• 回答数

    4

  • 浏览数

    103

馋猫也优雅
首页 > 论文发表 > 基因编辑的论文发表在哪

4个回答 默认排序
  • 默认排序
  • 按时间排序

clover冬儿129

已采纳

韩春雨,男,中国协和医科大学理学博士,现任河北科技大学生物科学与工程学院生命科学系副教授,硕士研究生导师。

韩春雨事件指的是韩春雨撤稿事件。

2016年5月2日,韩春雨作为通讯作者在国际顶级期刊《自然·生物技术》(Nature Biotechnology)杂志上发表了一篇研究成果,即发明了一种新的基因编辑技术——NgAgo-gDNA,向已有的最时兴技术CRISPR-Cas9发起了挑战。

2016年8月2日,《自然-生物技术》发表声明称,“已有若干研究者联系本刊,表示无法重复这项研究。本刊将按照既定流程来调查此事。作为在自然科研旗下期刊发表论文的条件之一,作者须将材料、数据、代码和相关的实验流程及时向读者提供,不可加以不当限制”。

2017年1月9日,以河北科技大学副教授韩春雨、浙江大学基础医学院研究员沈啸为发明人的专利—以Argonaute核酸酶为核心的基因编辑技术,因申请人未在规定期限内答复国家知识产权局的第一次审查意见通知书,该专利的申请被视为撤回,国家知识产权局发布该专利申请的“视为撤回通知书”。

2018年8月31日晚,河北科技大学公布韩春雨团队撤稿论文的调查处理结果称,未发现韩春雨团队有主观造假情况。撤稿论文已不再具备重新发表的基础,有关方面按照规定已取消了韩春雨所获得的荣誉称号,终止了韩春雨团队承担的科研项目并收回了科研经费,收回了韩春雨团队所获校科研绩效奖励。

扩展资料

韩春雨研发出基因编辑新技术NgAgo-gDNA的成果发表在英国《自然·生物技术》上,向此前最先进的基因编辑技术CRISPR-Cas9发起了挑战,该成果打破了国际基因编辑技术的垄断,实现了中国高端生物技术原创零的突破,有望成为新一代“基因剪刀”。

《自然》杂志执行主编尼克坎贝尔评论说:“虽然这项新技术还处于初期,但有一些理由让我们相信它与现在普遍使用的CRISPR-Cas9技术相比有多种优势,特别是在更精准的基因编辑方面。”

基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。

参考资料:百度百科-韩春雨

110 评论

可爱小伶伶

发表论文通常只有两种渠道,要么自己投,要么找论文发表机构代投,不管走哪种渠道,最后都是要发表到期刊上的。

期刊,也叫杂志,在上个世纪在出版界曾经是重量级的存在,那个时候互联网还没有兴起,人们阅读文章获取资讯远远没有现在方便,杂志就成为一个很重要的传播媒介。

但现在随着社会的进步,科技的发展,纸媒已经大大没落了,很多期刊被砍掉了,剩下来的大多数不得不自谋出路,学术期刊更是如此,因为这个受众面是很窄的,基本没法盈利,所以只能靠收取版面费来维持,当然,有国家财政拨款的那种不在这个范围。

我们现在发表学术论文,出于严谨性权威性等原因的考虑,还是要发表到纸质期刊上,编辑会用电子邮箱或者内部的系统来收稿,但不会有一个网络平台有发表论文的资质,即使是知网和万方这样的网站,也只是论文数据库,并不是论文发表平台。

所以发表论文的时候,还是要先去选取目标期刊,然后再找到这本期刊的投稿邮箱,或者是找到靠谱的论文发表机构,由代理进行代投,最后都是发表到纸质期刊上的,见刊后一两个月左右被知网收录,就可以检索到了。

351 评论

我是漂亮小小妞

韩春雨,男,1974年1月11日出生于河北石家庄,中国协和医科大学理学博士。

现任河北科技大学生物科学与工程学院生命科学系副教授,硕士研究生导师。

韩春雨事件是韩春雨在顶级学术杂志发表了论文,后面实验结果因为无法重复被质疑,韩春雨主动撤回论文,接受调查的一些列事件:

2016年5月2日,韩春雨作为通讯作者在国际顶级期刊《自然·生物技术》(Nature Biotechnology)杂志上发表了一篇研究成果,即发明了一种新的基因编辑技术——NgAgo-gDNA,向已有的最时兴技术CRISPR-Cas9发起了挑战。

论文发表后,在国内外引发强烈关注,甚至被部分媒体誉为“诺奖级”实验成果。但此后不久,该论文内容就陷入争论:有人提出韩春雨的试验无法重复,有人说可以重复,彼此争论不休、难有定论。

2017年1月19日,《自然-生物技术》发布最新声明指出,该期刊已获得有关韩春雨实验可重复性的新数据,需要调查研究这些数据。

2017年8月3日,《自然-生物技术》发布声明称,韩春雨团队主动申请撤回其于2016年5月2日发表在该期刊的论文。

2018年8月31日晚,河北科技大学公布韩春雨团队撤稿论文的调查处理结果称,未发现韩春雨团队有主观造假情况。

扩展资料:

根据论文,实验由不同实验室研究人员独立操作,但实验结果均未证明NgAgo具有任何基因组编辑活性。黄志伟告诉记者,他的实验室也重复很多次,但一直没发现“切割”效果,没得到预想结果。

此外,论文还对韩春雨此前声明的论文结果重现需要“卓越的实验技能”,以及重复实验未果,可能因为NgAgo的活性对培养物中的支原体或细菌非常敏感等言论提出质疑。

论文写道,不论是最初发布的步骤,还是后来在全球科学家质粒共享非盈利组织Addgene网站上更新的信息,似乎都不涉及任何似乎需要“卓越的实验技能”的步骤。

同时提出,不可能所有的独立实验室的细胞都被污染,导致一致阴性结果。

这篇论文结尾处,学者提到,希望韩春雨能够澄清NgAgo的不确定性,并能够提供重复实验结果所需要的细节。

参考资料:百度百科-韩春雨

201 评论

九种特质

[](javascript:void(0);)

|

CRISPR/Cas系统是细菌和古菌特有的一种天然防御系统,用于抵抗病毒或外源性质粒的侵害。当外源基因入侵时,该防御系统的 CRISPR 序列会表达与入侵基因组序列相识别的 RNA,然后 CRISPR 相关酶(Cas)在序列识别处切割外源基因组DNA,从而达到防御目的。

根据Cas蛋白的特点,可将CRISPR/Cas系统分为Ⅰ、Ⅱ、Ⅲ型。Ⅰ型和Ⅲ型系统需要借助复杂的蛋白复合体发挥作用,Ⅱ型系统仅借助 Cas9蛋白和sgRNA即可对靶目标进行编辑,结构简单,操作容易,因此目前主要使用Ⅱ型CRISPR/Cas9 系统。

CRISPR/Cas自诞生以来,迅速发展,已经成为生命科学领域最耀眼、最有前景的技术。尤其是近两年,在全世界科学家的共同努力下,CRISPR/Cas相关新进展新突破不断涌现。

一、基因编辑技术的发展史

基因编辑可以分为三代,第一代:ZFN;第二代:TELEN;第三代:CRISPR/Cas。这三个基因编辑技术都利用了DNA修复机制,所以我们先来了解一下DNA修复机制( 图1 )。[图片上传失败...(image-8dab49-1625385468208)]

图1-NHEJ修复(左),HDR修复(右)

NHEJ(Non-homologous end joining)

非同源性末端接合

NHEJ修复机制不需要任何模版,修复蛋白直接将双股裂断的DNA末端彼此拉近,在DNA连接酶的帮助下重新接合( 图1 )。

HDR(Homology directed repair)

同源重组修复

当细胞核内存在与损伤DNA同源的DNA片段时,HDR才能发生。

NHEJ的机制简单又不依靠模版,因而NHEJ的活性相对于HDR高出许多。但NHEJ修复出错的概率较高,容易造成移码突变等,基因编辑正是利用了这一点( 图1 )。

1.ZFN的识别切割机制

融合锌指模块和FokI切割结构域形成ZFN ;以二聚体的形式靶向切割每个锌指结构;特异识别3个碱基 ;组装多个锌指结构(识别12-18bp)形成的ZFN对可特异切割基因组靶点 ( 图2 )。

[图片上传失败...(image-3f1d8d-1625385468209)]

图2-ZFN基因编辑原理图

2.TALEN的识别切割机制

两个TALE靶向识别靶点两侧的序列;每个TALE融合一个FokI内切酶结构域;FokI通过TALE靶向形成二聚体切割靶点;设计灵活识别特异性强( 图3 )。

[图片上传失败...(image-6dcfc-1625385468209)]

图3-TELEN基因编辑原理图

3.CRISPR/Cas9的识别切割机制

crRNA通过碱基配对与 tracrRNA结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA( 图4 )。

[图片上传失败...(image-c85235-1625385468209)]

图4-CRISPR/Cas9基因编辑原理图

ZFN、TELEN、CRISPR/Cas9比较

[图片上传失败...(image-dd6344-1625385468209)]

图5-三种基因编辑的比较

二、CRISPR/Cas技术的介绍

CRISPR/Cas9 系统的发现

1987年,在大肠杆菌的基因组中首次发现了一个特殊的重复间隔序列——CRISPR序列,随后,在其他细菌和古菌中也发现了这一特殊序列。

2005年,发现这些CRISPR序列和噬菌体的基因序列匹配度很高,说明CRISPR 可能参与了微生物的免疫防御。

2011年,CRISPR/Cas系统的分子机制被揭示:当病毒首次入侵时,细菌会将外源基因的一段序列整合到自身的CRISPR的间隔区;病毒二次入侵时,CRISPR 转录生成 前体crRNA (pre-crRNA), pre-crRNA 经过加工形成含有与外源基因匹配序列的crRNA,该crRNA与病毒基因组的同源序列识别后,介导 Cas 蛋白结合并切割,从而保护自身免受入侵。

2013年,发现CRISPR/Cas9系统可高效地编辑基因组。随后张锋等使用CRISPR系统成功的在人类细胞和小鼠细胞中实现了基因编辑。

从此开始,CRISPR/Cas9技术给生命科学领域带来了巨大冲击,CRISPR/Cas9相关研究成果频频登上CNS等顶级期刊,近两年更是成为诺贝尔奖热门候选。

CRISPR/Cas技术的原理

CRISPR/Cas9系统的工作原理是 crRNA( CRISPR-derived RNA )通过碱基配对与 tracrRNA(trans-activating RNA )结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA。而通过人工设计 crRNA 和 tracrRNA 这两种 RNA,改造成具有引导作用的sgRNA (single guide RNA ),从而引导 Cas9 对 DNA 的定点切割(图4)。

CRISPR/Cas技术的优势

设计简单,简明的碱基互补设计原则,识别不受基因组甲基化影响,能靶向几乎任意细胞任意序列,方便同时靶向多个靶点,切割效率高。

三、CRISPR/Cas的脱靶效应

PAM**** (Protospacer adjacent motif )

前间区序列邻近基序

PAM序列区是CRISPR/Cas9系统行使切割功能的基本条件。如果靶序列 3′端没有PAM序列,即使靶序列与sgRNA序列完全匹配,Cas9蛋白也不会切割该序列位点。 PAM序列主要影响CRISPR/Cas9的DNA切割效率。在细胞水平上,NGG介导的切割效率是最高的。

sgR****NA ****(Single guide RNA )

向导 RNA

sgRNA与目标基因组相结合的 20nt 序列区决定着 CRISPR/Cas 系统的靶向特异性。CRISPR/Cas9与靶位点识别的特异性其实主要依赖于sgRNA与靠近PAM区的10~12 bp的碱基配对,而其余远离PAM序列 8~10 bp 碱基的错配对靶位点识别的影响并不明显。目前研究结果均提示,可能靠近 PAM 的 8~14 bp 序列是决定特异性的关键,其他序列也均在不同程度上影响脱靶效应。

CRISPR/Cas9的脱靶效应给研究带来了一定程度上的不确定性,也是限制其发挥更大潜力的主要原因之一。

2017年5月30日, Nature 杂志子刊 Nature Methods 刊登了美国哥伦比亚大学研究人员的一篇文章,研究人员通过CRISPR/Cas9成功修复了导致小鼠失明的基因后,对小鼠进行全基因测序,发现修复后的小鼠基因组有超过1500个单核苷酸突变,以及超过100个位点发生大片段插入或缺失( 图6 )。文章的结论无疑引发了巨大震动,也给正在进行中的CRISPR/Cas9带来了不确定性。

[图片上传失败...(image-f21b76-1625385468208)]

图6--动物体内实验中CRISPR/Cas9编辑后发生意想不到的突变

仔细分析后,发现该文章并不十分严谨,文章仅有两只小鼠作为实验组,一只作为对照组,数量不足以证明结论是否只是个例。而且单碱基突变是生物体内自然现象,不能全归于CRISPR/Cas9。整个实验只基于一个sgRNA数据,且该sgRNA特异性评分很低,造成脱靶效应也应该在预料之中( 图7 )。

[图片上传失败...(image-751d94-1625385468208)]

图7--针对 Nature Methods 文章的回应

经过一系列的研究和改进,目前CRISPR系统的脱靶性已经很低,当然,要想达到理想的状态,还有很长的路要走。

四、CRISPR/Cas技术的进展

2016年6月,张锋在 Science 发表文章,发现CRISPR/Cas13a能有切割细菌的特定RNA序列。

2016年9月,Jennifer Doudna在 Nature 发表文章,证实CRISPR/Cas13a可以用于RNA检测。

2017年2月22日,美国纪念斯隆.凯特林癌症中心(MSK)研究人员在 Nature 杂志发文,使用腺相关病毒(AAV)介导,将CRISPR/Cas9基因编辑技术应用于CAR-T疗法。该研究既解决了传统CAR-T疗法的随机整合可能存在的潜在危害,又大大降低了CAR-T细胞发生分化或癌化的风险,赋予了CAR-T技术全新的高效性、稳定性、安全性。

2017年8月2日,Shoukhrat Mitalipov在 Nature 发表长文,使用CRISPR/Cas9技术修正了植入子宫前的人类胚胎中一种和遗传性心脏病有关的变异。该研究证实了通过编辑人类胚胎进行治疗遗传病是安全可行的。值得一提的是,该成果受到了基因编辑领域大牛George Church等人的质疑。

2017年8月11日,杨璐菡等在 Science 发表文章,通过CRISPR/Cas9技术敲除猪基因组中的内源逆转录病毒(PERV)序列,并克隆出多只PERV失活小猪。向最终实现使用猪器官进行人体器官移植的终极目标迈进了一大步。

2017年9月,杂交水稻之父”袁隆平院士宣布使用CRISPR/Cas9技术敲除与镉吸收和积累相关基因的水稻育种成功。该研究从根本上解决了水稻镉污染的问题,将扭转我国部分农作物重金属超标的问题,进而改善部分人群重金属慢性中毒的问题。

2017年10月4日,张锋在 Nature 发表论文证实CRISPR/Cas13a能够在哺乳动物细胞中编辑特定的RNA。CRISPR/Cas13a能够达到RNAi相似的降低基因表达的效率,而且有更强的特异性,且对细胞内天然的转录后调控网络的影响更小。

2017年10月19日,Jennifer Doudna在 Nature 发表文章,设计了高精确性的Cas9变体—HypaCas9。该研究极大地降低了Cas9的脱靶效应,且不降低靶向切割效率。

2017年10月25日,张锋在 Science 发表文章介绍CRISPR新系统--REPAIR,可以高效的进行RNA的单碱基修复。因为不改变DNA序列,所以为通过基因编辑治疗遗传病而又不永久影响基因组提供了新可能。

2017年10月25日,哈佛大学Broad研究所的David Liu实验室在 Nature 发表长文,报道了新型腺嘌呤基因编辑器——ecTadA-dCas9,可以将A·T碱基对转换成G·C碱基对,该技术首次实现了不依赖DNA断裂即可进行基因编辑的技术,即单碱基基因编辑技术。该技术高于其它基因组编辑方法的效率,且几乎没有随机插入、删除或其它突变等不良副作用,因此为今后大范围治疗点突变遗传疾病提供了极大的便利。

五****、展望

近几年CRISPR/Cas基因编辑技术飞速发展,推广应用到了生物、医学、农业以及环境等多个领域,造就了一批批科研奇迹,尤其是在遗传病的治疗、疾病相关基因的筛查与检测、肿瘤治疗以及动植物的改造、病原微生物防治等领域有着巨大的潜力,也将深远地影响整个世界。

特别感谢:BioArt主编给予的帮助和意见以及吉满生物吴晨提供图1-图5的图片。

|

| |

256 评论

相关问答

  • 基因编辑的论文发表

    这部文章中主要是通过DNA基因技术对核酸进行研究。这项技术与NgAgo之间有没有直接的联系,Ago相关的工具研究一直持续了6年之久,韩春雨目前已经是副教授级别,

    沙发里的土豆 8人参与回答 2023-12-11
  • 基因编辑的论文发表在哪

    韩春雨,男,中国协和医科大学理学博士,现任河北科技大学生物科学与工程学院生命科学系副教授,硕士研究生导师。 韩春雨事件指的是韩春雨撤稿事件。 2016年5月2日

    馋猫也优雅 4人参与回答 2023-12-12
  • 基因编辑婴儿论文发表

    科技部副部长徐南平表示,2003年颁布的《人胚胎干细胞研究伦理指导原则》规定,可以以研究为目的,对人体胚胎实施基因编辑和修饰,但体外培养期限自受精或者核移植开始

    于丽波55 4人参与回答 2023-12-07
  • 基因编辑的论文发表在哪里

    CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats)是细菌用来抵御病毒侵袭/躲

    Z黑暗中獨舞 3人参与回答 2023-12-11
  • 论文发表的编辑部在哪

    新闻出版总署?

    maggielj520 5人参与回答 2023-12-09