数字温度传感器测温显示系统毕业设计开题报告
(报告内容包括课题的意义、国内外发展状况、本课题的研究内容、研究方法、研究手段、研究步骤以及参考文献资料等。)
1)课题的研究意义
随着现代信息技术的飞速发展和传统工业改造的逐步实现,能够独立工作的温度检测和显示系统应用于诸多领域,使得温度控制在生产生活领域有着广泛的应用。
温度是日常生活、工业、医学、环境保护、化工、石油等领域最常用到的一个物理量。测量温度的基本方法是使用温度计直接读取温度。最常见到的测量温度的工具是各种各样的温度计,例如:水银 玻 璃温度计,酒精温度计。它们常常以刻度的形式表示温度的高低,人们必须通过读取刻度值的多少来测量温度。利用单片机和温度传感器构成的电子式智能温度计就可以直接测量温度,得到温度的数字值,既简单方便,有直观准确。本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,采用LCD1602液晶显示能准确达到以上要求。
2)国内外发展状况
目前温度计的发展很快,从原始的 玻 璃温度计管温度计发展到了现在的热电阻温度计、热电偶温度计、数字温度计、电子温度计等等。主要温度仪表,如热电偶、热电阻及辐射温度计等在技术上已经成熟,但是它们只能在传统的场合应用,尚不能满足简单、快速、准确测温的要求,尤其是高科技领域。因此,各国专家都在有针对性地竞相开发各种新型温度传感器及特殊与实用测温技术,如采用光纤、激光及遥感或存储等技术的新型温度计已经实用化。
2008年起中国数字温度计及恒温器市场发展迅速,产品产出持续扩张,国家产业政策鼓励电子温度计及恒温器产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对电子温度计及恒温器行业的关注越来越密切,这使得电子温度计及恒温器行业的发展需求增大。本文研究一种基于单片机温度控制系统,以克服传统方法的不足。
3)研究内容和方法
采用数字式温度传感器为检测器件,进行单点温度检测。用LCD1602液晶直接显示温度值,单片机系统作为电子温度计的控制、显示系统。
本系统从以下三个方面来考虑:
(1)检测的温度范围:0℃~100℃,检测分辨率 ℃。
(2)用LCD1602来显示温度值。
(3)超过警戒值(自己定义)要报警提示。
主要采用DS18B20温度传感功能,检测当前的温度值,通过液晶将当前温度值显示出来,当检测的温度值超过所设定的温度范围时,报警提醒,达到精确检测的目的。
本系统主要由四部分组成:
1)传感器数据采集部分即温度检测模块,如果采用热敏电阻,可满足40摄氏度至90摄氏度的测量范围,但是热敏电阻精度、重复性,可靠性差,对于检测1摄氏度的信号是不适用,可以采用智能集成数字温度传感器DS18B20。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以接在一根线上,CPU只需一根端口线就能与诸多 DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。
2)温度显示部分可选用LED数码管显示,也可选用LCD液晶显示。此模块选用LCD1602。
3)上下限报警调整模块通过按键设置报警温度,采用蜂鸣器报警。
4)单片机主板部分智能模块主要指单片机部分,它主要完成传感器信号的接收以及处理工作,本模块的设计首先要做好单片机的选型,考虑到性能以及成本选用AT89S52。
整个系统是以AT89S52控制下工作的。其工作过程是:首先温度按键设定上下极限温度范围,然后温度传感器DS18B20采集当前温度信号,单片机接收此信号,通过处理在液晶LCD1602显示当前温度值。若测得温度超过所设定的范围时,蜂鸣器发出报警信号。
鉴于此,本毕业设计所要完成的任务目标是:
(1)设计电子温度计的信号检测部分
(2)设计电子温度计的信号处理部分
(3)设计电子温度计的主控制器部分
(4)设计电子温度计的显示部分及报警部分
(5)编写调试相关软件设计
(6)实验平台的搭建
(7)整机调试
4)全球传感器未来发展趋势及4大重要领域(转)
近年来,传感器技术新原理、新材料和新技术的研究更加深入、广泛,新品种、新结构、新应用不断涌现。其中,“五化”成为其发展的.重要趋势。
一是智能化,两种发展轨迹齐头并进。一个方向是多种传感功能与数据处理、存储、双向通信等的集成,可全部或部分实现信号探测、变换处理、逻辑判断、功能计算、双向通讯,以及内部自检、自校、自补偿、自诊断等功能,具有低成本、高精度的信息采集、可数据存储和通信、编程自动化和功能多样化等特点。如美国凌力尔特(LinearTechnology)公司的智能传感器安装了ARM架构的32位处理器。另一个方向是软传感技术,即智能传感器与人工智能相结合,目前已出现各种基于模糊推理、人工神经网络、专家系统等人工智能技术的高度智能传感器,并已经在智能家居等方面得到利用。如NEC开发出了对大量的传感器监控实施简化的新方法“不变量分析技术”,并已于今年面向基础设施系统投入使用。
二是可移动化,无线传感网技术应用加快。无线传感网技术的关键是克服节点资源限制(能源供应、计算及通信能力、存储空间等),并满足传感器网络扩展性、容错性等要求。该技术被美国麻省理工学院(MIT)的《技术评论》杂志评为对人类未来生活产生深远影响的十大新兴技术之首。目前研发重点主要在路由协议的设计、定位技术、时间同步技术、数据融合技术、嵌入式操作系统技术、网络安全技术、能量采集技术等方面。迄今,一些发达国家及城市在智能家居、精准农业、林业监测、军事、智能建筑、智能交通等领域对技术进行了应用。如,从 MIT独立出来的VoltreePowerLLC公司受美国农业部的委托,在加利福尼亚州的山林等处设置温度传感器,构建了传感器网络,旨在检测森林火情,减少火灾损失。
三是微型化,MEMS传感器研发异军突起。随着集成微电子机械加工技术的日趋成熟,MEMS传感器将半导体加工工艺(如氧化、光刻、扩散、沉积和蚀刻等)引入传感器的生产制造,实现了规模化生产,并为传感器微型化发展提供了重要的技术支撑。近年来,日本、美国、欧盟等在半导体器件、微系统及微观结构、速度测量、微系统加工方法/设备、麦克风/扬声器、水平/测距/陀螺仪、光刻制版工艺和材料性质的测定/分析等技术领域取得了重要进展。目前,MEMS传感器技术研发主要在以下几个方向:(1)微型化的同时降低功耗;(2)提高精度;(3)实现 MEMS传感器的集成化及智慧化;(4)开发与光学、生物学等技术领域交叉融合的新型传感器,如MOMES传感器(与微光学结合)、生物化学传感器(与生物技术、电化学结合)以及纳米传感器(与纳米技术结合)。
四是集成化,多功能一体化传感器受到广泛关注。传感器集成化包括两类:一种是同类型多个传感器的集成,即同一功能的多个传感元件用集成工艺在同一平面上排列,组成线性传感器(如CCD图像传感器)。另一种是多功能一体化,如几种不同的敏感元器件制作在同一硅片上,制成集成化多功能传感器,集成度高、体积小,容易实现补偿和校正,是当前传感器集成化发展的主要方向。如意法半导体提出把组合了多个传感器的模块作为传感器中枢来提高产品功能;东芝公司已开发出晶圆级别的组合传感器,并于今年3月发布能够同时检测脉搏、心电、体温及身体活动等4种生命体征信息,并将数据无线发送至智能手机或平板电脑等的传感器模块“Silmee”。
五是多样化,新材料技术的突破加快了多种新型传感器的涌现。新型敏感材料是传感器的技术基础,材料技术研发是提升性能、降低成本和技术升级的重要手段。除了传统的半导体材料、光导纤维等,有机敏感材料、陶瓷材料、超导、纳米和生物材料等成为研发热点,生物传感器、光纤传感器、气敏传感器、数字传感器等新型传感器加快涌现。如光纤传感器是利用光纤本身的敏感功能或利用光纤传输光波的传感器,有灵敏度高、抗电磁干扰能力强、耐腐蚀、绝缘性好、体积小、耗电少等特点,目前已应用的光纤传感器可测量的物理量达70多种,发展前景广阔;气敏传感器能将被测气体浓度转换为与其成一定关系的电量输出,具有稳定性好、重复性好、动态特性好、响应迅速、使用维护方便等特点,应用领域非常广泛。另据BCCResearch公司指出,生物传感器和化学传感器有望成为增长最快的传感器细分领域,预计2014至2019年的年均复合增长率可达。
未来值得关注的四大领域
随着材料科学、纳米技术、微电子等领域前沿技术的突破以及经济社会发展的需求,四大领域可能成为传感器技术未来发展的重点。
一是可穿戴式应用。据美国ABI调查公司预测,2017年可穿戴式传感器的数量将会达到亿。以谷歌眼镜为代表的可穿戴设备是最受关注的硬件创新。谷歌眼镜内置多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速传感器等,实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可完成拍照。当前,可穿戴设备的应用领域正从外置的手表、眼镜、鞋子等向更广阔的领域扩展,如电子肌肤等。日前,东京大学已开发出一种可以贴在肌肤上的柔性可穿戴式传感器。该传感器为薄膜状,单位面积重量只有3g/m2,是普通纸张的1/27左右,厚度也只有2微米。
二是无人驾驶。美国 IHS公司指出,推进无人驾驶发展的传感器技术应用正在加快突破。在该领域,谷歌公司的无人驾驶车辆项目开发取得了重要成果,通过车内安装的照相机、雷达传感器和激光测距仪,以每秒20次的间隔,生成汽车周边区域的实时路况信息,并利用人工智能软件进行分析,预测相关路况未来动向,同时结合谷歌地图来进行道路导航。谷歌无人驾驶汽车已经在内华达、佛罗里达和加利福尼亚州获得上路行使权。奥迪、奔驰、宝马和福特等全球汽车巨头均已展开无人驾驶技术研发,有的车型已接近量产。
三是医护和健康监测。国内外众多医疗研究机构,包括国际著名的医疗行业巨头在传感器技术应用于医疗领域方面已取得重要进展。如罗姆公司目前正在开发一种使用近红外光(NIR)的图像传感器,其原理是照射近红外光LED后,使用专用摄像元件拍摄反射光,通过改变近红外光的波长获取图像,然后通过图像处理使血管等更加鲜明地呈现出来。一些研究机构在能够嵌入或吞入体内的材料制造传感器方面已取得进展。如美国佐治亚理工学院正在开发具备压力传感器和无线通信电路等的体内嵌入式传感器,该器件由导电金属和绝缘薄膜构成,能够根据构成的共振电路的频率变化检测出压力的变化,发挥完作用之后就会溶解于体液中。
四是工业控制。2012年,GE公司在《工业互联网:突破智慧与机器的界限》报告中提出,通过智能传感器将人机连接,并结合软件和大数据分析,可以突破物理和材料科学的限制,并将改变世界的运行方式。报告同时指出,美国通过部署工业互联网,各行业可实现1%的效率提升,15年内能源行业将节省1%的燃料(约660亿美元)。2013年1月,GE在纽约一家电池生产企业共安装了1万多个传感器,用于监测生产时的温度、能源消耗和气压等数据,而工厂的管理人员可以通过iPad获取这些数据,从而对生产进行监督。
此外,荷兰壳牌、富士电机等跨国公司也都在该领域采取了行动。
传感器产业化发展的重要趋势
近年来,随着技术研发的持续深入,成本的下降,性能和可靠性的提升,在物联网、移动互联网和高端装备制造快速发展的推动下,传感器的典型应用市场发展迅速。据BCCResearch公司分析指出,2014年全球传感器市场规模预计达到795亿美元,2019年则有望达到1161亿美元,复合年增长率可达 。
亚太地区将成为最有潜力的市场。目前,美国、日本、欧洲各国的传感器技术先进、上下游产业配套成熟,是中高端传感器产品的主要生产者和最大的应用市场。同时,亚太地区成为最有潜力的未来市场。英泰诺咨询公司指出,未来几年亚太地区市场份额将持续增长,预计2016年将提高至,北美和西欧市场份额将略有下降。
交通、信息通信成为市场增长最快的领域。据英泰诺咨询公司预测,2016年全球汽车传感器规模可达亿欧元,占全球市场的;信息通信行业至2016年也可达亿欧元,占全球市场的,且有可能成为最大的单一应用市场。而医疗、环境监测、油气管道、智能电网等领域的创新应用将成为新热点,有望在未来创造更多的市场需求。
企业并购日趋活跃。美国、德国和日本等国的传感器大型企业技术研发基础雄厚,各企业均形成了各自的技术优势,整体市场的竞争格局已初步确立(附表)。需要指出的是,大公司通过兼并重组,掌控技术标准和专利,在 “高、精、尖”传感器和新型传感器市场上逐步形成垄断地位。在大企业的竞争压力下,中小企业则向“小(中)而精、小而专”的方向发展,开发专有技术,产品定位特定细分市场。据统计,2010年7月至2011年9月,传感器行业中大规模并购交易多达20多次。如美国私募股权公司 VeritasCapitalIII以5亿美元现金收购珀金埃尔默公司的照明和检测解决方案(IDS)业务;英国思百吉公司以亿美元收购美国欧米茄工程公司的温度、测量设备制造业务。目前,越来越多的并购交易在新兴市场国家出现。
5)参考文献
[1]胡烨, 姚鹏翼. Protel 99 SE 电路设计与仿真教程.北京:机械工业出版社, 2005
[2]强锡富.传感器[M].北京:机械工业出版社,2004
[3]康华光.电子技术基础模拟部分.北京:高等教育出版社,1998
[4]康华光.电子技术基础数字部分.北京:高等教育出版社,1998
[5]刘守义.单片机应用技术[M].西安:西安电子科技大学出版社,2002.
[6]李广弟.单片机基础.北京航空航天大学出版社,1994年
[7]孙焕铭. 51单片机C语言程序应用实例详解.北京:北京航空航天大学出版社,2011
设计题目
摘要:(内容为宋体四号字)
随着现代信息技术的飞速发展和传统工业改造的逐步实现,温度自动检测和显示系统在很多领域得到广泛应用。人们在温度检测的准确度、便捷、快速等方面有着越来越高的要求。而传统的温度传感器已经不能满足人们的需求,其渐渐被新型的温度传感器所代替。
本文设计并制作了一个简易温度计。本设计采用了单片机AT89S52和温度传感器DS18B20组成了温度自动测控系统,可根据实际需要任意设定温度值,并进行自动控制。在此设计中利用了AT89S52单片机作为主控制器件,DS18B20作为测温传感器通过LCD数码管串口传送数据,实现温度显示。通过DS18B20直接读取被测温度值,进行数据转换,能够设置温度上下限来设置报警温度。并且在到达报警温度后,系统会自动报警。
本文设计是从测温电路、主控电路、报警电路等几个方面来分析说明的。该器件可直接向单片机传输数字信号,便于单片机处理及控制。另外,该温度计还能直接采用测温器件测量温度。从而简化数据传输与处理过程。此设计的优点主要体现在可操作性强,结构基础简单,拥有很大的扩展空间等。
关键词:单片机;温度传感器;温度计;报警
用手写啊,不过我在替一个同学做毕业设计,也是温度计的,采用DS18B20的,液晶显示屏,几百元,带实物!
毕业设计(论文)报告 系 别: 电子与电气工程学院 专 业: 电子信息工程 班 号: 电子 0 8 5 学 生 姓 名: 傅浩 学 生 学 号: 080012212 计 论 ) 目 设 ( 文 题 : 基于AT89C51 的数字温度计的设计 指 导 教 师: 傅浩 设 计 地 点: 起 迄 日 期: 常州信息职业技术学院电子与电气工程学院 毕业设计论文 毕业设计(论文)任务书 专业 电子信息工程 班级 电子 085 姓名 傅浩一、课题名称:基于 AT89C51 的数字温度计的设计二、主要技术指标: 1、测温范围-50℃-110℃ 2、精度误差小于 ℃ 3、LED 数码直读显示 4、可通过人机接口任意设定温度报警阀值三、工作内容和要求:(1)、要求数字温度计能对环境的温度进行实时监测。(2)、数字温度计要能够实时显示环境的温度信息,使用户及时了解到环境温度情况。(3)、数字温度计能够在程序跑飞的情况下自动重启,对环境温度进行正确的测量。 四、主要参考:1.李勋.刘源单片机实用教程M.北京航空航天大学出版社,20002.李朝青.单片机原理及接口技术(简明修订版)M.杭州:北京航空航天大学出版社,19983.李广弟.单片机基础M.北京:北京航空航天大学出版社,19944.阎石.数字电子技术基础(第三版)M.北京:高等教育出版社,19895.廖常初.现场总线概述J.电工技术,19996.王津.单片机原理与应用M.重庆大学出版社,2000 学 生(签名) 年 月 日 指 导 教师(签名) 年 月 日常州信息职业技术学院电子与电气工程学院 毕业设计论文 教研室主任(签名) 年 月 日 系 主 任(签名) 年 月 日 常州信息职业技术学院电子与电气工程学院 毕业设计论文 毕业设计(论文)开题报告设计(论文)题目 基于 AT89C51 的数字温度计的设计一、选题的背景和意义: 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研等各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,它给人带来的方便也是不可否定的。要为现代人生活提供更好、更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本文将要设计的数字温度计具有性能稳定、灵敏度高、抗干扰能力强、使用方便等优点,广泛应用于冰箱、空调器、粮仓等日常生活中温度的测量和控制中,为人们生活水平的提高做出了巨大的贡献。二、课题研究的主要内容: 1.本文是以单片机 AT89C51 为核心进行设计。 2.通过 DALLAS 公司的单总线数字温度传感器 DS18B20 来实现环境温度的采集和 A/D转换。 3.其输出温度采用数字显示,用 3 位共阳极 LED 数码管以串口传送数据,实现温度显示,能准确达到以上要求。 4.此温度计属于多功能温度计可以用来测量环境温度,还可以设置上下报警温度,当温度不在设置范围内时,可以报警。 常州信息职业技术学院电子与电气工程学院 毕业设计论文三、主要研究(设计)方法论述: 1. 通过查阅书籍了解数字温度计的基本概念等信息,结合以前所学的电子专业知识认真研究课题。 2. 借助强大的网络功能,借鉴前人的研究成果更好的帮助自己更好地理解所需掌握的内容。 3. 通过与老师与同学的讨论研究,及时地发现问题反复地检查修改最终完成。 四、设计(论文)进度安排:时间(迄止日期) 工 作 内 容 ~ 查找资料,确定论文题目 ~ 根据选题方向查资料,确定基本框架和设计方法 ~ 完成开题报告 ~ 完成初稿并交指导老师审阅 ~ 根据指导老师意见修改论文 ~ 根据模板将论文排版 ~ 仔细阅读论文并作细节完善后上交 常州信息职业技术学院电子与电气工程学院 毕业设计论文五、指导教师意见: 指导教师签名: 年 月 日六、系部意见: 系主任签名: 年 月 日 常州信息职业技术学院电子与电气工程学院 毕业设计论文 目录摘要Abstract第 1 章 前言 ...................................................... 1第 2 章 数字温度计总体设计方案 .................................... 2 数字温度计设计方案.......................................... 2 总体设计框图................................................ 2第 3 章 数字温度计的硬件设计 ...................................... 3 主控制器 AT89C51 ............................................ 3 AT89C51 的特点及特征 .................................... 3 管脚功能说明............................................ 3 片内振荡器.............................................. 5 芯片擦除................................................ 5 单片机的主板电路............................................ 6 温度采集部分的设计.......................................... 6 温度传感器 DS18B20 ...................................... 6 DS18B20 温度传感器与单片机的接口电路 ................... 10 显示部分设计............................................... 10 74LS164 引脚功能及特征 ................................. 10 温度显示电路........................................... 11 报警系统电路............................................... 12第 4 章 数字温度计的软件设计 ..................................... 13 系统软件设计流程图......................................... 13 数字温度计部分程序清单..................................... 15第 5 章 结束语 ................................................... 20答谢辞参考文献 常州信息职业技术学院电子与电气工程学院 毕业设计论文 摘 要 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示。该设计控制器使用单片机 AT89C51,测温传感器使用 DS18B20,用 3 位共阳极 LED 数码管以串口传送数据,实现温度显示。本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 此外本文还介绍了数字温度计的硬件设计和软件设计,硬件设计主要包括主控制器、单片机的主板电路、温度采集部分电路、显示电路以及报警系统电路。 软件设计包括系统软件的流程图和数字温度计的部分程序清单。关键词:AT89C51 单片机,数字控制,测温传感器,多功能温度计 常州信息职业技术学院电子与电气工程学院 毕业设计论文 Abstract As peoples living standard rising SCM is undoubtedly one of theobjectives pursued by the people the convenience it brings is equallynegative and one digital thermometer is a typical example. The design presented in the traditional thermometer digitalthermometer and compared with a reading convenience a wide range oftemperature measurement temperature measurement accuracy the output ofthe temperature digital display. The design of the controller usingmicrocontroller AT89C51 temperature sensor uses DS18B20 with threecommon anode LED digital tube to serial transmission of data to achievetemperature display. The thermometer is multi-functional thermometeryou can set the upper and lower alarm temperature range when thetemperature is not set you can alarm. Besides the paper also describes the digital thermometer in hardwaredesign and software design hardware design includes the main controllermicrocontroller circuit board the temperature acquisition part of thecircuit display circuit and the alarm system circuit. Software designincluding system software flow chart and the digital thermometer in thepart of the program words: AT89C51 microcontroller digital control temperature sensormulti-function thermometer 常州信息职业技术学院电子与电气工程学院 毕业设计论文第1章 前言 随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 现代信息技术的飞速发展和传统工业改造的逐步实现。 能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差,所以传统的温度计有反应速度慢、读数麻烦、测量精度不高、误差大等缺点。 本文是以单片机 AT89C51 为核心,通过 DALLAS 公司的单总线数字温度传感器 DS18B20 来实现环境温度的采集和 A/D 转换,用来测量环境温度,温度分辨率为 ℃,并能数码显示。因此本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽其电路简单,软硬件结构模块化,易于实现等特点。 数字式温度计的设计将给人们的生活带来很大的方便, 为人们生活水平的提高做出了贡献。数字温度计在以后将应用于我们生产和生活的各个方面,数字式温度计的众多优点告诉我们:数字温度计将在我们的未来生活中应用于各个领域,它将会是传统温度计的理想的替代产品。 -1- 常州信息职业技术学院电子与电气工程学院 毕业设计论文第2章 数字温度计总体设计方案 数字温度计设计方案方案 一: 采用热敏电阻器件,利用其感温效应,再将随被测温度变化的电压或电流采集过来,进行 A/D 转换后,利用单片机进行数据的处理,然后在显示电路上,将被测温度显示出来。 方案 二: 利用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器 DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换就可以满足设计要求。 分析上述两种方案可以看出方案一是使用热敏电阻之类的器件利用其感温效应,进行 A/D 转换后,利用单片机进行数据的处理,在显示电路上被测温度显示出来,这种设计需要用到 A/D 转换电路,感温电路比较麻烦。方案二是利用温度传感器直接读取被测温度,读数方便,测温范围广,测温精确,适用范围宽而且电路简单易于实现。 综合方案一和方案二的优缺点,我们选择方案二。 总体设计框图 温度计电路设计总体设计方框图如图 2-1 所示, 控制器采用单片机 AT89C51,温度传感器采用 DS18B20,用 4 位 LED 数码管以串口传送数据实现温度显示。 L 单片机复位 E D 主 显 控 示 报警点按键调整 制 器 温 度 时钟振荡 传 感 器 图 2-1 总体设计方框图 -2- 常州信息职业技术学院电子与电气工程学院 毕业设计论文第3章 数字温度计硬件设计 主控制器 AT89C51 的特点及特性: 40 个引脚,4K Bytes FLASH 片内程序存储器,128 Bytes 的随机存取数据存储器(RAM) ,32 个外部双向输入/输出(I/O)口,5 个中断优先级 2 层中断嵌套中断,2 个 16 位可编程定时计数器,2 个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。 此外,AT89C51 在空闲模式下,CPU 暂停工作,而 RAM 定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存 RAM 的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有 PDIP、TQFP 和 PLCC 等三种封装形式,以适应不同产品的需求。 主要功能特性: 兼容 MCS-51 指令系统 4k 可反复擦写gt1000 次)ISP FLASH ROM 32 个双向 I/O 口 工作电压 2 个 16 位可编程定时/计数器 时钟频率 0-33MHZ 全双工 UART 串行中断口线 128X8 BIT 内部 RAM 2 个外部中断源 低功耗空闲和省电模式 中断唤醒省电模式 3 级加密位 看门狗(WDT)电路 软件设置空闲和省电功能 灵活的 ISP 字节和分页编程 双数据寄存器指针 管脚功能说明: AT89C51 管脚如图 3-1 所示: -3- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 图 3-1 AT89C51 管脚图 (1)VCC:供电电压。 (2)GND:接地。 P0 P0 (3) 口: 口为一个 8 位漏级开路双向 I/O 口, 每脚可吸收 8TTL 门电流。当 P1 口的管脚第一次写 1 时,被定义为高阻输入。P0 能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在 FIASH 编程时,P0 口作为原码输入口,当 FIASH 进行校验时,P0 输出原码,此时 P0 外部必须被拉高。 (4)P1 口:P1 口是一个内部提供上拉电阻的 8 位双向 I/O 口,P1 口缓冲器能接收输出 4TTL 门电流。P1 口管脚写入 1 后,被内部上拉为高,可用作输入,P1 口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在 FLASH编程和校验时,P1 口作为第八位地址接收。 (5)P2 口:P2 口为一个内部上拉电阻的 8 位双向 I/O 口,P2 口缓冲器可接收,输出 4 个 TTL 门电流,当 P2 口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2 口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2 口当用于外部程序存储器或 16 位地址外部数据存储器进行存取时,P2 口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2 口输出其特殊功能寄存器的内容。P2 口在 FLASH 编程和校验时接收高八位地址信号和控制信号。 (6)P3 口:P3 口管脚是 8 个带内部上拉电阻的双向 I/O 口,可接收输出 4个 TTL 门电流。当 P3 口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3 口将输出电流(ILL)这是由于上拉的缘故。P3 口也可作为 AT89C51 的一些特殊功能口,如下所示: RXD(串行输入口) TXD(串行输出口) /INT0(外部中断 0) /INT1(外部中断 1) T0(记时器 0 外部输入) T1(记时器 1 外部输入) /WR(外部数据存储器写选通) /RD(外部数据存储器读选通) -4- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 P3 口同时为闪烁编程和编程校验接收一些控制信号。 (7)RST:复位输入。当振荡器复位器件时,要保持 RST 脚两个机器周期的高电平时间。 (8)ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在 FLASH 编程期间,此引脚用于输入编程脉冲。在平时,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的 1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个 ALE 脉冲。如想禁止 ALE 的输出可在 SFR8EH 地址上置 0。此时,ALE 只有在执行 MOVX,MOVC 指令是 ALE 才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态 ALE 禁止,置位无效。 (9)/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN 有效。 但在访问外部数据存储器时, 这两次有效的/PSEN信号将不出现。 ( 10 ) /EA/VPP : 当 /EA 保 持 低 电 平 时 , 则 在 此 期 间 外 部 程 序 存 储 器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式 1 时,/EA 将内部锁定为 RESET;当/EA 端保持高电平时,此间内部程序存储器。在 FLASH 编程期间,此引脚也用于施加 12V 编程电源(VPP)。 (11)XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。 (12)XTAL2:来自反向振荡器的输出。 片内振荡器: 该反向放大器可以配置为片内振荡器,如图 3-2 所示。 图 3-2 片内振荡器 芯片擦除: -5- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 整个 PEROM 阵列和三个锁定位的电擦除可通过正确的控制信号组合, 并保持ALE 管脚处于低电平 10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。 此外,AT89C51 设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU 停止工作。但 RAM、定时器、计数器、串口和中断系统仍在工作。在掉电模式下,保存 RAM 的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。单片机 AT89C51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。 单片机 AT89C51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要, 很适合便携手持式产品的设计使用系统可用二节电池供电。 单片机主板电路 单片机 AT89C51 是数字温度计的核心元件,单片机的主板电路如图 3-3 所示,包括单片机芯片、报警系统电路、晶振电路、上拉电阻以及与单片机相连的其他电路。 图 3-3 单片机的主板电路 温度采集部分的设计 温度传感器 DS18B20 DS18B20 温度传感器是美国 DALLAS 半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现 9~12 位的数字值读数方式。 -6- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 TO-92 封装的 DS18B20 的引脚排列见图 3-4,其引脚功能描述见表 .
已把我毕业论文的一部分发给你了,应该是你想要的。还需要其它的说一声
温度相关的毕业设计 ·基于单片机的数字温度计的设计·基于MCS-51数字温度表的设计·单片机的数字温度计设计·基于单片机的空调温度控制器设计·基于数字温度计的多点温度检测系统·设施环境中温度测量电路设计·DS18B20数字温度计的设计·多点温度采集系统与控制器设计·基于PLC和组态王的温度控制系统设计·温度监控系统的设计·用单片机进行温度的控制及LCD显示系统的设计·单片机电加热炉温度控制系统·全氢罩式退火炉温度控制系统·数字温度计的设计·基于单片机AT89C51的语音温度计的设计·基于单片机的多点温度检测系统·基于51单片机的多路温度采集控制系统·基于单片机的数字显示温度系统毕业设计论文·基于MCS51单片机温度控制毕业设计论文·西门子S7-300在温度控制中的应用·燃气锅炉温度的PLC控制系统·焦炉立火道温度软测量模型设计·温度检测控制仪器·智能温度巡检仪的研制·电阻炉温度控制系统·数字温度测控仪的设计·温度测控仪设计·多路温度采集系统设计·多点数字温度巡测仪设计·LCD数字式温度湿度测量计·64点温度监测与控制系统·温度报警器的电路设计与制作·基于单片机的数字温度计的电路设计·全氢煤气罩式炉的温度控制系统的研究与改造·温度检测与控制系统·红外快速检测人体温度装置的设计与研制·具有红外保护的温度自动控制系统的设计·基于单片机的温度测量系统的设计·数字温度计设计·DS18B20温度检测控制·PN结(二极管)温度传感器性能的实验研究·多功能智能化温度测量仪设计·软胶囊的单片机温度控制(硬件设计)·空调温度控制单元的设计·大容量电机的温度保护——软件设计·大容量电机的温度保护 ——硬件电路的设计·基于DS18B20温度传感器的数字温度计设计·热轧带钢卷取温度反馈控制器的设计·基于单片机的温度采集系统设计·多点温度数据采集系统的设计·基于单片机的数字式温度计设计·18B20多路温度采集接口模块·基于单片机的户式中央空调器温度测控系统设计·单片机电阻炉温度控制系统设计·基于单片机的电阻炉温度控制系统设计·基于ARM的嵌入式温度控制系统的设计·基于DS18B20的多点温度巡回检测系统的设计·基于单片机的多点无线温度监控系统·基于MSC1211的温度智能温度传感器·用集成温度传感器组成测温控制系统·室内温度控制报警器·自动温度控制系统·烤箱温度控制系统·基于单片机的电加热炉温度控制系统设计·基于PLC的温度监控系统设计·基于无线传输技术的室温控制系统设计——温度控制器软件设计·温度箱模拟控制系统·基于无线传输技术的室温控制系统设计——温度控制器硬件设计·数字式温度计的设计·温度监控系统设计·基于单片机的电阻炉温度控制系统·基于plc的温度湿度检测和显示系统设计·基于单片机的3KW电炉温度控制系统的设计·腔型肿瘤热疗仪温度控制系统设计·基于AT89S51单片机的数字温度计设计·吹塑薄膜挤出机温度控制与检测系统设计·电加热炉PLC温度自适应控制系统的研究·高压母线温度自动监测装置的设计·高压母线温度自动检测装置·小型热水锅炉单片机温度控制系统·消毒柜单片机温度控制·嵌入式系统在多点温度控制中的应用·单片机温度控制系统·上下限温度报警器的设计·基于单片机的饮水机温度控制系统设计·基于单片机的温度测量系统设计
基于视频的人流量监测系统设计与实现 图像水印识别微信小程序设计与实现 基于重力传感器的飞机大战游戏开发 手机平台加减乘除口算训练游戏开发 基于Android平台的个人移动地图软件开发 面向多种数据源的爬虫系统的设计与实现 基于Zabbix的服务器监控系统的设计与实现 基于新浪微博的分布式爬虫以及对数据的可视化处理 基于分布式的新闻热点网络爬虫系统与设计 舆情分析可视化系统的设计与实现 基于大数据的用户画像的新闻APP设计 基于Android平台的语言翻译程序设计与实现 基于SSH的水电信息管理系统的设计与实现 基于SSM的学科竞赛管理系统
用手写啊,不过我在替一个同学做毕业设计,也是温度计的,采用DS18B20的,液晶显示屏,几百元,带实物!
温度相关的毕业设计 ·基于单片机的数字温度计的设计·基于MCS-51数字温度表的设计·单片机的数字温度计设计·基于单片机的空调温度控制器设计·基于数字温度计的多点温度检测系统·设施环境中温度测量电路设计·DS18B20数字温度计的设计·多点温度采集系统与控制器设计·基于PLC和组态王的温度控制系统设计·温度监控系统的设计·用单片机进行温度的控制及LCD显示系统的设计·单片机电加热炉温度控制系统·全氢罩式退火炉温度控制系统·数字温度计的设计·基于单片机AT89C51的语音温度计的设计·基于单片机的多点温度检测系统·基于51单片机的多路温度采集控制系统·基于单片机的数字显示温度系统毕业设计论文·基于MCS51单片机温度控制毕业设计论文·西门子S7-300在温度控制中的应用·燃气锅炉温度的PLC控制系统·焦炉立火道温度软测量模型设计·温度检测控制仪器·智能温度巡检仪的研制·电阻炉温度控制系统·数字温度测控仪的设计·温度测控仪设计·多路温度采集系统设计·多点数字温度巡测仪设计·LCD数字式温度湿度测量计·64点温度监测与控制系统·温度报警器的电路设计与制作·基于单片机的数字温度计的电路设计·全氢煤气罩式炉的温度控制系统的研究与改造·温度检测与控制系统·红外快速检测人体温度装置的设计与研制·具有红外保护的温度自动控制系统的设计·基于单片机的温度测量系统的设计·数字温度计设计·DS18B20温度检测控制·PN结(二极管)温度传感器性能的实验研究·多功能智能化温度测量仪设计·软胶囊的单片机温度控制(硬件设计)·空调温度控制单元的设计·大容量电机的温度保护——软件设计·大容量电机的温度保护 ——硬件电路的设计·基于DS18B20温度传感器的数字温度计设计·热轧带钢卷取温度反馈控制器的设计·基于单片机的温度采集系统设计·多点温度数据采集系统的设计·基于单片机的数字式温度计设计·18B20多路温度采集接口模块·基于单片机的户式中央空调器温度测控系统设计·单片机电阻炉温度控制系统设计·基于单片机的电阻炉温度控制系统设计·基于ARM的嵌入式温度控制系统的设计·基于DS18B20的多点温度巡回检测系统的设计·基于单片机的多点无线温度监控系统·基于MSC1211的温度智能温度传感器·用集成温度传感器组成测温控制系统·室内温度控制报警器·自动温度控制系统·烤箱温度控制系统·基于单片机的电加热炉温度控制系统设计·基于PLC的温度监控系统设计·基于无线传输技术的室温控制系统设计——温度控制器软件设计·温度箱模拟控制系统·基于无线传输技术的室温控制系统设计——温度控制器硬件设计·数字式温度计的设计·温度监控系统设计·基于单片机的电阻炉温度控制系统·基于plc的温度湿度检测和显示系统设计·基于单片机的3KW电炉温度控制系统的设计·腔型肿瘤热疗仪温度控制系统设计·基于AT89S51单片机的数字温度计设计·吹塑薄膜挤出机温度控制与检测系统设计·电加热炉PLC温度自适应控制系统的研究·高压母线温度自动监测装置的设计·高压母线温度自动检测装置·小型热水锅炉单片机温度控制系统·消毒柜单片机温度控制·嵌入式系统在多点温度控制中的应用·单片机温度控制系统·上下限温度报警器的设计·基于单片机的饮水机温度控制系统设计·基于单片机的温度测量系统设计
#include <>
#include <> //Keil library
#include <> //Keil library
#include <>
#define uchar unsigned char
#define uint unsigned int
#define display1 0x01 //数码管1从左至右
#define display2 0x02 //数码管2从左至右
#define display3 0x04 //数码管3从左至右
#define display4 0x08 //数码管4从左至右
#define display5 0x10 //数码管5从左至右
#define display6 0x20 //数码管6从左至右
#define display7 0x40 //数码管7从左至右
#define display8 0x80 //数码管8从左至右
sbit led=P1^5;
sbit TMDAT=P3^6; //根据实实际情况设定
sbit set=P1^0;//设定
sbit up=P1^1;//加
sbit down=P3^2;//减
uchar tempint,f,bb,tempth,settemp; //温度整数部分和小数部分
float wendu;
int tempdf,c;
code unsigned char ledmap[]={0xc0,0xf9,0xa4,0xb0,0x99,
0x92,0x82,0xf8,0x80,0x90,0xbf};
code unsigned char ledmap1[]={0x40,0x79,0x24,0x30,
0x19,0x12,0x02,0x78,0x00,0x10};
//7段数码管0~9数字的共阳显示代码和负号位代码(最后一位)
void set_ds18b20(); //初始化DS18B20子程序
void get_temperature(); //获得温度子程序
void read_ds18b20(); //读DS18B20子程序
void write_ds18b20(uchar command); //向DS18B20写1字节子程序
void delayms(uchar count); //延时count毫秒子程序
void disp_temp(tempint,tempdf); //显示温度子程序
//***********************初始化DS18B20子程序**********************************
//****************************************************************************
void set_ds18b20()
{
while(1)
{
uchar delay,flag;
flag=0;
TMDAT=1;
delay=1;
while(--delay);
TMDAT=0; //数据线置低电平
delay=250;
while(--delay); //低电平保持500us
TMDAT=1; //数据线置高电平
delay=30;
while(--delay); //高电平保持60us
while(TMDAT==0) //判断DS18B20是否发出低电平信号
{
delay=210; //DS18B20响应,延时420us
while(--delay);
if(TMDAT) //DS18B20发出高电平初始化成功,返回
{
flag=1; //DS18B20初始化成功标志
//初始化成功LED标志
break;
}
}
if(flag) //初始化成功,再延时480us,时序要求
{
delay=240;
while(--delay);
break;
}
}
}
//***********************获得温度子程序***************************************
//****************************************************************************
void get_temperature() //温度转换、获得温度子程序
{
set_ds18b20(); //初始化DS18B20
write_ds18b20(0xcc); //发跳过ROM匹配命令
write_ds18b20(0x44); //发温度转换命令
disp_temp(tempint,tempdf); //显示温度,等待AD转换
set_ds18b20();
write_ds18b20(0xcc); //发跳过ROM匹配命令
write_ds18b20(0xbe); //发出读温度命令
read_ds18b20(); //将读出的温度数据保存到tempint和tempdf处
}
//***********************读DS18B20子程序***************************************
//****************************************************************************
void read_ds18b20()
{
uchar delay,i,j,k,temp,temph,templ;
float wendu;
j=3; //读2位字节数据
do
{
for(i=8;i>0;i--) //一个字节分8位读取
{
temp>>=1; //读取1位右移1位
TMDAT=0; //数据线置低电平
delay=1;
while(--delay);
TMDAT=1; //数据线置高电平
delay=4;
while(--delay); //延时8us
if(TMDAT) //读取1位数据
temp|=0x80;
delay=25; //读取1位数据后延时50us
while(--delay);
}
if(j==3)
templ=temp;//读取的第一字节存templ
if(j==2)
temph=temp; //读取的第二字节存temph
if(j==1)
tempth=temp; //读取的第3字节存tempth TH的值
}while(--j);
f=0;
if((temph & 0xf8)!=0x00) //若温度为负的处理,对二进制补码的处理
{
f=1; //为负温度f置1
temph=~temph;
templ=~templ;
k=templ+1;
templ=k;
if(k>255)
{
temph++;
}
}
tempdf=templ & 0x0f; //将读取的数据转换成温度值,整数部分存tempint,小数部分存tempdf
c=(tempdf*625);
tempdf=c;
templ>>=4; //
temph<<=4; //转化成字节温度
tempint=temph|templ;//两字节合并为一个字节
//wendu=((temph*256)+templ)*;
// tempdf=templ & 0x0f; //将读取的数据转换成温度值,整数部分存tempint,小数部分存tempdf
// if (tempdf&0x08==1) a=8;
//if (tempdf&0x04==1) b=4;
// if (tempdf&0x02==1) c=2;
// if (tempdf&0x01==1) d=1;
// tempdf=a+b+c+d;
// c=tempdf*625;
//tempdf=c;
//templ>>=4; //
//<<=4; //转化成字节温度
// tempint=temph|templ;//两字节合并为一个字节
}
//***********************写DS18B20子程序***************************************
//****************************************************************************
void write_ds18b20(uchar command)
{
uchar delay,i;
for(i=8;i>0;i--) //将一字节数据一位一位写入
{
TMDAT=0; //数据线置低电平
delay=6; //延时12us
while(--delay);
TMDAT=command&0x01; //将数据放置在数据线上
delay=25; //延时50us
while(--delay);
command=command>>1; //准备发送下一位数据
TMDAT=1; //发送完一位数据,数据线置高电平
}
}
//***********************显示子程序***************************************
//****************************************************************************
void disp_temp( tempint,tempdf)
{
uchar tempinth,tempintl,tempinbai,shifen,baifen,gefen,qianfen;
int x;
for(x=0;x<10;x++)
{
if (bb!=0)
{ tempint=settemp;
tempdf=0;
}
else
{ tempinbai=tempint/100;
tempinth=(tempint%100)/10;
tempintl=tempint%10; //整数取模
gefen=tempdf/1000;
shifen=tempdf%1000/100;
baifen =tempdf%100/10;
qianfen=tempdf%10; //小数取模
}
if (f==0)
{
P0=display1; //符号位
P2=ledmap[0];
}
else
{
P0=display1; //符号位
P2=ledmap[10];
}
delayms(2);
P0=display2;
P2=ledmap[tempinbai]; //开百位
delayms(2);
P0=display3;
P2=ledmap[tempinth];//开十位
delayms(2);
P0=display4;
P2=ledmap1[tempintl]; //开个位
delayms(2);
P0=display5;
P2=ledmap[gefen];//开个分位
delayms(2);
P0=display6;
P2=ledmap[shifen]; //开十分位
delayms(2);
P0=display7;
P2=ledmap[baifen]; //开百分位
delayms(2);
P0=display8;
P2=ledmap[qianfen];//开千分位
}
}
//***********************延时count ms子程序***************************************
//****************************************************************************
void delayms(uchar count) //延时count ms子程序
{
uchar i,j;
do
{
for(i=5;i>0;i--)
for(j=98;j>0;j--);
}while(--count);
}
//***********************键盘扫描子程序***************************************
//****************************************************************************
void keyscan() //键盘扫描
{
if(set==0)
{
delayms(1);
}
if(set==0)
{
bb++;
while(!set); //循环在此 非0=1
}
if(bb==1)
{
if(up==0)
{
delayms(1);
}
if(up==0)
{
disp_temp(settemp);
if(settemp<125)
{settemp++;}
while(!up)//非0=1
{
disp_temp(settemp);
}
}
if(down==0)
{
delayms(1);
}
if(down==0)
{
disp_temp();
if(settemp!=0) //不等于0为真执行
{
settemp--;
while(!down) // down为(非0=1)循环执行
{
disp_temp(settemp);
}
}
}
}
if(bb==2)
{bb=0;
set_ds18b20(); //初始化DS18B20
write_ds18b20(0xcc); //发跳过ROM匹配命令
write_ds18b20(0x4e); //发温度转换命令
write_ds18b20(settemp); //写TH 3
//write_ds18b20(settemp); 写到TL 4
// write_ds18b20(settemp); 写分辨率 5
set_ds18b20(); //初始化DS18B20
write_ds18b20(0xcc); //发跳过ROM匹配命令
write_ds18b20(0x48);
}}
void main()
{ set_ds18b20();
write_ds18b20(0xcc); //发跳过ROM匹配命令
write_ds18b20(0xbe); //发出读温度命令
read_ds18b20(); //将读出的数据
settemp=tempth; //将TH读到单片机
SP=0x60; //设置堆栈指针
bb=0;
led=0;
while(1)
{
if(bb==0)
{ keyscan();
get_temperature(); //获得温度
}
disp_temp(tempint,tempdf); //显示温度
}
}
这是一个仿真实例,可以参考一下试试。
单片机类毕业设计 ·电子时钟的设计·全自动节水灌溉系统--硬件部分·数字式温度计的设计·温度监控系统设计·基于单片机的语音提示测温系统的研究·简易无线电遥控系统·数字流量计·基于单片机的全自动洗衣机·水塔智能水位控制系统·温度箱模拟控制系统·超声波测距仪的设计·基于51单片机的LED点阵显示屏系统的设计与实现 16×16点阵显示屏·基于AT89S51单片机的数字电子时钟·基于单片机的步进电机的控制·基于单片机的交流调功器设计·基于单片机的数字电压表的设计·单片机的数字钟设计·智能散热器控制器的设计·单片机打铃系统设计·基于单片机的交通信号灯控制电路设计·基于单片机的电话远程控制家用电器系统设计·基于单片机的安全报警器·基于单片机的八路抢答器设计·基于单片机的超声波测距系统的设计·基于MCS-51数字温度表的设计·电子体温计的设计·基于AT89C51的电话远程控制系统·基于AVR单片机幅度可调的DDS信号发生器·基于单片机的数控稳压电源的设计·基于单片机的室内一氧化碳监测及报警系统的研究·基于单片机的空调温度控制器设计·基于单片机的可编程多功能电子定时器·单片机的数字温度计设计·红外遥控密码锁的设计·基于61单片机的语音识别系统设计·家用可燃气体报警器的设计·基于数字温度计的多点温度检测系统·基于凌阳单片机的语音实时采集系统设计·基于单片机的数字频率计的设计·基于单片机的数字电子钟设计·设施环境中温度测量电路设计·汽车倒车防撞报警器的设计·篮球赛计时记分器·基于单片机的家用智能总线式开关设计·设施环境中湿度检测电路设计·基于单片机的音乐合成器设计·设施环境中二氧化碳检测电路设计·基于单片机的水温控制系统设计·基于单片机的数字温度计的设计·基于单片机的火灾报警器·基于单片机的红外遥控开关设计·基于单片机的电子钟设计·基于单片机的红外遥控电子密码锁·大棚温湿度自动监控系统·基于单片机的电器遥控器的设计·单片机的语音存储与重放的研究·基于单片机的电加热炉温度控制系统设计·红外遥控电源开关·基于单片机的低频信号发生器设计·基于单片机的呼叫系统的设计·基于PIC16F876A单片机的超声波测距仪·基于单片机的密码锁设计·单片机步进电机转速控制器的设计·由AT89C51控制的太阳能热水器·防盗与恒温系统的设计与制作·AT89S52单片机实验系统的开发与应用·基于单片机控制的数字气压计的设计与实现·智能压力传感器系统设计·智能定时器·基于单片机的智能火灾报警系统·基于单片机的电子式转速里程表的设计·公交车汉字显示系统·单片机数字电压表的设计·精密VF转换器与MCS-51单片机的接口技术·基于单片机的居室安全报警系统设计·基于89C2051 IC卡读/写器的设计·PC机与单片机串行通信毕业论文·球赛计时计分器 毕业设计论文·松下系列PCL五层电梯控制系统·自动起闭光控窗帘毕业设计论文·单片机控制交通灯系统设计·基于单片机的电子密码锁·基于51单片机的多路温度采集控制系统·点阵电子显示屏--毕业设计·超声波测距仪--毕业设计·单片机对玩具小车的智能控制毕业设计论文·基于单片机控制的电机交流调速毕业设计论文·单片机智能火灾报警器毕业设计论文·基于单片机的锁相频率合成器毕业设计论文·单片机控制的数控电流源毕业设计论文·基于单片机的数字显示温度系统毕业设计论文·单片机串行通信发射部分毕业设计论文·基于单片机控制直流电机调速系统毕业设计论文·单片机控制步进电机 毕业设计论文·基于MCS51单片机温度控制毕业设计论文·基于单片机的自行车测速系统设计·单片机汽车倒车测距仪·基于单片机的数字电压表·单片机脉搏测量仪·单片机控制的全自动洗衣机毕业设计论文·基于单片机的电器遥控器设计·单片机控制的微型频率计设计·基于单片机的音乐喷泉控制系统设计·等精度频率计的设计·自行车里程,速度计的设计·基于单片机的数字电压表设计·自行车车速报警系统·大棚仓库温湿度自动控制系统·自动剪板机单片机控制系统设计·单片机电器遥控器的设计·基于单片机技术的自动停车器的设计·基于单片机的金属探测器设计·ATMEIL AT89系列通用单片机编程器的设计·单片机水温控制系统·基于单片机的IC卡智能水表控制系统设计·基于MP3格式的单片机音乐播放系统·节能型电冰箱研究·基于单片机控制的PWM调速系统·交流异步电动机变频调速设计·基于单片机的数字温度计的电路设计·基于Atmel89系列芯片串行编程器设计·基于MCS-51通用开发平台设计·基于单片机的实时时钟·用单片机实现电话远程控制家用电器·中频感应加热电源的设计·家用豆浆机全自动控制装置·基于ATmega16单片机的高炉透气性监测仪表的设计·用单片机控制的多功能门铃·基于8051单片机的数字钟·红外快速检测人体温度装置的设计与研制·三层电梯的单片机控制电路·交通灯89C51控制电路设计·基于单片机的短信收发系统设计 ――硬件设计·大棚温湿度自动控制系统·串行显示的步进电机单片机控制系统·微机型高压电网继电保护系统的设计·基于单片机mega16L的煤气报警器的设计·智能毫伏表的设计·基于单片机的波形发生器设计·基于单片机的电子时钟控制系统·火灾自动报警系统·基于PIC16F74单片机串行通信中继控制器·遥控小汽车的设计研究·基于单片机对氧气浓度检测控制系统·单片机的数字电压表设计·基于单片机的压电智能悬臂梁振动控制系统设计·单片机的打印机的驱动设计·单片机音乐演奏控制器设计·自动选台立体声调频收音机·直流数字电压表的设计·具有红外保护的温度自动控制系统的设计·基于单片机的机械通风控制器设计·音频信号分析仪·单片机波形记录器的设计·公交车站自动报站器的设计·基于单片机的温度测量系统的设计·龙门刨床的可逆直流调速系统的设计·电子秤设计与制作·智能型充电器的电源和显示的设计·80C196MC控制的交流变频调速系统设计·步进电机运行控制器的设计·自动车库门的设计·家庭智能紧急呼救系统的设计·单片机病房呼叫系统设计·电子闹钟设计·电子万年历设计·定时闹钟设计·计算器模拟系统设计·数字电压表设计·数字定时闹钟设计·数字温度计设计·数字音乐盒设计·智能定时闹钟设计·电子风压表设计·8×8LED点阵设计·可编程的LED(16×64)点阵显示屏·无线智能报警系统·温湿度智能测控系统·单片机电量测量与分析系统·多通道数据采集记录系统·单片机控制直流电动机调速系统·步进电动机驱动器设计·DS18B20温度检测控制·6KW电磁采暖炉电气设计·基于电流型逆变器的中频冶炼电气设计·新型电磁开水炉设计·新型洗浴器设计·中频淬火电气控制系统设计·中型电弧炉单片机控制系统设计·基于单片机的电火箱调温器·LCD数字式温度湿度测量计·单片机与计算机USB接口通信·万年历的设计·基于单片机的家电远程控制系统设计·超声波测距器设计·多路温度采集系统设计·交通灯控制系统设计·数字电容表的设计·100路数字抢答器设计·单片机与PC串行通信设计·基于DS18B20温度传感器的数字温度计设计·基于单片机的大棚温、湿度的检测系统·基于MCS-96单片机的双向加力式电子天平·智能型客车超载检测系统的设计·语音控制小汽车控制系统设计·万年历可编程电子钟控电铃·基于单片机的步进电机控制系统·基于MCS-51单片机温控系统设计的电阻炉·基于单片机89C52的啤酒发酵温控系统·基于单片机的温度采集系统设计·PIC单片机在空调中的应用·列车测速报警系统·多点温度数据采集系统的设计·遥控窗帘电路的设计·基于单片机的数字式温度计设计·87C196MC单片机最小系统单板电路模板的设计与开发·基于87C196MC交流调速实验系统软件的设计与开发·基于87C196MC交流调速系统主电路软件的设计与开发·基于80C196MC交流调速实验系统软件的设计与开发·基于单片机的水位控制系统设计·基于单片机的液位检测·基于单片机的定量物料自动配比系统·智能恒压充电器设计·单片机的水温控制系统·基于单片机的车载数字仪表的设计·基于单片机的室温控制系统设计·基于MAX134与单片机的数字万用表设计·基于单片机防盗报警系统的设计·18B20多路温度采集接口模块·基于单片机的乳粉包装称重控制系统设计·基于单片机的户式中央空调器温度测控系统设计·步进电机实现的多轴运动控制系统·IC卡读写系统的单片机实现·单片机电阻炉温度控制系统设计·单片机控制PWM直流可逆调速系统设计·单片机自动找币机械手控制系统设计 ·基于89C52的多通道采集卡的设计·基于AT89C51单片机控制的双闭环直流调速系统设计·单片机控制的PWM直流电机调速系统的设计·基于单片机的电阻炉温度控制系统设计·公交车报站系统的设计·智能多路数据采集系统设计·基于单片机控制的红外防盗报警器的设计·篮球比赛计时器设计·超声波测距仪的设计及其在倒车技术上的应用·汽车侧滑测量系统的设计·自动门控制系统设计·基于51单片机的液晶显示器设计·基于AT89C51单片机的电源切换控制器的设计·基于单片机的普通铣床数控化设计·基于AT89C51单片机的号音自动播放器设计·基于单片机的玻璃管加热控制系统设计·中央冷却水温控制系统·基于单片机的无刷直流电机控制系统设计·锅炉汽包水位控制系统·基于单片机的鱼用投饵机自动控制系统的设计·空调温度控制单元的设计·软胶囊的单片机温度控制(硬件设计)·小型户用风力发电机控制器设计·自动售报机的设计·无线表决系统的设计·微电脑时间控制器的软件设计·基于单片机AT89S52的超声波测距仪的研制·单片机教学实验板——软件设计·基于16位单片机的串口数据采集·单片机太阳能热水器测控仪的设计·基于单片机的简单数字采集系统设计·多电量采集系统的设计与实现·PWM及单片机在按摩机中的应用·基于单片机的简易GPS定位信息显示系统设计·基于单片机的温湿度测量系统设计·基于单片机的电子音乐门铃的设计·开关电源的设计·锅炉控制系统的研究与设计·基于ARM的嵌入式温度控制系统的设计·基于DS18B20的多点温度巡回检测系统的设计·基于单片机的频率计设计·仓储用多点温湿度测量系统·基于单片机的超声波液位测量系统的设计·基于单片机的多功能函数信号发生器设计·噪音检测报警系统的设计与研究·转速、电流双闭环直流调速系统设计·基于单片机程控精密直流稳压电源的设计·模拟电梯的制作·基于AT89C51单片机的步进电机控制系统·超声波倒车雷达系统硬件设计·基于单片机实现汽车报警电路的设计·采用单片机技术的脉冲频率测量设计·智能豆浆机的设计·电话远程监控系统的研究与制作·分立式生活环境表的研究与制作(多功能电子万年历)·高效智能汽车调节器·全自动汽车模型的制作·智能红外遥控暖风机设计·蔬菜公司恒温库微机监控系统·数字触发提升机控制系统·基于单片控制的交流调速设计·基于单片机的多点无线温度监控系统·单片机控制的霓虹灯控制器·基于单片机的数码录音与播放系统·全自动洗衣机控制器·空调器微电脑控制系统·自动存包柜的设计·基于单片机的数字钟设计·电子万年历·多路数据采集系统的设计·基于单片机步进电机控制系统设计·基于单片机的鸡雏恒温孵化器的设计·基于FPGA和单片机的多功能等精度频率计·基于单片机的水温控制系统·基于单片机的智能电子负载系统设计·智能电话报警器·基于ADE7758的电能监测系统的设计·基于单片机PIC16F877的环境监测系统的设计·基于单片机控制动态扫描文字显示系统的设计·基于单片机控制发生的数字音乐盒·基于单片机控制文字的显示·基于单片机控制音乐门铃·智能电子密码锁设计·单片机电铃系统设计·单片机演奏音乐歌曲装置的设计·大功率电器智能识别与用电安全控制器的设计·单片机交通灯控制系统的设计·智能立体仓库系统的设计·智能火灾报警监测系统·基于单片机的多点温度检测系统·单片机定时闹钟设计·湿度传感器单片机检测电路制作·智能小车自动寻址设计--小车悬挂运动控制系统·单片机呼叫系统的设计·基于单片机的带智能自动化的红外遥控小车·基于单片机AT89C51的语音温度计的设计·基于TMS320VC33DSP开发板制作·16×16点阵LED电子显示屏的设计·单片机实验教学平台分析·基于USB总线的设计与开发·基于单片机设计的自动售货机系统设计·数字温度计的设计·生产流水线产品产量统计显示系统·水位报警显时控制系统的设计·红外遥控电子密码锁的设计·基于MCU温控智能风扇控制系统的设计·数字电容测量仪的设计·基于单片机的遥控器的设计·200电话卡代拨器的设计·数字式心电信号发生器硬件设计及波形输出实现·全氢罩式退火炉温度控制系统·单片机控制单闭环直流电动机的调速控制系统·单片机电加热炉温度控制系统·单片机大型建筑火灾监控系统·点阵式汉字电子显示屏的设计与制作·基于AT89C51的路灯控制系统设计·基于AT89C51的宽范围高精度的电机转速测量系统·基于DSP的电机控制·汽车倒车雷达·基于光纤的汽车CAN总线研究·基于AT89C51SND1C的MP3播放器·多功能频率计的设计·基于单片机的数字直流调速系统设计·单片机的智能电源管理系统·基于单片机的多功能智能小车设计·汽车防撞主控系统设计·单片机控制电梯系统的设计·电子密码锁的电路设计与制作·高精度超声波传感器信号调理电路的设计·数字电子钟的设计与制作·银行自动报警系统
论文致谢词300字(通用14篇)
论文致谢是论文写作完成最后的一个步骤,其表现了作者感恩的道德情操和谦虚的学术精神,让我们用心地写一份论文致谢吧。那么论文致谢要注意有什么内容呢?下面是我精心整理的论文致谢词300字,欢迎阅读与收藏。
本次毕业论文能够得以顺利完成,并非我一人之功劳,是所有指导过我的老师,帮助过我的同学和一直关心支持着我的家人对我的教诲、帮助和鼓励的结果。我要在这里对他们表示深深的谢意!
感谢我的指导老师——王香平老师,没有您的悉心指导就没有这篇论文的顺利完成。
感谢班主任牛永斌老师,四年的生活相处不久,却从您身上学到了太多,必将终身受益。感谢所有教授过我课程的暨南大学的老师们,是你们诲人不倦才有了现在的我。
感谢我的父母,没有你们,就没有我的今天,你们的支持与鼓励,永远是支撑我前进的最大动力。
感谢陈小烦,安农礼堂里挥汗如雨,日月湖畔闲庭信步,绿荫场上把酒言欢……最难忘的记忆里都有你身影。感谢一起欢笑一起惆怅的日子,不论何时,请不要忘记最初的梦想。
感谢馨悦,最黑暗的日子我们一起走过,为了梦想,我们永不放弃,总有一天,我们会在梦想的天堂再次相遇。
在本次论文设计过程中,王龙水老师对该论文从选题,构思到最后定稿的各个环节给予细心指引与教导,使我得以最终完成毕业论文设计。在学习中,王老师严谨的治学态度、丰富渊博的知识、敏锐的学术思维、精益求精的工作态度以及侮人不倦的师者风范是我终生学习的楷模,王老师的高深精湛的造诣与严谨求实的治学精神,将永远激励着我。这四年中还得到众多老师的关心支持和帮助。在此,谨向老师们致以衷心的感谢和崇高的敬意!
由衷地感谢我的助教,他尽心尽责地为我指导论文,求真务实的工作态度值得我学习。
感谢我的爸爸妈妈,焉得谖草,言树之背,养育之恩,无以回报,你们永远健康快乐是我最大的心愿。
最后,我要向百忙之中抽时间对本文进行审阅,评议和参与本人论文答辩的各位老师表示感谢。
务实的工作作风,孜孜不倦的学习精神令我敬佩至深,受益匪浅。他既是良师,又是益友,他所教会我的不仅是书本上的知识,还有着做人的原则与风骨。同时在我撰写论文的过程中,曾老师无论是在论文的选题、构思和资料的收集方面,还是在论文的研究方法以及成文定稿方面,我都得到了曾老师悉心细致的教诲和无私的帮助,特别是他广博的学识、深厚的学术素养、严谨的治学精神和一丝不苟的工作作风使我终生受益,在此表示真诚地感谢和深深的谢意。
其次感谢我的同学和朋友,在论文的写作过程中,也得到了许多同学的宝贵建议、支持和帮助,在此以诚挚的谢意。感谢我同宿舍的其他同学,谢谢他们在这大学四年里给我的帮助和关心。
最后,特别感谢父母和亲人在我求学过程中自始至终的支持。
时间过得真快,转眼间我的研究生生活就要结束了,我们也即将告别熟悉的大学校园,开始踏上工作的征程,此时此刻,除了不舍,更多的是感谢。
感谢我的导师,除了在生活上对我们关心外,从论文的选题、写作思路的整理到初稿的形成及后续的修改,老师都竭尽全力地给予我们指导,帮助我们克服重重难关,老师的待人随和、治学严谨的态度深深感染着我们。
感谢会计学院的各位老师,各位老师的精彩授课让我们对会计专业领域有了更深入的领悟,不仅学到了理论知识,同时也开拓了视野,从老师身上感受到了敬业、负责的精神,让我们在今后的学习生活中更踏实和认真。
感谢所有我可爱的研究生同学,我们一起上课,一起运动,一起考注会,一起探讨毕业论文,一起畅谈人生理想,时光不老,我们不散。
感谢父母一直以来对我的支持和鼓励,让远在千里之外的我时刻感受到家的温暖,能够以更饱满的热情投入到学习和生活中,在人生的道路上走得更加坚定。
本研究及学位论文是在我的导师xxx教授的亲切关怀和悉心指导下完成的。他严肃的科学态度,严谨的`治学精神,精益求精的工作作风,深深地感染和激励着我。从课题的选择到项目的最终完成,xxx老师都始终给予我细心的指导和不懈的支持。两年多来,xxx教授不仅在学业上给我以精心指导,同时还在思想、生活上给我以无微不至的关怀,在此谨向xxx老师致以诚挚的谢意和崇高的敬意。
在此,我还要感谢在一起愉快的度过研究生生活的各位同门,正是由于你们的帮助和支持,我才能克服一个一个的困难和疑惑,直至本文的顺利完成。特别感谢我的xxx同学,她对本课题做了不少工作,给予我不少的帮助。
在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意!最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们!
本论文是在王爱香老师的悉心指导下完成的。从毕业论文题目的选择、到课题的研究和论证,再到毕业论文的编写、修改,每一步都有王老师的细心指导和认真的解析。论文写作过程中遇到很多困难,不过都在王老师的指导下,困难都逐步得到了解决,使得我在各方面都有所提高,在此衷心感谢王老师。
同时感谢所有教育过我的专业老师,你们传授的专业知识是我不断成长的源泉也是完成本论文的基础。也感谢我的同学是你们在我遇到难题是帮我找到大量资料,解决难题。另外还要感谢这篇论文所涉及到的各位学者,本文引用了多位学者的研究文献,如果没有各位学者的研究成果的帮助和启发,我将很难完成本篇论文的写作。通过这次毕业论文不仅提高了我独立思考问题解决问题的能力而且培养了认真严谨,一丝不苟的学习态度。
由于经验匮乏,能力有限,设计中难免有许多考虑不周全的地方,希望各位老师多加指正。
时光如白驹过隙,转眼间我已经在山西财经大学经历了多年的学习生活,在三年研究生生涯中,我遇到了许许多多值得感恩的老师和朋友。在我完成论文的过程中,我的导师李蕊爱老师给予了极大的关切与指导,感谢李老师用渊博的学识、严谨的治学态度指引我研究生三年的学习和生活,她与学生之间相处的点滴必将使我受益终生,借论文完成之际,谨向李蕊爱老师表达我最诚挚的敬意与感激。
衷心感谢所有给予授课的老师,感谢他们无私的教诲;衷心感谢答辩委员会的老师,感谢他们严谨的治学理念。感谢无私养育我、爱护我的父母,他们的爱充实了我的学生生涯;感谢我亲爱的室友,多年的相依相伴会成为我无价的精神财富;感谢在我完成论文过程中与我讨论问题、共同解决困难的同学们,感谢他们的鼓励与支持。
在山西财经大学度过的岁月珍贵而难忘,我即将向自己的学生生涯告别,在此,我将在心中永远珍藏这七年独一无二的完美影像!
四年时光一晃而过,在毕业论文即将定稿之际,心中有一些感慨。由于是在职攻读硕士学位,工作、学习、生活充满了辛苦,但四年的时间没有虚度,在这四年学习生活中,我对本科所学又有了新的认识,这将对我目前的工作有一定帮助。在这里,我首先要感谢导师邹荣副教授,感谢邹老师为我定了这个有意义也充满挑战的论文课题,并在我论文的写作中给予我的指导和帮助。本文从选题、构思到调研、框架结构,直至成文、修改和定稿,自始至终得到了邹老师的指导和点拨。还要感谢华东政法大学的各位老师们,真诚地感谢你们孜孜不倦的教诲。
你们在课堂上精彩的讲授常常让我受益匪浅,愿你们身体健康!感谢和我一起走过四年珍贵时光的同学们,有了你们的陪伴,我的人生添加了温馨又精彩的一笔,愿大家工作顺利,前途无限!最后,感谢家人的支持和帮助,特别是妻子悉心照料幼子,宽容地承担了更多的家庭负担,是你们支持我完成了学业,衷心感谢!
三年的时光匆匆而过,在论文即将完成之际,向我的导师XX副教授致以衷心的感谢!因为在论文在撰写时,无论从前期开题,以及后期的撰写,都遇到很多困难,因为要想从一个比较少研究领域做探索,必须需要坚定的信念和勇气。
XX总可以用她渊博的知识,以及坚韧的意志品质,每次在逆境中帮助我完成本论文,老师的优秀品格给我留下了深刻的印象,这将伴随我的终身,鼓励我向学术的领域无畏前行。
在攻读硕士的这三年里,是我的父母给予生活和精神的上得巨大支持,他们不愿无悔的付出,是我能收到如此好的教育的基础。没有他们,也就没有今天的我,更不能完成学业。希望以后能学有所成,报答他们。
同时也感谢前辈在土家织锦西兰卡普的研究,您们的研究对于非物质文化遗产的保护起到了很重要的作用,也为后人继续研究,提供很好的参考价值。
最后,感谢曾经和我一起奋斗的同学和朋友,是他们的支持和陪伴,让我人生变得更加多彩。
在本人的写作过程中,XXX老师给予了大力的帮助和指导,在此深表感谢!同时也感谢其他帮助和指导过我的老师和同学。
最后要感谢在整个论文写作过程中帮助过我的每一位人。首先,也是最主要感谢的是我的指导老师,XXX老师。在整个过程中他给了我很大的帮助,在论文题目制定时,他首先肯定了我的题目大方向,但是同时又帮我具体分析使我最后选择失地农民的养老保险这个具体目标,让我在写作时有了具体方向。在论文提纲制定时,我的思路不是很清晰,经过老师的帮忙,让我具体写作时思路顿时清晰。在完成初稿后,老师认真查看了我的文章,指出了我存在的很多问题。在此十分感谢李老师的细心指导,才能让我顺利完成毕业论文。
其次,要感谢帮我查资料的张超同学,后期因为实习的关系,不能随时去学校的图书馆查阅资料,在此也十分感谢他能抽出时间帮我找的一些外文资料。
历时将近两个月的时间终于将这篇论文写完,在论文的写作过程中遇到了无数的困难和障碍,都在同学和老师的帮助下度过了。尤其要强烈感谢我的论文指导老师—xx老师,她对我进行了无私的指导和帮助,不厌其烦的帮助进行论文的修改和改进。另外,在校图书馆查找资料的时候,图书馆的老师也给我提供了很多方面的支持与帮助。在此向帮助和指导过我的各位老师表示最中心的感谢!感谢这篇论文所涉及到的各位学者。
本文引用了数位学者的研究文献,如果没有各位学者的研究成果的帮助和启发,我将很难完成本篇论文的写作。感谢我的同学和朋友,在我写论文的过程中给予我了很多你问素材,还在论文的撰写和排版灯过程中提供热情的帮助。由于我的学术水平有限,所写论文难免有不足之处,恳请各位老师和学友批评和指正!
在论文即将完成之际,回顾紧张但又充实的学习和开发过程,本人在此向所有关心我的及帮助我的老师和同学们致以最真诚的感谢。
在本次毕业设计中,我从指导老师--------xx老师,身上学到了很多东西。她认真负责的工作态度,严谨的治学精神和深厚的理论水平都使我收益匪浅。她无论在理论上还是在实践中,都给与我很大的帮助,使我得到很大的提高,这对于我以后的工作和学习都有一种巨大的帮助,在此感谢她耐心的辅导。在写论文阶段,xx老师几次审阅我们的论文,提出了许多宝贵意见,没有她的指导,我们就不能较好的完成课题设计的任务。
另外,我还要感谢在这几年来对我有所教导的老师,他们孜孜不倦的教诲不但让我学到了很多知识,而且让我掌握了学习的方法,更教会了我做人处事的道理,在此表示感谢。
三年寒窗,虽无大功大喜,但所获点滴足以让我在诸多方面都有所成长,心存感激,难以用语言量度,谨以最朴实的话语向曾给予我帮助和支持鼓励的老师及同学们致以最崇高的敬意。
感谢我的恩师张跃蓉教授。在三年的科研学习和日常生活中,张教授都给予我无微不至的帮助和悉心的照料。张教授的严谨求实、精益求精的工作作风,兢兢业业的治学态度,缜密而富于创新的科研思维,是我不断前行的动力和标杆,对我的以后学习和工作都受益匪浅。在此,我谨向尊敬的张教授致以真挚的感谢和敬意。
本课题顺利完成也离不开老师们、同学及朋友的鼎力帮助,在此,感谢分子生物化学教研室范芳老师为本研究课题设计和论文撰写提出的宝贵意见,感谢束波、生欣老师,寄生虫学教研室刘辉老师,中心实验室岳昌武老师等为本次课题提供的实验指导和技术支持。
最后,谨向所有曾给予我帮助、关心和鼓励的老师同学们致以衷心的感谢。
本研究是在王迎春教授的悉心指导下完成的。从论文的选题、实验设计到论文撰写,都倾注了导师大量的时间和精力。王老师严谨的治学态度、敏锐的科研思维、真诚的处世之道,是我今后工作和生活的榜样。在此,衷心感谢导师三年来对我学习、生活和科研方面给予我的指导和关心。
感谢郑琳琳老师、党振华老师在实验设计、规范操作等方面给予的建议,让我受益良多。感谢实验室的兄弟姐妹们在实验以及生活中给予的支持和帮助。
感谢高喆师兄、特布沁师兄、张杰师兄、李浩宇师兄、王佳师兄、张慧荣师姐在实验过程中的启发和指导,让我的论文顺利完成。
感谢师妹燕霞、齐琦、董禄禄,师弟姚靖波、杜超、武志刚在生活中的帮助,为我的生活带来的欢乐与动力。
感谢一路走来我的家人的鼓励与关怀。他们永远是我坚强的后盾,激励我克服困难,不断向前。
论文完成之际,祝福所有人健康、快乐。
致谢的写法如下:
一、如何写致谢
1、致谢一般顺序为首先应当感谢导师及各位师长,其次是帮助合作过的伙伴,再者是作者的同窗好友,最后是父母与亲人。
2、往往会在开头回首往事中的思绪万千。首先要表达的是时间流逝这一主题,“日升日落、潮涨潮退、花开花谢、云卷云舒、白驹过隙、日月如梭、光阴荏苒”等一系列词语出现的频率较高。亦多会运用今昔对比这一手法,表现自己在这一阶段的成长,由此引出致谢的主题。
3、结尾多引名句。如引穆旦《冥想》一诗:“这才知道我的全部努力,不过完成了普通的生活”,借此表达自己对生活意义的思考;引《银河英雄传说》中的台词:“我们的征途是星辰大海”,表达自己完成这段旅途、开始下段旅程的信念。
4、引陆游《书叹》诗:“人生如春蚕,作茧自缠裹。一朝眉羽成,钻破亦在我”,抒发对往事的无悔;引武侠小说好汉们常说的话:“青山不改,绿水常流,我们江湖再见”,表达与朋友们日后能再相见的达观。
二、关于致谢
论文致谢词一般是用于毕业论文的结尾处,主要作用是表对导师或者某些辅导的感谢之词。致谢态度要端正,措词要恰如其分,致谢中可以在文尾直书其名,也可写敬称,如某某教授、某某博士,致谢一般写在正文末与参考文献之间。
三、致谢的作用
致谢的核心在于“谢”字。论文致谢词的作用主要是为了表示尊重所有合作者的劳动,它有利于促进形成相互帮助的社会风气。致谢提供的信息对读者判断论文的写作过程和价值也有一定的参考作用。
当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。那么论文致谢词是什么呢? 1、 论文致谢词一般是用于实践报告、毕业论文的结尾处,主要作用是表对导师或者某些辅导的感谢之词。 2、 论文致谢词的作用主要是为了表示尊重所有合作者的劳动,它有利于促进形成相互帮助的社会风气。致谢提供的信息对读者判断论文的写作过程和价值也有一定的参考作用。 3、 格式:首先,感谢家人;其次,感谢导师;最后,感谢院系各位老师和领导;还有,感谢一起学习的同学最后,再一次对所有关心、帮助过我的老师、同学和朋友们表示最真诚的谢意! 以上就是给各位带来的关于论文致谢词是什么的全部内容了。
基于DS18B20温度传感器的数字温度计设计目 录基于DS18B20温度传感器的数字温度计设计 1基于DS18B20温度传感器的数字温度计设计 1摘要: 1关键字: 1The conception of the numerical thermometer based on DS18B20 11 引言 22 总体设计 方案论证 总体设计 33 硬件设计 单片机系统 温度传感器模块 存储模块 液晶显示模块 串口通信模块 电源模块 124 软件设计 主程序流程 DS18B20模块程序设计 HS1602驱动程序设计 AT24C08存储模块程序设计 RS-232-C串口通信模块程序设计 195 测试及结果分析 226 附录 237 参考资料 24
价格合理!信工毕业 就会单片机
温度相关的毕业设计 ·基于单片机的数字温度计的设计·基于MCS-51数字温度表的设计·单片机的数字温度计设计·基于单片机的空调温度控制器设计·基于数字温度计的多点温度检测系统·设施环境中温度测量电路设计·DS18B20数字温度计的设计·多点温度采集系统与控制器设计·基于PLC和组态王的温度控制系统设计·温度监控系统的设计·用单片机进行温度的控制及LCD显示系统的设计·单片机电加热炉温度控制系统·全氢罩式退火炉温度控制系统·数字温度计的设计·基于单片机AT89C51的语音温度计的设计·基于单片机的多点温度检测系统·基于51单片机的多路温度采集控制系统·基于单片机的数字显示温度系统毕业设计论文·基于MCS51单片机温度控制毕业设计论文·西门子S7-300在温度控制中的应用·燃气锅炉温度的PLC控制系统·焦炉立火道温度软测量模型设计·温度检测控制仪器·智能温度巡检仪的研制·电阻炉温度控制系统·数字温度测控仪的设计·温度测控仪设计·多路温度采集系统设计·多点数字温度巡测仪设计·LCD数字式温度湿度测量计·64点温度监测与控制系统·温度报警器的电路设计与制作·基于单片机的数字温度计的电路设计·全氢煤气罩式炉的温度控制系统的研究与改造·温度检测与控制系统·红外快速检测人体温度装置的设计与研制·具有红外保护的温度自动控制系统的设计·基于单片机的温度测量系统的设计·数字温度计设计·DS18B20温度检测控制·PN结(二极管)温度传感器性能的实验研究·多功能智能化温度测量仪设计·软胶囊的单片机温度控制(硬件设计)·空调温度控制单元的设计·大容量电机的温度保护——软件设计·大容量电机的温度保护 ——硬件电路的设计·基于DS18B20温度传感器的数字温度计设计·热轧带钢卷取温度反馈控制器的设计·基于单片机的温度采集系统设计·多点温度数据采集系统的设计·基于单片机的数字式温度计设计·18B20多路温度采集接口模块·基于单片机的户式中央空调器温度测控系统设计·单片机电阻炉温度控制系统设计·基于单片机的电阻炉温度控制系统设计·基于ARM的嵌入式温度控制系统的设计·基于DS18B20的多点温度巡回检测系统的设计·基于单片机的多点无线温度监控系统·基于MSC1211的温度智能温度传感器·用集成温度传感器组成测温控制系统·室内温度控制报警器·自动温度控制系统·烤箱温度控制系统·基于单片机的电加热炉温度控制系统设计·基于PLC的温度监控系统设计·基于无线传输技术的室温控制系统设计——温度控制器软件设计·温度箱模拟控制系统·基于无线传输技术的室温控制系统设计——温度控制器硬件设计·数字式温度计的设计·温度监控系统设计·基于单片机的电阻炉温度控制系统·基于plc的温度湿度检测和显示系统设计·基于单片机的3KW电炉温度控制系统的设计·腔型肿瘤热疗仪温度控制系统设计·基于AT89S51单片机的数字温度计设计·吹塑薄膜挤出机温度控制与检测系统设计·电加热炉PLC温度自适应控制系统的研究·高压母线温度自动监测装置的设计·高压母线温度自动检测装置·小型热水锅炉单片机温度控制系统·消毒柜单片机温度控制·嵌入式系统在多点温度控制中的应用·单片机温度控制系统·上下限温度报警器的设计·基于单片机的饮水机温度控制系统设计·基于单片机的温度测量系统设计
已把我毕业论文的一部分发给你了,应该是你想要的。还需要其它的说一声