zzyunicorn
1.国际著名数学大师,沃尔夫数学奖得主,陈省身 1931年入清华大学研究院,1934军获硕士学位.1934年去汉堡大学从Blaschke学习.1937年回国任西南联合大学教授.1943年到1945年任普林斯顿高等研究所研究员.1949年初赴美,旋任芝加哥大学教授.1960年到加州大学伯克利分校任教授,1979年退休成为名誉教授,仍继续任教到1984年.1981年到1984年任新建的伯克利数学研究所所长,其后任名誉所长。陈省身的主要工作领域是微分几何学及其相关分支.还在积分几何,射影微分几何,极小子流形,网几何学,全曲率与各种浸入理论,外微分形式与偏微分方程等诸多领域有开拓性的贡献.陈省身本有极多荣誉,包括中央研究院院士(1948).美国国家科学院院士(1961)及国家科学奖章(1975),伦敦皇家学会国外会员(1985),法国科学院国外院士’(1989),中国科学院国外院士等。荣获1983/1984年度Wolf奖,及1983年度美国科学会Steele奖中的终身成就奖. 2.享有国际盛誉的大数学家,新中国数学事业发展的重要奠基人,华罗庚 华罗庚是一位人生经历传奇的数学家,早年辍学,1930年因在《科学》上发表了关于代数方程式解法的文章,受到熊庆来的重视,被邀到清华大学学习和工作,在杨武之指引下,开始了数论的研究。1936年,作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应美国普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年开始,他为伊利诺伊大学教授。1950年回国,先后任清华大学教授,中国科学院数学研究所所长,数理化学部委员和学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长、主席团委员等职。还担任过多届中国数学会理事长。此外,华罗庚还是第一、二、三、四、五届全国人民代表大会常务委员会委员和中国人民政治协商会议第六届全国委员会副主席。华罗庚是在国际上享有盛誉的数学家,他的名字在美国施密斯松尼博物馆与芝加哥科技博物馆等著名博物馆中,与少数经典数学家列在一起。他被选为美国科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。又被授予法国南锡大学、香港中文大学与美国伊利诺伊大学荣誉博士。华罗庚在解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域中都作出卓越贡献。由于华罗庚的重大贡献,有许多用他他的名字命名的定理、引理、不等式、算子与方法。他共发表专著与学术论文近三百篇。华罗庚还根据中国实情与国际潮流,倡导应用数学与计算机研制。他身体力行,亲自去二十七个省市普及应用数学方法长达二十年之久,为经济建设作出了重大贡献。 3.仅次于哥德尔的逻辑数学大师,王浩 1943年于西南联合大学数学系毕业。1945年于清华大学研究生院哲学部毕业。1948年获美国哈佛大学哲学博士学位。1950~1951年在瑞士联邦工学院数学研究所从事研究工作1951~1953年任哈佛大学助理教授。1954~1961年在英国牛津大学作第二套洛克讲座讲演,又任逻辑及数理哲学高级教职。1961~1967 年任哈佛大学教授。1967年后任美国洛克斐勒大学教授,主持逻辑研究室工作。1985年兼任中国北京大学名誉教授。1986年兼任中国清华大学名誉教授。50年代 初被选为美国国家科学院院士,后又被选为不列颠科学院外国院士,美籍华裔数学家、逻辑学家、计算机科学家、哲学家。 4.著名数学家力学家,美国科学院院士,林家翘 1937年毕业于清华大学物理系。1941年获加拿大多伦多大学硕士学位。1944年获美国加州理工学院博士学位。1953 年起先后担任美国麻省理工学院数学教授、学院教授、荣誉退休教授。 林家翘教授曾获:美国机械工程师学会Timoshenko奖,美国国家科学院应用数学和数值分析奖,美国物理学会流体力学奖。他是美国国家文理学院院士(1951),美国国家科学院院士(1962),台湾“中央研究院”院士(1960)。从40年代开始,林家翘教授在流体力学的流动稳定性和湍流理论方面的工作带动了整整一代人在这一领域的研究探索。从60年代开始,他进入天体物理的研究领域,开创了星系螺旋结构的密度波理论,并为国际所公认。1994年6月8日当选为首批中国科学院外籍士。 5.我国泛函分析领域研究先驱者,曾远荣 1919年入清华学校(清华大学前身)留美预备部,一直读到1927年7月。由于学习成绩优异,先后在美国芝加哥大学,普林斯顿大学及耶鲁大学学习并研究数学,1933年取得博士学位。1934年8月至1942年7月一直任教于清华大学(1938年与北京大学、南开大学在昆明组成西南联合大学)。1950年2月,受国立南京大学数学系系主任孙光远教授写信聘请到南京大学任教直至退休,曾在南京大学建立国内最早的计算数学专业。长期从事泛函分析研究,是我国开展这一领域研究的先驱者之一,在广义逆等研究领域成就卓著。 6.我国最早提倡应用数学与计算数学的学者,赵访熊 1922年考取北京清华学校。当时清华学校是公费留美预备学校,竞争激烈,在江苏只招3名学生,他在众多考生中名列榜首。毕业后即到美国麻省理工学院(MIT)电机系学习。他1930年在电机系毕业,被哈佛大学数学系录取为研究生,且于1931年获硕士学位。1933年他受聘回国在清华大学数学系任教,1935年被聘为教授,从此一直在清华大学任教,参与创办国内第一个计算数学专业。赵访熊于1962年和1978年先后两次出任清华大学副校长,1980-1984年兼任新成立的应用数学系主任,并受聘担任国务院学位委员会学科评议组委员。他担任过中国数学会理事、名誉理事。1978年至1989年担任第一、二届计算数学学会理事长及第三届名誉理事长和《计算数学学报》主编等一系列职务。数学家,数学教育家。我国最早提倡和从事应用数学与计算数学的教学与研究的学者之一。自编我国第一部工科《高等微积分》教材。在方程求根及应用数学研究方面颇有建树。 7.著名数学家,数学教育家,吴大任 1930年与陈省身以最优等成绩在南开大学毕业,考取清华大学研究生,1933年夏,在姜立夫的鼓励下,吴大任参加了中英庚款第一届公费留学考试,被录取到英国学习。他本想到剑桥大学攻读,因抵伦敦时间错过了该校入学的时机,改入伦敦大学的大学学院,注册为博士研究生。1937年9月初,吴大任到武汉大学任教,之后即随武汉大学迁到四川乐山。后来长期担任南开大学领导工作与教学工作,著、译数学教材及名著多种。对我国高等教育事业作出了积极贡献。研究领域涉及积分几何、非欧几何、微分几何及其应用(齿轮理论)。1981年他任国家学位委员会第一届数学组成员,《中国大百科全书数学卷》编委兼几何拓扑学科的副主编以及全国自然科学名词审定委员会第一和第二届委员。 8.著名数学家,北大教授,庄圻泰 1927年考入清华学校,1932年毕业于清华大学数学系,1934年,熊庆来教授接受庄圻泰为自己的研究生,1936年于该校理科研究所毕业。1938年获法国巴黎大学数学博士学位。曾任云南大学教授。1952年院系调整后,庄圻泰留任北京大学。此后除继续担任复变函数课程的教学任务外,他还陆续讲过保角变换,拟保角变换,整函数与亚纯函数等专业课。九三学社社员。长期从事函数论研究,在整函数与亚纯函数的值分布理论上取得重要成果。著有《亚纯函数的奇异方向》,合编《AnalyticFunctionsOfOneCom·plexVariable》(在美国出版) 9.著名数学家,数学教育家,四川大学校长,柯召 1931年,入清华大学算学系。1933年,柯召以优异成绩毕业。1935年,他考上了中英庚款的公费留学生,去英国曼彻斯特大学深造,在导师L.J.莫德尔(Mordell)的指导下研究二次型,在表二次型为线性型平方和的问题上,取得优异成绩,回国后先后任教于重庆大学,四川大学。1953年,他调回四川大学任教至今。在这40余年间,他以满腔的热情投入教学和科研工作,为国家培养了许多优秀数学人材,在科研上硕果累累。与此同时,他还先后担任了四川大学教务长、副校长、校长、数学研究所所长等职,作为学术带头人和学校负责人,他卓有成效地抓了几个重要方面的工作:努力提高教学质量,积极开展基础理论研究,发展应用数学,培养一批高水平的人材。其研究领域涉及数论、组合数学与代数学。在二次型、不定方程领域获众多优秀成果。1955年选聘为中国科学院院士(学部委员)。 10.中央研究院院士,首批学部委员,许宝騄 1929年入清华大学数学系,1933年毕业获理学士学位,1936年许宝騄考取赴英留学,派往伦敦大学学院,在统计系学习数理统计,攻读博士学位。1940年到昆明,在西南联合大学任教。1948年他当选为中央研究院院士。回国后不久就发现已患肺结核。他长期带病工作,教学科研一直未断,在矩阵论,概率论和数理统计方面发表了10余篇论文。1955年,他当选为中国科学院学部委员。在中国开创了概率论、数理统计的教学与研究工作。在内曼-皮尔逊理论、参数估计理论、多元分析、极限理论等方面取得卓越成就,是多元统计分析学科的开拓者之一。1955年选聘为中国科学院院士(学部委员)。 11.中科院院士,原北大数学系主任,段学复 1932年考入了清华大学数学系(当时称为“算学系”)。 1936年夏,段学复获得理学士学位,毕业留校任助教。1941年8月进入美国普林斯顿大学数学系攻读博士学位。1946年回国任清华大学教授,自1952年院系调整后,任北京大学数学系系主任近40年。长期从事代数学的研究。在有限群的模表示论特别是指标块及其在有限单群和有限复线性群构造研究中的应用方面取得突出成果。指导学生用表示论和有限单群分类定理彻底解决了著名的Brauer第39问题、第40问题。在代数李群研究方面与国外学者合作完成了早期奠基性成果。在有限P群方面取得一系列研究成果。在数学应用于国防科研和国防建设方面作了大量工作。1955年选聘为中国科学院院士(学部委员)。 12.我国拓扑学的奠基人 江泽涵 毕业于南开大学,1927年参加清华大学留美专科生的考试,考取了那年唯一的学数学的名额,后在美国哈佛大学数学系留学,1930年获得博士学位。1930在美国普林斯顿大学数学系做研究助教。1931年起,长期担任任北京大学数学系教授,并任北京大学数学系主任,曾兼任理学院代理院长。数学家,数学教育家。早年长期担任北京大学数学系主任,为该系树立了优良的教学风尚。致力于拓扑学,特别是不动点理论的研究,是我国拓扑学研究的开拓者之一。1955年当选为中国科学院数理学部委员。 1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊(1952年改为《数学学报》),1951年10月《中国数学杂志》复刊(1953年改为《数学通报》)。1951年8月中国数学会召开建国后第一次全国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。 建国后的数学研究取得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》(1953)、苏步青的《射影曲线概论》(1954)、陈建功的《直角函数级数的和》(1954)和李俨的《中算史论丛》(5辑,1954-1955)等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论著达到世界先进水平,同时培养和成长起一大批优秀数学家。 60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。 1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专著的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国
我们的季节e
惠更斯处于富裕宽松的家庭和社会条件中,没受过宗教迫害的干扰,能比较自由地发挥自己的才能.他善于把科学实践与理论研究结合起来,透彻地解决某些重要问题,形成了理论与实验结合的工作方法与明确的物理思想,他留给人们的科学论文与著作68种,《全集》有22卷,在碰撞、钟摆、离心力和光的波动说、光学仪器等多方面作出了贡献.
snowwhite白雪
古代方程发展史中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。 (一)属于算术方面的材料 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。 古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。 小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。 宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。 (二)属于代数方面的材料 从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。 “九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。 我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。 十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。 在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。 级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。 历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。 内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。 十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。 就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。
水手特洛伊
克里斯蒂安·惠更斯(Christiaan Huygens,1629年04月14日—1695年07月08日)荷兰物理学家、天文学家、数学家,他是介于伽利略与牛顿之间一位重要的物理学先驱,是历史上最著名的物理学家之一,他对力学的发展和光学的研究都有杰出的贡献,在数学和天文学方面也有卓越的成就,是近代自然科学的一位重要开拓者。他建立向心力定律,提出动量守恒原理,并改进了计时器。 他于1629年4月14 日出生于海牙。父亲是大臣和诗人,与R.笛卡儿等学界名流交往甚密。惠更斯自幼聪慧,13岁时曾自制一台车床,表现出很强的动手能力。1645~1647年在莱顿大学学习法律与数学;1647~1649年转入布雷达学院深造。 在阿基米德等人著作及笛卡儿等人直接影响下,致力于:力学、光波学、天文学及数学的研究。他善于把科学实践和理论研究结合起来,透彻地解决问题,因此在摆钟的 发明、天文仪器的设计、弹性体碰撞和光的波动理论等 方面都有突出成就。1663年他被聘为英国皇家学会第一 个外国会员,1666年刚成立的法国皇家科学院选 他为院士。惠更斯体弱多病,一心致力于科学事业,终生未婚。 1695年7月8日在海牙逝世。[编辑本段]所获成就 总括 惠更斯处于富裕宽松的家庭和社会条件中,没受过宗教迫害的干扰,能比较自由地发挥自己的才能.他善于把科学实践与理论研究结合起来,透彻地解决某些重要问题,形成了理论与实验结合的工作方法与明确的物理思想,他留给人们的科学论文与著作68种,《全集》有22卷,在碰撞、钟摆、离心力和光的波动说、光学仪器等多方面作出了贡献. 数学方面 惠更斯曾首先集中精力研究数学问题,惠更斯在数学上有出众的天才,早在22岁时就发表过关于计算圆周长、椭圆弧及双曲线的著作。他对各种平面曲线,如悬链线(他发现悬链线既摆线与抛物线的区别)、曳物线、对数螺线等都进行过研究,还在概率论和微积分方面有所成就。 1657年发表的《论赌博中的计算》,就是一篇关于概率论的科学论文(他是概率论的创始人),显示了他在数学上的造诣。从1651年起,对于圆、二次曲线、复杂曲线、悬链线、概率问题等发表了一些论著,他还研究了浮体和求各种形状物体的重心等问题。 光学方面 惠更斯原理是近代光学的一个重要基本理论。但它虽然可以预料光的衍射现象的存在,却不能对这些现象作出解释 ,也就是它可以确定光波的传播方向,而不能确定沿不同方向传播的振动的振幅。因此,惠更斯原理是人类对光学现象的一个近似的认识。直到后来,菲涅耳对惠更斯的光学理论作了发展和补充,创立了“惠更斯--菲涅耳原理”,才较好地解释了衍射现象,完成了光的波动说的全部理论。 惠更斯在1678年给巴黎科学院的信和1690年发表的《光论》一书中都阐述了他的光波动原理,即惠更斯原理.惠更斯原理认为:对于任何一种波,从波源发射的子波中,其波面上的任何一点都可以作为子波的波源,各个子波波源波面的包洛面就是下一个新的波面。 他认为每个发光体的微粒把脉冲传给邻近一种弥漫媒质(“以太”)微粒,每个受激微粒都变成一个球形子波的中心.他从弹性碰撞理论出发,认为这样一群微粒虽然本身并不前进,但能同时传播向四面八方行进的脉冲,因而光束彼此交*而不相互影响,并在此基础上用作图法解释了光的反射、折射等现象《光论》中最精彩部分是对双折射提出的模型,用球和椭球方式传播来解释寻常光和非常光所产生的奇异现象,书中有几十幅复杂的几何图,足以看出他的数学功底. 另外惠更斯在巴黎工作期间曾致力于光学的研究。1678年,他在法国科学院的一次演讲中公开反对了牛顿的光的微粒说。他说,如果光是微粒性的,那么光在交叉时就会因发生碰撞而改变方向。可当时人们并没有发现这现象,而且利用微粒说解释折射现象,将得到与实际相矛盾的结果。因此,惠更斯在1690年出版的《光论》一书中正式提出了光的波动说,建立了著名的惠更斯原理。在此原理基础上,他推倒出了光的反射和折射定律,圆满的解释了光速在光密介质中减小的原因,同时还解释了光进入冰洲石所产生的双折射现象,认为这是由于冰洲石分子微粒为椭圆形所致。 天文学方面 惠更斯在天文学方面有着很大的贡献。他设计制造的光学和天文仪器精巧超群,如磨制了透镜,改进了望远镜(用它发现了土星光环等)与显微镜,惠更斯目镜至今仍然采用,还有几一十米长的“空中望远镜”(无管、长焦距、可消色差)、展示星空的“行星机器”(即今天文馆雏型)等. 他把大量的精力放在了研制和改进光学仪器上。当惠更斯还在荷兰的时候,就曾和他的哥哥一起以前所未有的精度成功地设计和磨制出了望远镜的透镜,进而改良了开普勒的望远镜。惠更斯利用自己研制的望远镜进行了大量的天文观测。因此,他得到的报酬是解开了一个由来已久的天文学之谜。伽利略曾通过望远镜观察过土星,他发现了“土星有耳朵”,后来又发现了土星的“耳朵”消失了。伽利略以后的科学家对此问题也进行过研究,但都未得要领。“土星怪现象”成为了天文学上的一个谜。当惠更斯将自己改良的望远镜对准这颗行星时,他发现了在土星的旁边有一个薄而平的圆环,而且它很倾向地球公转的轨道平面。伽利略发现的“土星耳朵”消失,是由于土星的环有时候看上去呈现线状。以后惠更斯又发现了土星的卫星--土卫六,并且还观测到了猎户座星云、火星极冠等。 摆的研究和运用 对摆的研究是惠更斯所完成的最出色的物理学工作。 在1668~1669年英国皇家学会碰撞问题征文悬赏中,他是得奖者之一.他详尽地研究了完全弹性碰撞问题(当时叫“对心碰撞”).死后综合发表于《论物体的碰撞运动》(1703)中,包括5个假设和13个命题.他纠正了笛卡儿不考虑动量方向性的错误,并首次提出完全弹性碰撞前后的守恒.他还研究了岸上与船上两个人手中小球的碰撞情况并把相对性原理应用于碰撞现象的研究. 惠更斯从实践和理论上研究了钟摆及其理论.1656年他首先将摆引入时钟成为摆钟以取代过去的重力齿轮式钟.在《摆钟》(1658)及《摆式时钟或用于时钟上的摆的运动的几何证明》(1673)中提出著名的单摆周期公式,T=2P(l/g)^0.5【注】,其中P为圆周率,l为摆长,g为重力加速度.研究了复摆及其振动中心的求法.通过对渐伸线、渐屈线的研究找到等时线、摆线.研究了三线摆、锥线摆、可倒摆及摆线状夹片等,图2-2-7是惠更斯的船用钟外形及其内部结构,结构中有摆锤、摆线状夹板、每隔半秒由驱动锤解锁的棘爪等. 【注:当利用高等数学研究单摆的运动就会看到,这个公式是个近似公式,由它算出的周期与精确值之间的差别随着偏角的增加而增加。当偏角为5°时两者相差0.01%,7°时相差0.1%,15°时相差0.5%,23°时相差1%。】 在研究摆的重心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量,还引入了反馈装置——“反馈”这一物理思想今天更显得意义重大.设计了船用钟和手表平衡发条,大大缩小了钟表的尺寸.他还用摆求出重力加速度的准确值,并建议用秒摆的长度作为自然长度标准. 惠更斯还提出了他的离心力定理,他还研究了圆周运动、摆、物体系转动时的离心力以及泥球和地球转动时变扁的问题等等.这些研究对于后来万有引力定律的建立起了促进作用.他提出过许多既有趣又有启发性的离心力问题. 多少世纪以来,时间测量始终是摆在人类面前的一个难题。当时的计时装置诸如日规、沙漏等均不能在原理上保持精确。直到伽利略发现了摆的等时性,惠更斯将摆运用于计时器,人类才进入一个新的计时时代。 当时,惠更斯的兴趣集中在对天体的观察上,在实验中,他深刻体会到了精确计时的重要性,因而便致力于精确计时器的研究。当年伽利略曾经证明了单摆运动与物体在光滑斜面上的下滑运动相似,运动的状态与位置有关。惠更斯进一步确证了单摆振动的等时性并把它用于计时器上,制成了世界上第一架计时摆钟。这架摆钟由大小、形状不同的一些齿轮组成,利用重锤作单摆的摆锤,由于摆锤可以调节,计时就比较准确。在他随后出版的《摆钟论》一书中,惠更斯详细地介绍了制作有摆自鸣钟的工艺,还分析了钟摆的摆动过程及特性,首次引进了“摆动中心”的概念。他指出,任一形状的物体在重力作用下绕一水平轴摆动时,可以将它的质量看成集中在悬挂点到重心之连线上的某一点,以将复杂形体的摆动简化为较简单的单摆运动来研究。 惠更斯在他的《摆钟论》中还给出了他关于所谓的“离心力”的基本命题。他提出:一个作圆周运动的物体具有飞离中心的倾向,它向中心施加的离心力与速度的平方成正比,与运动半径成反比。这也是他对有关的伽利略摆动学说的扩充。 在研制摆钟时,惠更斯还进一步研究了单摆运动,他制作了一个秒摆(周期为2秒的单摆),导出了单摆的运动公式。在精确地取摆长为3.0565英尺时,他算出了重力加速度为9.8米/秒2。这一数值与现在我们使用的数值是完全一致的。 后来,惠更斯和胡克还各自发现了螺旋式弹簧丝的振荡等时性,这为近代游丝怀表和手表的发明创造了条件。 力学方面 在力学方面的研究,惠更斯是以伽利略所创建的基础为出发点的。在《论摆钟》一书中还论述了关于碰撞的问题。大约在1669年,惠更斯就已经提出解决了碰撞问题的一个法则——“活力”守恒原理,它成为能量守恒的先驱。惠更斯继承了伽利略的单摆振动理论,并在此基础上进一步研究。他把几何学带进了力学领域,用令人钦佩的方法处理力学问题,得到了人们的充分肯定。 他不迷信权威,敢于权威向提出挑战 惠更斯—菲涅耳原理 一、惠更斯原理 在波的传播过程中,总可以找到同位相各点的几何位置,这些点的轨迹是一个等位相面,叫做波面。惠更斯曾提出次波的假设来阐述波的传播现象,建立了惠更斯原理.惠更斯原理可表述如下:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面。 光的直线传播、反射、折射等都能以此来进行较好的解释。此外,惠更斯原理还可解释晶体的双折射现象。但是,原始的惠更斯原理是比较粗糙的,用它不能解释衍射现象,而且由惠更斯原理还会导致有倒退波的存在,而这显然是不存在的。 由于惠更斯原理的次波假设不涉及波的时空周期特性——波长,振幅和位相,虽然能说明波在障碍物后面拐弯偏离直线传播的现象,但实际上,光的衍射现象要细微的多,例如还有明暗相间的条纹出现,表明各点的振幅大小不等,对此惠更斯原理就无能为力了。因此必须能够定量计算光所到达的空间范围内任何一点的振幅,才能更精确地解释衍射现象。 二、菲涅耳对惠更斯原理的改进 菲涅耳在惠更斯原理的基础上,补充了描述次波的基本特征——位相和振幅的定量表示式,并增加了“次波相干叠加”的原理,从而发展成为惠更斯——菲涅耳原理。这个原理的内容表述如下: 面积元dS所发出的各次波的振幅和位相满足下面四个假设: (1)在波动理论中,波面是一个等位相面。因而可以认为dS面上各点所发出的所有次波都有相同的初位相(可令其为零)。 (2)次波在P点处所引起的振动的振幅与r成反比。 这相当于表明次波是球面波。 (3)从面元dS所发次波在P处的振幅正比于dS的面积,且与倾角θ有关,其中θ为dS的法线N与dS到P点的连线r之间的夹角,即从dS发出的次波到达P点时的振幅随θ的增大而减小(倾斜因数)。 (4)次波在P点处的位相,由光程nr决定。根据以上的假设,可知面积元dS发出的次波在P点的合振动可表示为 或 如果波面上各点的振幅有一定的分布则面元dS发出次波到达P点的振幅与该面元上的振幅成正比,若分布函数为A(Q),则波面在P点所产生的振动为 如果将波面上所有面积元在P点的作用加起来即可求得波面S在P点所产生的合振动
等开到荼蘼
人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大贝祖(Bezout Etienne 1730.3.31~1783.9.27)法国数学家。少年时酷爱数学,主要从事方程论研究。他是最先认识到行列式价值的数学家之一。最早证明了齐次线性方程组有非零解的条件是系数行列式等于零。他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法。他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理。1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究。 十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。 十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。 十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角。 十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。 十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。 1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。 1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例。 1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。 1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。 1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。 1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。 1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。 十四世纪中叶前,中国开始应用珠算盘。 1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。 1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学。 1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识。 1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式。 1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题。 1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论。 1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表。 1614年,英国的耐普尔制定了对数。 1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积。 1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分。 1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”。 1638年,法国的费尔玛开始用微分法求极大、极小问题。 1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就。 1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作。 1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”。 1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱。 1654年,法国的帕斯卡、费尔玛研究了概率论的基础。 1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学。 1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》。 1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究。 1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分。 1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法。 1670年,法国的费尔玛提出“费尔玛大定理”。 1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线。 1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》。 1686年,德国的莱布尼茨发表了关于积分法的著作。 1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究。 1696年,法国的洛比达发明求不定式极限的“洛比达法则”。 1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线。 1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》。 1711年,英国的牛顿发表《使用级数、流数等等的分析》。 1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》。 1715年,英国的布·泰勒发表《增量方法及其他》。 1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试。 1733年,英国的德·勒哈佛尔发现正态概率曲线。 1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机。 1736年,英国的牛顿发表《流数法和无穷级数》。 1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作。 1742年,英国的麦克劳林引进了函数的幂级数展开法。 1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面。 1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。 1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一。 1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷。书中包括微分方程论和一些特殊的函数。 1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。 1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法。 1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始。 1772年,法国的拉格朗日给出三体问题最初的特解。 1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学。 1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》。 1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表。 1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学。 1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多。 1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根。 微分方程:大致与微积分同时产生 。事实上,求y′=f(x)的原函数问题便是最简单的微分方程。I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,完全解决了它的求解问题。17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。总之,力学、天文学、几何学等领域的许多问题都导致微分方程。在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。因而微分方程的研究是与人类社会密切相关的。当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布�6�1贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。
概率论在生活中所涉及的领域相当广泛,本文通过对生活中几个概率问题:事件概率与试验的先后次序的关系、疾病诊断中概率,赌博中的概率的分析,合理解释了其中的原因,也为
我们知道论文会在各种期刊上发表,期刊发表论文也有标准。杂志会审核用户提交的论文,所以整体难度比较高。那么,论文发表查重率多少?paperfree小编给大家讲解。
1.国际著名数学大师,沃尔夫数学奖得主,陈省身 1931年入清华大学研究院,1934军获硕士学位.1934年去汉堡大学从Blaschke学习.1937年回国任西
概率论的起源与赌博问题有关。16世纪,意大利的学者开始研究掷骰子等赌博中的一些简单问题。17世纪中叶,法国数学家B.帕斯卡、P.de费马及荷兰数学家C.惠更斯基
问题一:论文投稿到发表一般要多长时间?怎么样发表比较快? 你要自己向杂志社投稿,需要等待的时间就比较长,而且如果不通过审核,你的论文就会石沉大海。这样容易耽误