphene quantum dots”的研究论文。该研究开发了一套高载量过渡金属单原子材料的普适性合成策略,实现了高达 40 wt.% 或 3.8 at.% 的高过渡金属原子负载,比目前报道的单原子负载量提升了几倍甚至数十倍。 该工作由电子 科技 大学、加拿大光源和美国莱斯大学三个单位共同合作完成。材料与能源学院的夏川教授为论文第一作者和通讯作者,美国莱斯大学的汪淏田教授和加拿大光源的胡永峰教授为论文通讯作者。该合作团队在电催化材料研究和电化学反应器设计领域建立了坚实的基础,并取得了丰硕的研究成果。 过渡金属单原子材料具有极高的原子利用率、独特的电子结构以及明晰且可调的配位结构,在各种电催化过程中展现出优异的活性。但常规单原子材料中金属原子密度较低(通常小于5 wt.%或1 at.%),大大限制了其整体催化性能及工业应用前景,因此发展出高载量过渡金属单原子材料普适性合成策略至关重要。现有“自上而下”和“自下而上”工艺对提高合成单原子材料的金属负载量有很大的局限(图1, a-b)。以碳材料负载的单原子为例,现有的“自上而下”方法通过在碳材料载体表面制造缺陷,然后通过缺陷稳定单原子。然而,无法精确调控缺陷尺寸导致缺陷位点的数目极大地受到限制,而且当金属负载量提高时,容易在大尺寸的缺陷位处形成团簇。“自下而上”方法则使用金属和有机物前驱体(如金属有机框架、金属-卟啉分子、金属-有机小分子)热解碳化的方式获得负载金属单原子的碳材料。在金属负载量过大时,金属原子之间将因为没有足够的隔离空间而导致热解过程中团簇或者颗粒的产生。 鉴于此,该团队发展了区别于现有“自上而下”和“自下而上”工艺的单原子催化材料制备方法(图1c),以突破单原子负载量的限制。该团队创新性地使用比表面大、热稳定性高的石墨烯量子点作为碳基底,对其进行-NH2基团修饰,使其对金属离子具有高配位活性。引入金属离子后可得到以金属离子作为节点、功能化石墨烯量子点作为结构单元的交联网络,最后热解即可得到高载量的金属单原子材料。相较于传统“自上而下”和“自下而上”的单原子催化剂合成方法,该研究报道的方法既保证了高含量金属离子初始锚定时的高分散性又能有效抑制后续热解过程基底烧结重构引起的金属原子团聚。 XAFS、HADDF-STEM等多种表征手段证明,由该法制得的负载型金属单原子催化材料在保证金属原子单分散的同时还能实现远超现有文献报道水平的金属载量。借助该方法,该团队成功制备出质量分数高达41.6%(原子分数为3.84%)的Ir单原子催化材料(图2),该负载量相较于文献报道的Ir单原子最高载量提升了数倍。 另外,该合成策略还具有普适性,能够用于制备其他贵金属或非贵金属的高载量金属单原子催化材料。例如,在碳基底材料上,Pt单原子的负载量最高可达32.3 wt.%,Ni单原子负载量可达15 wt.%(图3)。 夏川,电子 科技 大学材料与能源学院教授,国家青年人才。研究方向为基于新能源的电催化、电合成、电化学生物合成,致力于实现碳平衡的能量与物质循环。在“液体燃料与基础化学品现场合成”这一特色方向开展了深入、系统的研究,在反应器与催化剂设计领域均取得丰硕成果,共发表学术论文50余篇,授权美国专利3项,H因子34,引用5200余次。近五年来,以第一作者/通讯作者身份在Science、Nat. Energy、Nat. Catal.、Nat. Chem.等国内外高水平期刊共发表论文20余篇,其中ESI高被引论文9篇,热点论文2篇。
justjoshua
[1] Wang J. H., Shi J. X., Discussion of Boundary Conditions of Transpiration Problems Using LTNE Model, ASME J. of Heat Transfer, Jan. 2008,Vol.130, No.1. [2] Wang J. H., Wang H. N., A Discussion of Transpiration Cooling Problems Through an Analytical Solution of Local Thermal Non-Equilibrium Model, ASME J. of Heat Transfer, Oct. 2006, Vol. 128, 1093-1098.[3] Shi J. X., Wang J. H., Inverse problem of transpiration cooling for estimating wall heat flux by LTNE model and CGM method, International J. of Heat and Mass Transfer, (2009)52: 2714-2720.[4]Liu H. C., Wang J. H., Numerical Investigation on Synthetical Performances of Fluid Flow and Heat Transfer of Semiattached Rib-channels,International J. of Heat and Mass Transfer, (2010)53:[5] Wang J. H., Gan M., Detecting and Characterization of Penetrating Pores of Porous Materials, Materials Characterization, 58(2007)8-12.[6] Shi J. X., Wang J. H., Optimized Structure of Two Layered Porous Media with Genetic Algorithm for Transpiration Cooling, International J. of Thermal Science, (2008)47:1595 -1601.[7] Shi J. X., Wang J. H., Inverse problem of estimating space and time dependent hot surface heat flux in transient transpiration cooling process, International J. of Thermal Science, (2009)48:1398-1404[8] Wang J. H., Han X. S., Numerical Investigation of Transpiration and Ablation Cooling, Heat Mass Transfer, (2007)43:274-284.[9] Wang J. H., Wang H. N., Sun J. G., Wang J., Numerical Simulation of Control Ablation by Transpiration Cooling, Heat Mass Transfer, (2007) 43:471-478.[10] Shi J. X., Wang, J. H., A Numerical Investigation on the Laminar Boundary Flow Layer with Transpiration Cooling, Transp Porous Med, 2008. 9, DOI 10.1007/s11242 -008-9279-8.[11] Peng L. M., Wang J. H., Li H., Zhao J. H., He L., Synthesis and Microstructural Characterization of Ti-Al 3 Ti Metal-intermetallic Laminate Composites, Scripta Materialia, 52 (2005) 243-248.[12] Peng L. M., Wang J. H. , Li H., He L., Zhao J. H., Synthesis and Mechanical Properties of Ternary Molybdenum Carbosilicide and Its Composite, J. of Materials Science, 40 (2005) 2705-2707.[13] Peng L.M., Li H., Wang J. H. , Processing and Mechanical Behavior of Laminated Ti- Al 3 Ti Composites, J. of Materials Science and Eng. A 406 (2005)309-318.[14] Wang J. H., Messner J., Stetter H., An Experimental Investigation of Transpiration Cooling, Part I- An Application Investigation on Infrared Measurement Technique, International J. of Rotating Machinery, April 2003, Vol 9, No. 3, 154-163.[15] Wang J. H., Messner J., Stetter H., An Experimental Investigation of Transpiration Cooling, Part II- Comparison of Cooling Methods and Media, International J. of Rotating Machinery, Aug. 2004,Vol 9, No.10, 355-363.[16] Peng L. M., Li H., Wang J. H., Gong, M., High Strength and High Fracture Toughness Ceramic-iron Aluminid3 (Fe 3 Al) Composites, Materials Letters 60 (2006) 883-887.[17] Peng L. M., Li H., Wang J. H., Gong, M., Synthesis and Microstructural Characterization of Aluminum Borate Whiskers, Ceramics International 32 (2006)365-368.[18] Peng L. M., Wang J. H., Li H., Gong M., Processing and Mechanical Properties of Multiphase Composites Based on Mo-Si-Al-C system, J. of Alloys and Compounds 420(2006) 77-82.[19]贾闪,王晓春,王建华, 具有发散冷却功能的曲目结构边界层特性实验研究,航空动力学报,(2010)第25卷,第2期.[20] 周杰,王建华,气动汽车高压气体减压过程的能量损失与补偿,液压与气动,(2007)第7期,28-32.[21] 谢远远,王建华,发散冷却控制烧蚀过程的数值研究,航空动力学报,(2008)第23卷,第8期.[22] 时骏祥,王建华,发散冷却最小冷却介质注射量的数值研究,航空动力学报,(2007)第22卷,第2期.[23] 马龙,王建华,吴向宇,杜治能,利用红外技术进行层板冷却特性实验研究,航空动力学报,(2007)第23卷,第4期.[24] 孙纪国,王建华,烧结多孔结构的渗透和流阻特性研究,航空动力学报,(2008)第23卷,第1期.[25] 李谦,王建华,吴向宇,杨士杰,冷却介质在层板内流动特性研究,第一部分,利用粒子图像测速技术再现复杂流场,实验流体力学,(2007)第21卷,第4期.[26] 王储,王建华,杜治能,杨士杰,冷却介质在层板内流动特性研究,第二部分,数值模拟复杂结构内流场,实验流体力学,(2007)第21卷,第4期. [1]Wang J. H.,Liu Y. L., Wang X. C., Du Z. N., Yang S.J., Characteristics of Tip Leakage of the Turbine Blade with Cutback Squealer and Coolant Injection, Proc. of ASME Turbo Expo 2010 Power for Land, Sea, and Air, June 14-18, 2010, Glasgow, UK, GT2010-22566.[2]Wang J. H.,Liu H. C., Mao M., Li X., Zhang Z. Q., Numerical Investigation of Fluid Flow and Heat Transfer Performances of Semiattached Rib Channel Design, Proc. of ASME Turbo Expo 2010 Power for Land, Sea, and Air, June 14-18, 2010, Glasgow, UK, GT2010-22563.[3]Zhang H., Wang J. H., Wu X. Y., Lu H. Y., A Simplified Approach to Design Transverse Ribs Which Array Alternately in Rectangular Channel,Proc. of ASME Turbo Expo 2010 Power for Land, Sea, and Air, June 14-18, 2010, Glasgow, UK, GT2010-22562.[4] Wang J. H., Lv X. J., Liu Q.D., Wu X. Y., An Experimental Investigation on Cooling Performance of a Laminated Configuration Using Infrared Thermal Image Technique, Proc. of ASME Turbo Expo 2008 Power for Land, Sea, and Air, June 8-12, 2009, Orlando, Florida, USA, GT2009-59838.[5] Wang J. H., Xu H. Z., Lv X. J., DuZ. N., Yang S. J., A Nnmerical Investigation on Fluid-Thermal- Structure Coupling Characteristics of Laminated Film Cooling Configurations, Proc. of ASME Turbo Expo 2008 Power for Land, Sea, and Air, June 8-12, 2009, Orlando, Florida, USA, GT2009-59604.[6] Wang, J. H., Xu, H. Z., Liu, Y. L., Du, Z. N., Yang, S. J., Experimental and Numerical Investigations on Turbine Airfoil Cooling Designs, Part I-An Investigation on Flow Features by Particle Image Velocimetry, Proc. of ASME Turbo Expo 2008 Power for Land, Sea, and Air, June 14-17, 2008, Berlin, Germany, GT2008-50673.[7] Wang, J. H., Xu, H. Z., Liu, Y. L., Wu, X. Y., Yang, S. J., Experimental and Numerical Investigations on Turbine Airfoil Cooling Designs, Part II-An Investigation on Heat Transfer Features by Infrared Thermal Imaging Technique, Proc. of ASME Turbo Expo 2008 Power for Land, Sea, and Air, June 14-17, 2008, Berlin, Germany, GT2008-50674.[8] Wang, J. H., Messner, J., Casey, V. M., Performance Investigation on Film and Tran- spiration Cooling, Proc. of ASME Turbo Expo 2004 Power for Land, Sea, and Air, 14-17 June 2004, Vienna, Austria,GT2004-54132, ISBN: 0-7917-3739-4.[9] Wang H. N., Wang, J. H., A Numerical Investigation of Ablation and Transpiration Cooling Using the Local Thermal Non-equilibrium Model, Proc. of 42nd AIAA/ASME/ SAE/ASEE Joint Propulsion Conference & Exhibit, 09-12, July, 2006, Sacarmento California, USA 2006-AIAA-5264.[10] Wang, J. H., Messner, J., Stetter, H., An Experimental Investigation of Transpiration Cooling, Part I- An Application Investigation on Infrared Measurement Technique, Proc. ISROMAC-9, 10-14 Feb. 2002, Honolulu, Hawaii, USA.[11] Wang, J. H., Messner, J., Stetter, H., An Experimental Investigation of Transpiration Cooling, Part II- Comparison of Cooling Methods and Media, Proc. ISROMAC-9, 10-14 Feb. 2002, Honolulu, Hawaii, USA.[12] Stetter, H., Wang, J. H., Basic Performance Characteristics of a Transpiration Cooling Method for Turbine Nozzle Guide Vane Using Evaporating Liquids, Proc. of 4th European Conference on Turbomachinery, 20-23 March 2001, Firenze , Italy , ISBN 88-86281-57-9.[13] Stetter, H., Wang, J. H., Messner, J., An Experimental Investigation of Transpiration Cooling, Part I- Feasibility Test and Performance Estimation, Proc. ISROMAC-8, 26-30 March 2000 Honolulu, Hawaii, USA, Vol. 1, pp.778-785, ISBN#0-9652469-9-x.[14] Wang, J. H., Stetter, H., An Experimental Investigation of Transpiration Cooling, Part II- Performance Comparison With Film Cooling, Proc. ISROMAC-8, 26-30 March 2000, Honolulu, Hawaii, USA, Vol. 1, pp.786-792, ISBN#0-9652469-9-x.
砌筑技师论文(部分题目)多孔砖的砌筑工艺要点和质量控制措施 预拌商品砌筑砂浆配合比设计方法对墙体砌筑砂浆质量问题的探讨 不烧铝镁碳砖砌筑钢包衬的试验 大容积焦炉
这个期刊是国际燃烧领域公认的顶级的期刊,国际燃烧大会的会议论文非常难中。Proceedings of the Combustion Institute。这个杂志
近日,电子 科技 大学材料与能源学院夏川教授以第一作者和共同通讯作者身份在国际著名期刊Nature Chemistry (《自然–化学》)上发表题为“Gener
没有强制规定多少。国际燃烧会议是国际燃烧学领域规模最大、水平最高、影响力最强的学术会议。会议论文采用极其严格的二次同行评审制度,首次评审后被接受的论文将由作者在
烧结球团学,其实最初的用意是为准备优质冶金炉料的(为高炉等),现在已经逐渐演变成为资源利用的一种方式,原有的学科方向也由单纯的烧结球团学向复杂矿综合利用、直接还