首页 > 期刊论文知识库 > 电催化材料的研究论文

电催化材料的研究论文

发布时间:

电催化材料的研究论文

[1] Yu,. S.,Arepalli,S.,Ruoff,R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties .Phys. Rev. Lett. 2000, 84 :5552~5555 . [2] J. Hone,B. Batlogg,Z. Benes,A. T. Johnson,J. E. Fischer. Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes .Science, 2000, 289 (5485) :1730 - 1733 . [3] Li Wenzhen, Liang Changhai, Qiu Jieshan. Carbon Nanotubes as Support for Cathode Catalyst of a Direct Methanol Fuel Cell .Carbon, 2002, 40(7) :787 . [4] N. M. Rodriguez M. S. Kim F. Fortin I. Mochida and R. T. K. Baker. Carbon deposition on iron-nickel alloy particles .Applied Catalysis A: General, 1997, 148 (2) :265-282 . [5] R. Gao, C. D. Tan and R. T. K. Baker. Ethylene hydroformylation on graphite nanofiber supported rhodium catalysts .Catalysis Today, 2001, 65 (1) :19-29 . [6] Cuong Pham-Huua,Nicolas Keller a,Gabrielle Ehret c,et al. Carbon nanofiber supported palladium catalyst for liquid-phase re-actions:An active and selective catalyst for hydrogenation of cin-namaldehyde into hydrocinnamaldehyde[J] .Journal of MolecularCatalysis A:Chemical. 2001, 170 :155-163 . [7] P. A. Simonov, A. V. Romanenko, I. R. Prosvirin et al. On the nature of the interaction of H_2PdCl_4 with the surface of graphite-like carbon materials .Carbon, 1997, 35 :73-82 . [8] Rodriguez N M. Review of Catalyst of a catalytically growncarbon nanofibers[J] .Mater Res, 1993, 8 (12) :29-33 . [9] Chamber A,Nemes T,Rodriguez N M,et al. Catalytic be-havior of Graphite nanofiber supported nickel with other support media[J] .Phys ChemB, 1998, 102 (12) :2251-2258 . [10] Park C,Baker R T K. Catalytic behavior of graphite nanofibersupported nickel influence of the nanofiberstructure[J] .Phys Chem B, 1998, 102 (26) :5168-5177 . [11] Park C,Baker R T K. Catalytic behavior of graphite nanofibersupported nickel effect of chemical blocking onthe performance of the system[J] .Phys Chem B, 1999, 103 (13) :2454-2460 . [12] Mestl G,Maksimova N I,Schlogl R. Catalytic activity ofcarbon nanotubes and other carbon materials for oxidative de-hydrogenation of ethylbenzene to styrene[J] .Stud Sur SciCatal, 2001, 40 :2066-2072 . [13] Keller N,Maksimova N I,Roddatis V V,et al. The cata-lytic use of onion-like carbon materials for styrene synthesisby oxidative dehydrogenation of ethylbenzene[J] .AngewChem Int Ed, 2002, 41 (11) :1885-1888 . [1] 李权龙,袁东星,林庆梅. 多壁碳纳米管的纯化[J]. 化学学报, 2003,(06) . 中国期刊全文数据库 共找到 2 条[1] 项丽. 应用纳米碳管固相萃取环境中有机污染物研究进展[J]. 安徽农学通报, 2008,(21) . [2] 张晓明,王洪艳,李俊锋. 改性MWNTs/纳米HA/PLA骨修复材料的制备[J]. 吉林大学学报(工学版), 2008,(04) . 中国优秀硕士学位论文全文数据库 共找到 1 条[1] 韩素芳. 普鲁士蓝类化合物/碳纳米管修饰电极的制备及其性能研究[D]. 北京化工大学, 2007 . 中国期刊全文数据库 共找到 8 条[1] 张娟玲,崔屾. 碳纳米管/聚合物复合材料[J]. 化学进展, 2006,(10) . [2] 温轶,施利毅,方建慧,曹为民. 压缩集结碳纳米管电极对活性艳红染料的电催化降解研究[J]. 化学学报, 2006,(05) . [3] 张新荣,姚成漳,王路存,曹勇,戴维林,范康年,吴东,孙予罕. 甲醇水蒸气重整制氢的高效碳纳米管改性Cu/ZnO/Al_2O_3催化剂[J]. 化学学报, 2004,(21) . [4] 唐文华,邹洪涛,张艾飞,刘吉平. 碳纳米管纯化技术评价与研究进展[J]. 炭素, 2005,(03) . [5] 陈灿辉,李红,朱伟,张全新. 二茂铁及其与DNA复合物的电化学行为[J]. 物理化学学报, 2005,(10) . [6] 方建慧,温轶,施利毅,曹为民. 碳纳米管电极电催化氧化降解染料溶液的研究[J]. 无机材料学报, 2006,(06) . [7] 赵弘韬,张丽芳,张玉宝. 碳纳米管纯化工艺的研究[J]. 科技创新导报, 2008,(26) . [8] 李权龙,袁东星. 多壁碳纳米管用于富集水样中有机磷农药残留的研究[J]. 厦门大学学报(自然科学版), 2004,(04) . 中国博士学位论文全文数据库 共找到 4 条[1] 王哲. 多壁碳纳米管的形态控制及场发射性能研究[D]. 哈尔滨工业大学, 2007 . [2] 邓春锋. 碳纳米管增强铝基复合材料的制备及组织性能研究[D]. 哈尔滨工业大学, 2007 . [3] 胡长员. 碳纳米管功能化及其负载非晶态NiB合金催化剂的加氢性能研究[D]. 南昌大学, 2006 . [4] 米万良. 多孔陶瓷负载碳纳米管膜的制备及其气体渗透性能[D]. 天津大学, 2005 . 中国优秀硕士学位论文全文数据库 共找到 8 条[1] 张仲荣. 气相色谱应用于尾气排放的分析技术研究[D]. 天津大学, 2006 . [2] 张娟玲. 多壁碳纳米管/聚乙烯醇复合材料膜的制备及其性能研究[D]. 天津大学, 2006 . [3] 王翔. 催化裂解无水乙醇制备纳米碳管研究[D]. 西北工业大学, 2007 . [4] 张麟. 碳纳米管改性双马来酰亚胺复合材料的研究[D]. 西北工业大学, 2007 . [5] 李柳斌. 聚氯乙烯的熔融共混改性研究[D]. 武汉理工大学, 2008 . [6] 高远. 碳纳米管/丁苯橡胶/天然橡胶复合材料结构与性能的研究[D]. 南京理工大学, 2007 . [7] 华丽. 大孔径CNTs功能化处理及NiB/CNTs合金催化性能研究[D]. 南昌大学, 2006 . [8] 仪海霞. 碳纳米管球的制备及其应用研究[D]. 北京化工大学, 2007 . 中国重要会议论文全文数据库 共找到 2 条[1] 李权龙,袁东星. 碳纳米管作为吸附剂在环境分析中的应用[A]. 第二届全国环境化学学术报告会论文集[C], 2004 . [2] 徐雪梅,黄碧纯. 碳纳米管负载V_2O_5脱氮催化剂的研究[A]. 第五届全国环境催化与环境材料学术会议论文集[C], 2007 .

第一作者:焦龙博士 ;通讯作者:江海龙教授 通讯单位:中国科学技术大学

论文DOI:

在该工作中,我们构筑了一系列同构的卟啉基MOF材料,通过调变卟啉中心的金属物种,从而衍生得到了一系列含有不同金属物种(Fe, Co, Ni, Cu)的单原子催化剂材料,这些催化剂除了金属物种不同,金属负载量、配位环境、比表面积、孔尺寸等特性均保持一致,从而实现了有效的变量控制。在该模型体系构筑的基础上,我们研究了不同单原子材料电催化CO2还原性能, 其中单原子Ni催化剂(Ni1-N-C)表现出了最高的CO选择性,并且在CO2浓度降低至15%的含量时,最优的CO选择性依然可以超过80%,展示了单原子催化剂在实际CO2催化转化中巨大的应用前景。

单原子催化剂(SACs)在诸多反应中表现出了极大的优越性,并且已经成为了多相催化的前沿领域。通常情况下,SACs的催化性能不仅依赖于金属活性位点的本征活性,同时也会受到活性位周围的微环境以及载体的物理化学特性的调控。然而,由于不同金属物种的单原子催化剂合成方法的不同,得到的单原子催化剂除了金属物种外,许多理化特性例如单原子金属的负载量、孔结构等等都不尽相同。由于变量的复杂性,给对比不同单原子活性位的本征活性带来很大的挑战。单原子金属修饰N掺杂碳(M1-N-C)材料,作为重要的一类单原子催化剂,在电催化CO2还原反应(CO2RR)表现出的优异的性能。然而,文献报道的M1-N-C材料的碳载体往往表现出不同的特征(孔隙结构、表面积、形貌等),使得即使相同的金属中心,M1-N-C的活性也会有较大的差异。有鉴于此,我们希望发展一种通用的单原子合成策略同时可以实现微环境和载体性质的严格控制,从而来判别单原子不同金属物种的活性位点的内在活性。

我们在调研单原子催化剂相关文献的过程中发现,例如在CO2电催化还原反应中,即使相同金属中心,不同文献中报道的催化活性有时候差异会非常大。我们发现这些催化剂的载体性质、金属载量、活性位微环境等通常差异较大,很难去对活性位的本征活性做出客观的评价。我们基于一种卟啉基的多变量MOF,MOF的卟啉配体中心金属种类可以任意调变而不影响MOF的拓扑结构和形貌,进一步借助MOF和它的衍生材料结构上的继承关系,可以严格控制MOF衍生不同单原子材料的理化性质,从而为对比不同金属中心的催化活性提供了良好的模型体系。

除了活性位点的识别,CO2利用的另一个关键问题是高能耗的CO2捕获和净化过程。具体来说,为了达到高选择性,目前报道的CO2RR通常在纯CO2中进行。然而,实际工业过程中可用的CO2原料的实际浓度相对较低,例如燃煤电厂和钢铁/石化行业排放的CO2气体浓度分别在5-15%和14-33%左右。考虑到CO2 中C=O键键能大约在 806 kJ/mol,热力学比较稳定性,活化较为困难。另外其在水溶液中有限的溶解度,低的CO2浓度会显著影响其催化转化的活性,为CO2的直接利用设置了很大的障碍。因此,开发高效的低压下二氧化碳直接转化电催化剂非常重要,但目前很少能实现。

Scheme 1. Illustration showing the general fabrication of single-atom M1-N-C catalysts based on MTV-MOFs for electrocatalytic CO2 reduction.

我们基于混合配体策略,通过改变金属卟啉配体中心金属的种类,构筑了一系列同构的卟啉MOF,通过衍生之后获得了一系列具有不同金属中心(Fe, Co, Ni, Cu)的碳基单原子催化剂材料 (Scheme 1)。卟啉中心金属的改变并未影响MOF的结构和形貌,借助于MOF前驱体和它的衍生材料结构上的继承性,获得的一系列单原子催化剂材料。除单原子金属种类之外,其他理化性质(形貌,成分,孔结构等)同样可以保持高度的一致,从而实现了变量的控制。

Figure 1. Electrochemical performances in pure CO2. a) LSV curves of Ni1-N-C in pure Ar- and CO2-saturated M KHCO3. b) FEs and c) TOFs of M1-N-C for CO in pure CO2-saturated M KHCO3. d) Tafel plots of M1-N-C for CO2RR. e) Durability test of Ni1-N-C at a constant potential of V vs RHE in pure CO2.

基于得到的一系列单原子催化剂材料,我们首先研究了他们在纯的CO2氛围下的电催化性能。通过实验可以发现,Ni1-N-C材料在众多单原子催化剂材料中,表现出了最高的CO选择性、TOF值以及Tafel斜率,并且具有良好的催化稳定性(Figure 1)。

Figure 2. DFT calculations. a) Reaction paths and b) Free energy diagrams of CO2 reduction to CO and c) The values of UL(CO2)-UL(H2) for all M1-N-C catalysts.

理论计算表明,在CO2电催化还原生成CO的多步基元反应中,Ni1-N-C相较于其他单原子催化剂,具有最为优化的COOH*形成和CO脱附的能垒,有效的促进了CO2的转化和产物的脱附,预示着其具有最高的CO2电催化还原的活性。另外,通过对比不同材料CO2还原和析氢反应的决速步电势差(UL(CO2)-UL(H2)),可以看出Ni1-N-C可以更有效的抑制析氢竞争反应,从而表现出最优的CO2还原的选择性 (Figure 2)。

Figure 3. Electrochemical performances of CO2 at low pressures. a) LSV curves and b) CO FE of Ni1-N-C in M KHCO3 saturated with 30% and 15% CO2. c) Durability tests of Ni1-N-C at constant potential of V under 30% CO2 concentration and V under 15% CO2 concentration, respectively.

鉴于在纯CO2中的实验结果和理论计算的结论,我们进一步 探索 了Ni1-N-C在低浓度的CO2还原反应的测试中的性能。可以看到,Ni1-N-C在30%和15%的CO2浓度下依然有明显的电流响应,进一步通过不同电位下的选择性测试可以看出,在15%的CO2浓度下其最优选择性依然可以超过80%,并表现出了良好的催化稳定性 (Figure 3)。

该工作基于同构的卟啉基MTV-MOFs,构建了一系列单原子催化剂 (M1-N-C, M = Fe, Co, Ni和Cu),除单原子金属的种类不同之外,其孔结构和化学成分以及活性位微环境都保持一致,因而可以作为研究不同单原子金属物种本征活性差异的理想模型。在纯CO2条件下, Ni1-N-C表现出了最优的CO选择性。进一步,Ni1-N-C在更具有挑战性的低浓度CO2还原中,甚至可以在30%和15%的CO2浓度下保持其高的CO选择性,表明了Ni1-N-C在电催化CO2RR的独特优势。这项工作不仅提供了一种SACs的普适性合成方案,同时本文的结果展示了单原子催化剂在低浓度二氧化碳直接电催化转化方面的巨大潜力。

江海龙,中国科学技术大学教授、博士生导师、英国皇家化学会会士(FRSC),获得国家杰出青年基金资助,入选国家万人计划领军人才等。长期从事配位化学、材料化学和催化化学的交叉性研究工作,特别在基于金属有机框架(MOFs)的晶态多孔功能材料的设计、合成与催化功能 探索 等方面开展了系统的研究工作,并取得了一些重要的研究结果。已在国际重要SCI期刊上发表论文150余篇,其中以第一和通讯作者身份发表J. Am. Chem. Soc.(13篇),Angew. Chem.(12篇),Chem(3篇),Nat. Commun.(2篇),Adv. Mater.(6篇),Natl. Sci. Rev.(2篇),Acc. Chem. Res.(1篇),Chem. Soc. Rev.(2篇),Coord. Chem. Rev.(4篇), Mater. Today(1篇)等高水平论文。论文被引用20,000次以上(H指数:71),有50篇论文入选ESI高被引论文(Highly Cited Papers, Top 1%)。在《Nanoporous Materials: Synthesis and Applications》中撰写书章一章。担任中国化学会晶体化学专业委员会委员、中国感光学会光催化专业委员会委员等;担任EnergyChem(Elsevier)、Materials(MDPI)、中国化学快报、化学学报、Scientific Reports(NPG)、无机化学学报、Sci(MDPI)等期刊编委和顾问委员会委员。主持国家杰出青年科学基金、重大科学研究计划课题、基金委面上基金、青年基金等科研项目。

主要研究方向 本课题组以配位化学为基础,致力于多孔金属有机骨架材料(Metal-Organic Frameworks, MOFs)及其纳米复合材料与衍生材料的设计合成与功能应用研究。本课题组的研究属于交叉学科,内容涉及无机配位化学、晶体工程学、材料化学、纳米 科技 以及催化化学等多个领域。主要研究方向包括: (1)催化功能导向的稳定MOFs:设计、合成、修饰及催化性能研究; (2) MOFs基纳米复合材料:理性构筑及其催化功能 探索 ,特别是在有机反应多相催化及光、电催化中的应用研究; (3) CO2的选择性捕集与转化。

课题组主页:

新型光催化材料的研究论文

5年来材料系在材料学科的成果统计如下:纵向/横向经费:1391/79万;材料系学科建设(985-2)经费:~1500万;省部级以上奖励:3;博士/硕士毕业生:15/16;发表SCI文章总数:~150 项目、课题名称项目来源起始时间承担人多体动摩擦接触非线性模型的建立和数值计算中国国家基金委200301韩平畴新型纳米复合软组织支架的制造研究 广东省教育部200501韩平畴准一维半导体纳米材料的结构调控、物性测量及器件基础(课题四、纳米碳管分子级存储单元的基础研究)中国科技部200501韩平畴刚性粒子填充高聚物复合材料界面相结构和性能的研究国家自然科学基金项目200504白树林(主持)纳米粒子填充高聚物复合材料的力学行为。国家自然科学基金项目200601白树林(主持)舰船材料XXX国防科工委200601白树林(参加)左手材料XXX国防科工委200701白树林(参加)纬编纤维复合材料XXX总装备部基金200701白树林(主持)不锈钢纤维XXX总装备部基金200701白树林(主持)用于空间的低温压电单晶超声电的机制备科学国家自然科学基金委200701董蜀湘信息陶瓷材料的多功能化及多场耦合效应 --子课题中国科技部973计划200701董蜀湘超微型精密压电马达驱动变焦及对焦的摄像模块技术开发 广东省产学研结合项目200701董蜀湘高性能无机能量转换复合材料的研究国家基金委创新群体200801黄富强光催化剂中的结构和性能关系模型以及新型光催化材料国家自然科学基金面上项目200801黄富强节能领域纳米材料机敏特性的关键科学问题研究--智能纳微结构红外调控薄膜的优化国家重大基础研究计划课题三200801黄富强Mg-Ca合金的腐蚀降解及其生物医用可能性研究国家自然科学基金项目200801郑玉峰钛基大块非晶合金作为生物材料的探索性研究国家自然科学基金项目200812郑玉峰纳米材料在牙组织再生与修复中的机理研究国家重点基础研究发展计划200901郑玉峰一种用于核酸固相富集与检测的高通量集成芯片实验室技术国家自然科学基金项目200901黄岩谊无机纳米复合材料在集成光子学中的应用国家自然科学基金项目200901黄岩谊大规模集成微流芯片制备及其在生物大分子并行合成与分析上的应用教育部全国优秀博士论文专项资金200901黄岩谊异质复合纳米材料的构建及其多功能性质研究北京市科技新星计划项目200901侯仰龙低维磁性纳米氧化物的控制合成教育部留学回国人员科研启动基金200901侯仰龙

科学研究主要涉及沸石分子筛表面修饰和催化,光催化基础与应用等领域。在沸石分子筛修饰和催化领域,主要开展采用表面金属有机化学方法和技术,研究金属有机化合物或配位化合物与沸石分子筛表面基团(羟基、桥氧基团)的定量接枝反应,通过在孔道表面制备具有明确组成和结构的化合物对沸石分子筛材料进行分子水平的修饰,以获得具有独特功能的催化材料并揭示其催化作用本质。迄今开展了包括有机锡、锗、锆、铜、铁、钛等在内的一系列有机金属化合物与ZSM-5、Y、丝光沸石、MCM-41等沸石分子筛表面反应的研究,并通过这些研究制备出了多种具有良好吸附性能和催化功能的材料,揭示了一些催化和光催化过程的作用机理。在光催化基础与应用研究方面,主要从事新型光催化材料的制备和光催化作用机理研究,光催化材料在空气净化、水净化和医疗卫生领域的应用技术开发。2001年以来先后主持包括国家自然科学基金项目、国家重大基础研究前期专项、863计划专项、福建省重大科技计划项目、卫生部-福建教育卫生联合攻关项目、福建省自然科学基金项目和福建省教育厅科技项目的等10余项课题。此外,作为主要骨干成员参与了国家重大科技攻关项目、国家自然科学基金重点项目、973计划以及军队科技项目等一系列课题的研究。2003年获国家科技进步奖二等奖1项(第3名),2002获得福建省科学技术一等奖(第5名)并取得三项国家科技鉴定成果。参与研制的光催化剂、光催化净化器、光催化自洁玻璃和瓷砖等产品已实现产业化,取得了良好的社会经济效益。在Chem. Eur. J., J. Catal., J. Phy. Chem. B, C., Chem. Commun., Micropor. Mesopor. Mater., J. Organometal. Chem., Langmuir, J. Photochem. Photobio. A, J. Mol. Catal., A, Chem. Lett. 等和国内《化学学报》、《高等学校化学学报》、《物理化学学报》、《无机化学学报》、《催化学报》、《结构化学》和《环境科学》等等国内外学术期刊发表学术论文120余篇,获10余项国家发明专利。

光催化材料的研究现状的综述论文

喜欢就 关注我们吧,订阅更多最新消息

第一作者及通讯作者:李伟(陕西 科技 大学(西安))

共同通讯作者:王传义(陕西 科技 大学(西安))

通讯单位:陕西 科技 大学

论文DOI:

研究亮点

1. 通过简单可控的方法将单原子Pd成功修饰在了CdS NPs表面。

2. 单原子Pd与CdS NPs表面的S原子形成强配位作用,通过协同金属-半导体配位相互作用促进了光诱导载流子自体相向表面的迁移,抑制了CdS光腐蚀现象,提高了光诱导电子利用效率。

3. 单原子Pd修饰CdS NPs后降低了催化水分解产氢能垒,显著增强了其全分解水产氢活性。

研究背景

随着双碳目标的提出,国家对氢能源的发展做出了重要指导,有效推进氢能源的发展。传统产氢手段能耗高,且伴随有二次污染。由于太阳光能来源广泛、使用方便、绿色可持续性等优点,将太阳能转变为方便使用的高附加值化学能无疑是新能源开发的有效途径,具有潜在应用价值。日光诱导全分解水产氢是一种开发氢能源的潜在技术,然而较低的效率阻碍了该项技术的大规模应用推广。因此,开发高效稳定的全分解水产氢催化剂具有理论与实际研究意义。

硫化镉(CdS)是一种低功函且具有优异可见光响应的过渡金属硫化物,在光催化和电催化领域有着广泛的应用。被用于光催化材料时,长时间光诱导容易导致其结构发生严重光腐蚀,极大地影响其光催化性能。如何在提高CdS基光催化剂催化活性的同时,有效抑制其光腐蚀影响,增强其结构稳定性,是需要研究者不断 探索 和解决的关键科学问题。

拟解决的关键问题

本课题通过一步简单诱导还原策略,将单原子Pd修饰在CdNPs表面,实现了协同的金属-半导体配位相互作用,抑制了载流子复合,提高了催化剂量子产率。更为重要的是,高度缓解了CdS光腐蚀影响,赋予其以长时间光电流稳定性,一定程度上解决了光腐蚀导致其催化剂结构不稳定的科学问题。

成果简介

针对CdS光催化剂在光诱导下光腐蚀严重影响其催化性能的科学问题, 陕西 科技 大学(西安)李伟副教授及王传义教授 等人通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同的半导体-金属配位相互作用,其光响应性及界面电荷传导特性均显著增强,有效抑制了其光腐蚀,增强了催化剂结构稳定性。同时,CdS-Pd催化剂表面全分解水产氢过程能垒相较于纯CdS NPs明显降低,从而在模拟日光诱导下达到了纯CdS纳米催化剂110倍的全分解水产氢活性,且表现出良好的耐光性能。

要点1:CdS-Pd复合光催化剂合成

通过简单的一步诱导还原法将单原子Pd修饰在六方相CdSNPs表面,优化并制备出一种CdS-Pd纳米光催化剂。

图复合光催化剂的合成示意图及结构表征。

要点2:CdS-Pd复合光催化剂结构、组成及形貌表征

通过XRD、Raman、XPS、XAFS和ac-STEM等表征研究发现:贵金属Pd是以单原子状态均匀分布在CdS 纳米催化剂表面,且单原子Pd与CdS 纳米催化剂表面的S原子形成了S-Pd配位作用,这有利于促进光诱导载流子的传导。

图复合光催化剂的形貌、晶型及组成分析。

要点3:CdS-Pd复合催化剂模拟日光诱导产氢活性及稳定性

当反应体系pH = 10时,优化后的CdS-Pd纳米催化剂在模拟太阳光诱导下全分解水析氢速率为 μmol·g -1 ·h -1 ,是纯CdS的110倍。如果进一步加入牺牲剂,其半分解水析氢速率可达到 μmol·g -1 ·h -1 。在λ = 420 nm的光波诱导下,其全分解水和半分解水的表观量子产率分别为和。即使在室外日光辐照下,也可以清晰地观察到大量气泡的产生。以上研究表明单原子Pd修饰后的纳米催化剂模拟日光诱导产氢活性显著提高。另外,通过评价该改性催化剂进行模拟日光诱导催化产氢的持久性及再生性,证明Pd单原子修饰后的CdS纳米催化剂具有稳定的光诱导催化活性和良好的结构稳定性。

图复合光催化剂的催化产氢性能、持久性和重复使用性。

要点4:CdS-Pd复合光催化剂的协同作用增强光-电化学性能及机理分析

通过光-电化学各项表分析可知:Pd单原子修饰后的CdS纳米催化剂表现出良好的电子-空穴对分离特性,且由于协同的半导体(CdS)-金属(Pd)配位相互作用加快了载流子自体相向表面的迁移,有效抑制了CdS的光腐蚀,延长了光生载流子寿命,从而在长时间光诱导下呈现高密度且稳定的光电流信号。

图4. CdS-Pd复合光催化剂的光-电化学性能表征及机理分析。

要点5:CdS-Pd复合光催化剂的DFT计算及催化机制分析

通过DFT计算分析可知:CdS-Pd纳米催化剂表面全分解水产氢能垒相较于纯CdS NPs明显降低,且支撑了S-Pd配位键形成的可能性。最终证明氢气生成的主要活性位点为催化剂表面的S位点,而表面单原子Pd则促进了水分子的分解。综上所述,在模拟日光诱导下,CdS基体生成大量光诱导载流子,并快速迁移至表面。H 2 O分子首先在催化剂表面Pd位点处被分解为氢质子中间体和OH-离子,氢质子进一步在S位点处获得电子被还原成氢气,而OH - 离子则在CdS表面被光生空穴氧化为O 2 分子。由于该催化剂协同的金属-半导体作用机制,O 2 分子与部分光诱导电子作用被快速转化为超氧自由基(O 2 +e - O 2•- ),所以该催化剂更适合于在模拟日光诱导下催化水分解产氢应用。

图5. CdS-Pd复合光催化剂的DFT计算及全分解水机制

小结与展望

综上所述,针对纯CdS半导体光诱导过程中光腐蚀影响导致其结构稳定性较差的科学问题,本研究通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同配位作用,其光响应性及界面电荷传导特性均显著增强,光诱导电子-空穴对复合抑制效果明显。同时,单原子Pd修饰后的纳米催化剂明显降低了全分解水产氢过程的能垒,从而在模拟日光诱导下达到纯CdS纳米催化剂近110倍的全分解水产氢活性,并表现出优良的催化活性与结构稳定性。本研究对于通过简单有效的制备方法合成稳定且高效的全分解水产氢CdS基光催化剂具有理论与实际研究意义。

参考文献

W. Li, X. Chu, F. Wang, Y. Dang, X. Liu, T. Ma, J. Li, C. Wang, Pd single-atom decorated CdS nanocatalyst for highly efficient overall watersplitting under simulated solar light. Appl. Catal. B-Environ . 2021, DOI: .

作者介绍

李伟 ,陕西 科技 大学 化学与化工学院,副教授。从事光催化剂结构设计及合成、光催化污水处理、太阳能光伏氢能源生产相关研究。目前已发表国际SCI论文30余篇,总被引频次1000余次。部分研究被《Appl. Catal. B-Environ.》、《J. Mater. Chem. A》、《Environ. 》、《ACS Sustainable .》、《Chem. Eng. J.》、《ChemCatChem》、《Electrochim. Acta》等期刊报导。

王传义 ,陕西 科技 大学特聘教授。德国洪堡学者、英国皇家化学会会士、国家外专局高端外国专家创新团队负责人、德国洪堡基金会联合研究小组中方负责人、陕西 科技 大学特聘教授、武汉大学兼职教授、博士生导师。应邀担任中国可再生能源学会光化学专业委员会委员、中国感光学会光催化专业委员会委员及中国环境科学学会特聘理事、国家 科技 奖励和国家重点研发计划项目会评专家及国家基金委等机构项目评审专家。从事光催化技术在环境与能源领域的应用研究。

声明

负载在g‑C3N4纳米片的PtCo合金和周围Co单原子的协同作用促进整体水分解

研究背景

太阳能驱动的全分解水可大规模生产氢气和氧气,是满足清洁能源需求和解决化石燃料危机的理想策略。然而,在不消除牺牲试剂或不需要施加外部偏压的情况下,水分解需要协同活性位点,以连接空间分离的析氢和析氧反应。具有最高原子利用效率的原子分散催化剂已成为催化领域的前沿。然而,单组分单原子催化剂在整个光催化水分解反应(OWS)中的应用却鲜有报道。

内容简介

基于此,近日华东师范大学姚叶锋和王雪璐团队设计了一种双组分协同光催化剂,其包含单原子Co(CoSAs)中心和PtCo合金纳米颗粒(Nps)的分散体负载在C3N4纳米片上。CoSAs中心是析氢反应(HER)的高活性位点,PtCo合金是析氧反应(OER)的高活性位点。当两个不同的反应中心结合时,它们之间会产生协同效应,这表明CoSAs中心和PtCo合金Nps之间可能存在质子或羟基溢出现象。CoSAs中心和PtCo合金的协同促进了OWS反应实现最大原子利用率和最佳双功能活性之间的协同。这种结合为开发OWS原子分散催化剂提供了一个很有前景的模型。相关论文以” Synergistic Promotionof Single-Atom Co Surrounding a PtCo Alloy Based On a g‑C3N4 Nanosheet for Overall Water Splitting”发表在ACS Catal.

本文亮点

1. 设计了一种新型的双组分协同光催化剂CoSAs/PtCo@CNN,由负载在纳米片g-C3N4上的CoSAs和PtCo合金纳米颗粒组成。该催化剂有效地促进了光催化整体水分解反应。

2. 纳米片C3N4具有大的比表面积和高的孔容,为CoSAs的形成提供了丰富的N配位。CoSAs和PtCo合金的协同活性在最大原子利用率和析氢析氧双功能反应性之间架起了一座桥梁。

3. CoSAs/PtCo@CNN在可见光照射下,三乙醇胺(TEOA)存在下,催化剂在整个水裂解反应中的产氢活性高达μmol/h·g,产氢活性为 mmol/h·g。

4. 这项研究不仅为构建协同合金位点开发高效的单原子光催化剂提供了一种有希望的策略,而且还提供了对结构的深入了解 通过光催化过程进行的整体水分解反应的活性关系。

图文解析

TEM,FT-IR

CN样品由膨胀和连续结构中的大波浪层组成。负载金属后,金属颗粒聚集在大块CN的表面或次表面。经过两步煅烧后,所得CNN样品转变为薄、松散、柔软的丝状纳米片结构。煅烧方法导致了CN层的卷曲,使金属颗粒更均匀、更稳定地负载在表面上。红外光谱结果表明CNN样品的C-NH-C键的振动明显强于CN样品中的振动,表明CNN具有高浓度的-NH-缺陷位点,可能会增强水分子的光催化活性。

NMR

在D2O 处理(表示为 CNN-D)之前和之后获得的 CNN 样品的1D 1H MAS 核磁结果表明当 CNN 样品中残留水通过 D2O 处理被氘化时,CNN-D 的 Hw 信号显著减弱。这表明CNN样品具有易于吸附和解吸水分子的双重优势。相反,在 D2O 处理后,普通 CN 样品的Hw 信号强度或其位置没有显著变化,表明由于氢交换没有明显的结构变化。氘交换后, CNN-D 样品的 CN3, Ha 峰的相关性显著降低, 表明边缘氨基(Ha) 和 d 氘化水之间存在强烈的质子交换。相比之下, CN-中的质子交换的证据Ha和氘化水之间的D样品几乎没有氘处理前后的变化。

XANES,HAADF-STEM

为了进一步了解铂和钴金属的配位化学,测试了CoSA/PtCo@CNN催化剂的X射线吸收近边缘结构(XANES)光谱。在CoSAs中形成Co(II)Nx配位中心外,合金中的Co4s和4p轨道还通过与Pt电子结合发生杂化。EXAFS分析表明PtxCo合金和N-Co(II)连接性结构形成。Pt L3边缘的EXAFS光谱中电子的径向分布发生了Å的偏移,表明Pt Co键的形成。Co 原子分散在单金属位点,中心 Co 原子由四个 N 原子配位稳定。少量的 CoSA可以通过长距离的 Co-N-C 协调。像差校正的HAADF-STEM结果表明分离出单个纳米颗粒具有 nm 间距的晶面(Pt3Co 平面)并被许多孤立的金属原子包围。结合 XANES 分析,纳米粒子(NPs)和孤立的金属原子分别为PtxCo 合金和单个 Co 原子。CoSAs/PtCo@CNN 催化剂的组成为大多数 Pt 原子参与形成随机分布的PtCo 合金。额外的Co原子不均匀地分散在 PtCo 合金簇。很少量的Co单原子远离单纳米粒子。所有这些形式共同构成CoSAs/PtCo结构体。

EPR,UV-vis

CoSAs/PtCo@CNN 催化剂用于在紫外-可见光照射下在整个水分解反应中生成产物,而无需使用任何电子牺牲剂,通过原位 EPR 光谱观察到悬浮液中•OH(羟基自由基)的特征信号。这种强烈的•OH 信号表明该途径涉及水的单电子氧化以产生•OH。在 CoSAs@CNN 上仍然没有检测到 •OH 信号,CoSAs/PtCo@CNN表现出高活性产氢气(高达 μmol/h·g)和 μmol/h g的活性用于整个水分解反应中的 O2。在整个水分解反应中观察到 H2O2 产物。催化剂使用3次后,PtCo合金上的Co0保持稳定的结构。在单组分催化剂 CoSAs@CNN 或 PtCo@CNN 上没有检测到可测量的 H2 或 O2 物种,这表明单原子 Co 和纳米片CNN 上负载的 PtCo 合金复合材料之间存在协同。

DFT

理论计算给出了CoSAs/PtCo@CNN对 HER 的反应途径。第二步(OH* O*)为 OER 过程的决速步。对于合金表面的 Pt 位点、合金表面的 Co 位点和 CoSAs 位点,此步骤的 ΔGO* 值分别为 、和 eV。对于 PtCo 合金表面的 Co 位点,每个基元步骤都是吸热的,其决速步基本上可用于完成 OER 半电池反应。如上所述,这种协同作用是通过 CoSAs配位的 N 原子产生的,N原子充当 HER 半反应的高活性位点。同时,由纳米片 C3N4负载的 PtCo 合金纳米颗粒是OER 的高活性位点。

该研究主要计算及测试方法

做同步辐射 找易科研

做球差电镜 找易科研

做计算 找易科研

光催化材料论文参考文献

1、粉末X射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。X射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d以及它们的相对强度Ilh是物 质的固有特征。

而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强 度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依 据XRD衍射图,利用Schercr公式:,K,, (2), Lcos,式中p为衍射峰的半高宽所对应的弧度值;K为形态常数,可取或。

为X 射线波长,当使用铜靶时,又 A; L为粒度大小或一致衍射晶畴大小;e为 布拉格衍射角。用衍射峰的半高宽FWHM和位置(2a)可以计算纳米粒子的粒径。

2、热分析表征。热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制 备过程中的重量变化、热变化和状态变化。本论文采用的热分析技术是在氧化物 分析中常用的示差扫描热法(Differential Scanning Calorimetry, DSC)和热重法( Thermogravimetry, TG ),简称为DSC-TG法。采用STA-449C型综合热分析仪(德,10国耐驰)进行热分析,N2保护器。升温速率为10 。

3、扫描隧道显微镜法。扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率 分别为 nm和,即能够分辨出单个原子,因此可直接观察晶体表面的近原子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的 表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子 和原子,以及实现对表面进行纳米尺度的微加工。

4、透射电子显微镜法。透射电镜可用于观测微粒的尺寸、形态、粒径大小、分布状况、粒径分布范 围等,并用统计平均方法计算粒径,一般的电镜观察的是产物粒子的颗粒度而不 是晶粒度。高分辨电子显微镜(HRTEM)可直接观察微晶结构,尤其是为界面原 子结构分析提供了有效手段。

它可以观察到微小颗粒的固体外观,根据晶体形貌 和相应的衍射花样、高分辨像可以研究晶体的生长方向。测试样品的制备同SEM 样品。本研究采用 JEM-3010E高分辨透射电子显微镜(日本理学)分析晶体结构, 加速电压为200 kV 。

5、X射线能量弥散谱仪法。每一种元素都有它自己的特征X射线,根据特征X射线的波长和强度就能得出定性和定量的分析结果,这是用X射线做成分分析的理论依据。EDS分析的元 素范围Be4-U9a,一般的测量限度是,最小的分析区域在5~50A,分析时间几分钟即可。X射线能谱仪是一种微区微量分析仪。

参考资料来源:知网—表征手段

参考资料来源:知网—材料表征

第一作者:Jingrun Ran, Hongping Zhang, Sijia Fu

通讯作者: 乔世璋

通讯单位:澳大利亚阿德莱德大学

论文DOI:

全文速览

高性能、低成本的光催化剂是实现大规模太阳能制氢的关键。本文报告了一种液体剥离方法来制备 NiPS3 超薄纳米片。该纳米片可作为一种多功能平台,能够极大地改善各种光催化剂(包括 TiO2、CdS、In2ZnS4 和 C3N4)上的光催化产氢性能。与纯 CdS 相比,NiPS3/CdS 异质结具有最高的改进因子(~1,667%),实现了极高的可见光诱导制氢速率(13,600 μmol h-1g-1)。这种更好的性能归因于强关联的 NiPS3/CdS 界面确保了有效的电子-空穴解离/传输;以及 NiPS3超薄纳米片上丰富的原子级边缘 P/S 位点和活化的S 位点,促进了氢的析出。这些发现通过最先进的表征和理论计算来证明。该工作首次证明了金属磷硫属化物可作为一个通用平台的巨大潜力,能极大地提高不同光催化剂的性能。

背景介绍

不可再生化石燃料的大量消耗导致全球能源短缺、环境污染和气候变化。因此,寻找可再生、清洁和无碳的能源至关重要。太阳能光催化水分解产氢 (H2) 被认为是一种有前途、廉价且环境友好的技术,其可利用阳光生产绿色 H2 燃料。然而,迄今为止开发的光催化剂效率低、稳定性差、价格高,严重制约了光催化工艺的大规模应用。因此,寻找高活性、稳定和廉价的光催化剂对于实现工业规模的太阳能制氢具有重要意义。高性能光催化剂的合理设计和制备,不仅需要从原子级尺度理解结构/组成-活性关系,还需要精确而深刻地理解光催化剂中的光生电子-空穴的动力学和热力学。结合原子分辨率像差校正扫描透射电子显微镜 (AC-STEM) 和理论计算,研究人员可以提供关于光催化剂的结构/组成-活性关系的原子级阐释。特别是,通过上述方法可以准确地揭示光催化剂中存在的各种原子级反应位点,例如单原子、边缘位点和缺陷。另一方面,光生电子和空穴的分离/迁移在确定整体光催化性能方面起着关键作用。因此,必须采用各种先进的表征,例如超快瞬态吸收光谱 (TAS)、瞬态表面光电压 (SPV) 光谱、瞬态光致发光 (PL) 光谱和原位 X 射线光电子能谱 (XPS),对光生电子/空穴的动力学和热力学进行时间分辨研究,特别是在光催化剂表面。此外,将上述两种策略结合起来,同时评估光催化剂的原子级结构/组成-性能关系和时间分辨电荷载流子分离/转移机制,是具有重要意义的。

图文解析

图1. NiPS3 UNS的理论预测、表征和应用。a NiPS3 单层 (100) 边缘的 HER 活性 P、S2 和 S3 位点。b NiPS3单层 (010) 边缘的 HER 活性 S 位点。c 在 NiPS3单层的 (1-30) 边缘处的 HER 活性 P1、S2、S3 和 S8 位点。d 在 NiPS3单层的 (100) 边缘、(010) 边缘或 (1-30) 边缘的活性位点上,遵循 Volmer-Heyrovsky 路径的 HER 吉布斯自由能图。e 在NiPS3 单层的 (100) 或(1-30) 边缘的活性位点上,遵循 Volmer-Tafel 路径的 HER 吉布斯自由能图。NiPS3 UNS 的 f 基面和 g 边缘的原子分辨率HAADF-STEM 图像。h NiPS3 UNS 的(基于同步加速器的)Ni L2,3-edge XANES。i TiO2、NiPS3/TiO2、CdS、NiPS3/CdS、In2ZnS4、NiPS3/In2ZnS4、C3N4和 NiPS3/C3N4在约 vol% 三乙醇胺水溶液中的光催化产氢速率。

图 2. 的形貌、微观结构和化学成分。a TEM 图像和 b HRTEM 图像。在 N 中,c NiPS3 UNSs 和 d CdS NPs的原子分辨率 HAADF-STEM 图像。e 的EDX 光谱。f 的 Ni L2,3-edge EELS 光谱。g 的 HAADF-STEM 图像,和 中 h Cd、i S、j Ni 和 k P 元素的相应元素mapping图像。注意:将不同体积的 NiPS3 UNSs 乙醇溶液(、、 和  ml)分别添加到研钵中,在室温下通过机械研磨与 50 mg CdS NPs 复合。所得的光催化剂分别标记为 、、 和 。纯 CdS NPs 表示为。

图 3. NiPS3/CdS 系统中的强电子相互作用。a NiPS3UNS、 和 的高分辨率Ni 2p XPS 光谱。、 和 的基于同步加速器的S L-edge XANES。c NiPS3 UNS 和 的 Ni L2,3-edge EELS 光谱。d CdS(200)晶面和e NiPS3(002)晶面沿z轴方向的平均电位分布。f NiPS3/CdS系统的微分电荷密度图。金色和青色等值面分别表示净电子积累和耗尽区域。考虑到在 17 vol% 三乙醇胺水溶液中的溶剂化效应,计算了功函数和微分电荷密度图。

图 4. NiPS3/CdS体系的光催化产氢活性和载流子动力学。a 在~ vol% 三乙醇胺水溶液中使用可见光照射(λ > 400 nm)的、、、、 和 NiPS3UNSs 的光催化产氢速率。 和 的b稳态和 c 瞬态 PL 光谱。c 插图显示了 和 的拟合电荷寿命。用 400 nm 激光脉冲激发后,乙醇溶液中 d 和 e 的二维伪彩色 TA 光谱。f 和 g 在不同泵-探针延迟时间下的 TA 光谱。h 和 的归一化衰减动力学和拟合线,基于约 516 和约 514 nm 处的GSB 峰。i 和 的归一化衰减动力学和拟合线,基于 ~480 和 ~474nm 处的ESA 峰。

图 5. NiPS3/CdS 系统中的电荷载流子动力学。 和 的a瞬态和 b 稳态 SPV 光谱。c 在黑暗和光照下进行的 的 CPD 测试。NiPS3UNSs 的高分辨率 d Ni 2p、e P 2p 和 f S 2p XPS 光谱,分别在光照打开和关闭的情况下测量。的高分辨率g Ni 2p、h Cd 3d 和 i S 2p XPS光谱,分别在光照打开和关闭的情况下测量。

图 6. NiPS3/CdS体系的表面催化反应和光吸收。a  M KOH 水溶液中,、、NiPS3UNSs 和 20 wt% Pt/C 的电化学 HER 活性。b NiPS3/CdS 的俯视原子结构,显示了 Ni、P 和 S 位点。c 在 NiPS3/CdS 体系中的NiPS3 基面的 Ni、P 和 S 位点上,遵循 Volmer-Heyrovsky 路径计算的 HER 自由能图。d 在NiPS3/CdS体系中的NiPS3 基面的Ni、P和S位点上,遵循 Volmer-Tafel途径计算的HER自由能图。e 、、、 和 的 UV-Vis 漫反射光谱。f 分别在氙灯照射 (λ > 400 nm) 和630-nm LED 下,在约 vol% 三乙醇胺水溶液中测量 的光催化产氢速率。考虑到 17 vol% 三乙醇胺水溶液中的溶剂化效应,进行了所有的Gibbs 自由能计算。

图 7. NiPS3/CdS体系中的光催化产氢机理示意图。在NiPS3/CdS体系中,可见光激发(λ > 400 nm)、光生电子和空穴的分离/迁移、以及表面催化反应的示意图。

总结与展望

基于上述结果,本文首次报道了一种简便的液体剥离技术,来合成具有超薄厚度(~ nm)的2D NiPS3。合成后的 NiPS3 UNS 可作为通用平台,用于提高各种光催化剂(包括TiO2, CdS, In2ZnS4 和 C3N4)的光驱动产氢性能。与原始 CdS相比,所制备的 NiPS3/CdS 复合物显示出最高的光催化产氢 (H2) 活性(13,600 μmol h-1 g-1),最大增强因子约为 1667%。NiPS3/CdS 的性能大幅提升有两个原因:(1)NiPS3 UNS 和 CdS NPs 之间的电子耦合界面明显促进了电荷载流子的分离/传输。特别是,光生空穴向 CdS NPs 表面的传输显著增强,这是由牺牲电子供体三乙醇胺收集的。因此,CdS NPs 上剩余的光生电子可以有效地迁移到 NiPS3 UNSs 以产生 H2;(2) 在NiPS3 UNSs中,大量的原子级P/S边缘位点和活化的S位点极大地促进了H2的析出反应。这些发现得到了理论计算和高级表征的支持,例如原子分辨率 AC-STEM、瞬态 PL 光谱、瞬态SPV 光谱、超快 TAS 和原位 XPS。该研究不仅展示了 MPCx 家族作为一个通用平台的巨大潜力,可用于极大地提高各种半导体光催化剂的光催化产氢活性,更重要的是,通过了解光催化中的原子级结构/组成-活性相关性和电子-空穴动力学/热力学,实现了光催化剂的合理设计/制备。

photocatalysis and related surface phenomena(二氧化钛光催化及相关表面现象)作者: Fujishima, Akira; Zhang, Xintong; Tryk, Donald SCIENCE REPORTS 卷: 63 期: 12 页: 515-582 出版年: DEC 15 photocatalysis of naproxen: Effect of the water matrix, anions and diclofenac on degradation rates.(萘普生的TiO2光催化:水基质的作用,对阴离子和双氯芬酸的降解率)作者: Kanakaraju, Devagi; Motti, Cherie A; Glass, Beverley D; 等.Chemosphere 卷: 139 页: 579-88 出版年: 2015-Nov (Epub 2015 Sep 01) photocatalysis: A historical overview and future prospects.(二氧化钛光催化:一个历史的概述和未来前景)作者: Hashimoto, K; Irie, H; Fujishima, AJAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS 卷: 44 期: 12 页: 8269-8285 出版年: DEC surface science perspective on TiO2 photocatalysis(二氧化钛光催化的表面科学研究)作者: Henderson, Michael SCIENCE REPORTS 卷: 66 期: 6-7 页: 185-297 出版年: JUN 15 2011

电催化氧还原机理研究论文

作者: Raymond George Klaus Hassmann【摘要】燃料电池具有非同寻常的性能: 电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market. 燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类 目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。 可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。 表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。 实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。 最适于用来驱动汽车的是低温型燃料电池。 根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,这2种燃料电池最终都可以达到l000美元/KW的投资成本这一假设条件而推导出来的。 2 高温燃科电池 高温型燃料电池具有许多适于在静止式装置上使用的特性。但是在高温型燃料电池产生出电能之前需要较长的加热过程,因而这种技术不能应用于要求在短时间内频繁起动的各种实用装置。此外,高温型燃料电池还具有以下特点: (1)不需要使用贵金属来催化电化学反应。一般情况下使用陶瓷材料。 (2)对CO完全没有限制。CO参加到电化学反应过程并像H2一样被氧化。 (3)对燃料表现出高度灵活性。可以给这类燃料电池发电设备供应天然气,天然气在设备内部被转换成H2和CO。这意味着无需任何外部燃料,从而大大简化了发电设备的平衡问题。 (4)高温可以将燃气轮机连接到该系统上,在这种情况下,燃料电池发电设备是在300kPa压力下运行,并在不考虑燃气轮机输出的情况下将燃料电池的功率密度提高约20%,因此使总的电效率提高10%,可成倍地降低使用期限成本。 (5)较高的运行温度也为排热提供了更多的灵活性。在电效率达60%或更高水平的联合循环系统中可限制废热排放,而在单循环下则会排放出更多的热量。 MCFC和SOFC是这类高温型燃料电池的2种技术。它们使用的材料不同。MCFC是在一只陶瓷容器中放入液态的金属碳酸盐作为电解液,如果没有采取防止电极老化的措施,燃料电他的使用寿命会受到影响。 在MCFC中电化学反应是由CO3离子引发的。MCFC采用的是颊型电池,和SOFC型的管形设计方案相比,这种颊型电他的功率密度要稍微高一些。这在成本上要比SOFC型装置优越。但在另一方面,由于SOFC所用的陶瓷材料非常稳定,可以用在950-1000℃范围内,所以SOFC装置在抗老化性能上更具优越性。到目前为止,所有的长期电池试验和正在运行的试验性机组都表明SOFC型装置的使用寿命可以达到70 000-80 000h,是MCFC型的2倍。 MCFC和SOFC 2种技术在进行100-250kW功率范围的单循环现场试验中,成本都有大幅度的下降。目前在MCFC开发上占有主导地位的是美国的Fuel Cell Energy公司及其在德国的授权单位MTU,日本的Ishikawajima-Harima重工(IHI)和三菱公司等。而Siemens Westinghouse在SOFC开发上处于领先水平。3 中温型燃料电池 目前磷酸类燃料电池(PAFC)是具有最先进技术的燃料电池。80年代,IFC(国际燃料电池公司)决定对其前期商业化生产线进行投资,制造和销售200kW的PAFC装置,并将其投入市场。东芝公司在80年代末就已经努力使PAFC技术进入商用市场。从此,PAFC技术就一直在静止燃料电池的市场中占据着显赫的位置。迄今为止,全球已经安装了150多套PAFC燃料电池装置。 研究表明,这种燃料电池未能实现市场商业化的原因大致有以下几方面: (1)电效率最高为40%,超过维修期限后会降到35%甚至更低水平。通常情况下设备的使用期限不超过20 000运行h。 (2)有些试验性的设备(如东芝公司管理的1套11MW设备未能达到顶期的性能水平。 (3)美国和日本政府大幅度削缩用于PAFC技术研究和开发的投资。 (4)从迄今积累的经验及在改善设计参数和降低产品成本方面的潜力来看,让PAFC技术成功地跻身于当今的市场中的可能性是极低的。4 SOFC在配电市场方面的潜力 Siemens Westinghouse公司根据对市场的分析,决定采取必要的措施加快SOFC技术进入市场的步伐。预计在2003-2004年提供第l批产品,进入商业性生产前的试验阶段,装置容量从目前的2MW扩大到15MW。 北美和欧洲被认为是SOFC燃料电池技术最有希望的市场。Hagler Bailly公司和西门子公司对功率范围为250 kW-l MW的市场进行了调查,结果表明到2005年SOFC燃料电池的市场容量为每年10000MW。北美和欧洲几乎各占50%。考虑到北美洲用户的结构和他们的需求,在北美洲各类小型发电机组的总容量在2010年可能达到每年约1000MW,其中600MW可能是燃料电池发电装置。在各种类型的燃料电池中,SOFC的市场份额约占40%,到2010年在北美洲SOFC的全年销售额将达到亿美元。 在竞争日益激烈的配电市场中的另一个获胜者是微型燃气轮机,主要是作为备用电源或辅助电源。由于SOFC和微型燃气轮机的特性适于不同的应用场所,SOFC效率高但投资成本也高,而微型燃气轮机成本低但效率也低,因而这2种技术不会产生市场上竞争。而往复式发动机会逐渐失去其在市场中的份额。 欧洲电网要比北美洲电网强大得多,欧洲电网强化了集中的大型发电厂的作用。因此在北美洲经常出现的分散式电热设备和动力装置的供电质量和供电可靠性问题在欧洲是不突出的。但另一方面,在欧洲对能量储存更为敏感。 此外,一些国家政府将颁布新的规程和法律及新的能源价格,预计欧洲各国之间市场份额会有重大差异。在有些情况下这个过程会给SOFC用于配电装置起到一定的促进作用。此外,欧洲的自由化近程落后于北美洲。因此,市场预测结果会有很大程度的不确定性。5 SOFC技术应用的扩展 使用天然气作为燃料的SOFC是车载式装置,其扩展应用可有以下几种形式:(1)家庭应用:新一代燃料电池将是扁平管型的,其功率密度是目前所用圆柱型燃料电池技术的2倍,因而将制造出5kW的燃料电池装置。这种设计方案是可行的,在配电市场中可以替代圆柱型燃料电池。(2)l0MW以上的系统装置:很显然,只要SOFC技术占有了功率范围在250-10MW的市场,那么下一步最必然的是要争取占有l0MW以上更大规模发电设备的市场。通过把更多SOFC链接起来便能实现这个目标,也满足了高效率低成本的要求。20MW级规模燃料电池的电效率已经接近甚至超过70%。(3)用液态燃料运行:使用天然气作为燃料将SOFC的应用局限在靠近天然气供气网的区域内,从而使这项新技术的应用受到限制。因此存在着让SOFC使用液态燃料的迫切要求。因此,应与大型石油公司合作进行该课题的研究开发,选择一种适宜的液体燃料并设计出最适于使用这种新燃料的SOFC发电装置,以便为边远的用户服务。 (4)C02的分离:Shell公司和 Siemens Westinghouse公司正在共同研制一种能将CO2从完全反应后的燃料中分离的SOFC设飞方案。例如,当把其装在用于回收油的平台上时,可以把CO2用泵压到地下储层中,这不但可省去CO2的排放税,还可提高原油的产出量。 (5)综合性应用:CO2分离装置可能是点火的火花装置,它使得SOFC在一种封闭且可再生的能量循环中成为关键性部件。经过-段时间,SOFC能产生出热量和电力,例如用于大型暖房的设施中,SOFC装置产生的C02可用来加快植物的生长。而任何一种农作物收获后的剩余有机物都可以转化为气体供给SOFC作燃料。

燃料电池的演化及发展探析摘要:对燃料电池的工作原理进行了详细的分析;对其演化过程进行了简述;对其最新技术进行了详细的研究;对国内燃料电池技术的发展提供了参考意见。关键词:燃料电池;碱性燃料电池;磷酸型燃料电池;熔融碳酸型燃料电池;固体氧化物燃料电池;直接醇类燃料电池;固体高分子膜燃料电池随着工业化过程的进一步加强,大气中二氧化碳的排放量和污染程度加剧,导致了温室效应越来越明显,因此环保问题引起了各国政府的重视。为此,绿色能源技术引起了各国的普遍关注,并且正在逐步成为一种趋势。经过了各方的互相协作和努力,燃料电池技术正日趋成熟。作为一项重要技术,从本质上讲,它是一种电化学的发电装置,等温地按电化学方式,直接将化学能转化为电能而不必经过热机过程,不受卡诺循环限制,因而能量转化效率高,且无噪音,无污染,因此正在成为理想的替代能源。1 燃料电池的演化过程1.1 燃料电池的演化过程燃料电池是一种新型的无污染、高效率汽车、游艇动力和发电设备,在本质上是一种能量转化装置。1839年,格罗夫发表了第一篇有关燃料电池研究的报告。1889年,蒙德和朗格尔采用了浸有电解质的多孔非传导材料为电池隔膜,一铂黑为电催化剂,以钻孔的铂或金片为电流收集器组装出燃料电池。但此后的一段时间里,奥斯卡尔德等人在探索燃料电池发电过程的实验都因为反映速度太慢而使实验没有成功。与此同时,热机研究却取得了突破性进展并成功运用而迅速发展。因此燃料电池技术在数十年内没能取得大的进展。直到1923年,由施密特提出了多孔气体扩散电极的概念,在此基础上,培根提出了双孔结构电池概念,并成功开发出中温度培根型碱性燃料电池。以此为基础,经过一系列发展,这项燃料电池技术得到了突飞猛进的发展。在20世纪60年代由普拉特一惠特尼公司研制出的燃料电池系统,并成功应用于宇航飞行,使得燃料电池进入了应用阶段。1.2 燃料电池的基本工作原理燃料电池是一种能量转化装置,它就是按电化学原理,即原电池工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。从本质上说是水电解的一个“逆”装置。电解水过程中,通过外加电源将水电解,产生氢和氧;而在燃料电池中,则是氢和氧通过电化学反应生成水,并释放出电能。因此,燃料电池的基本结构与电解水装置是相类似的,它主要由4部分组成,即阳极、阴极、电解质和外部电路。其阳极为氢电极,阴极为氧电极。通常,阳极和阴极上都含有一定量的催化剂,目的是用来加速电极上发生的电化学反应。两极之间是电解质,电解质可分为碱性型、磷酸型、固体氧化物型、熔融碳酸盐型和质子交换膜型等类型。燃料电池的工作原理如下(以磷酸型或质子交换膜型为例):(1)氢气通过管道或导气板到达阳极;(2)在阳极催化剂的作用下,1个氢分子解离为2个氢离子,即质子,并释放出2个电子;(3)在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,同时,氢离子穿过电解质到达阴极,电子通过外电路也到达阴极;(4)在阴极催化剂的作用下,氧与氢离子和电子发生反应生成水;与此同时,电子在外电路的连接下形成电流,通过适当连接可以向负载输出电能。1.3 燃料电池的特点由上所述可知,燃料电池在本质上是电化学转化装置,它能够通过电化学过程直接将化学能转化为电能和热能,因而具有如下优点:1)干净清洁。利于环保,可减少二氧化碳的排放;无噪音,并自给供水;2)高效。由于其转化过程没有经过热机过程,因此效率高。3)适用性。由于污染小,无噪音,可靠,可使用于终端用户,因而可减少各种损失,并节省设备投资。4)可调制性。由于它是组合的结构,因而可以调节,以满足需求。5)燃料多样性。由于燃料可以是氢气、天然气、煤气、沼气的功能碳氢化合物燃料。基于以上特点。燃料电池成为绿色能源技术发展的重点。成为本世纪最有发展前途的技术之一。2 国内外燃料电池的最新进展2.1 碱性燃料电池(AFC)AFC技术是第一代燃料电池技术,已经在20世纪60年代就成功地应用于航天飞行领域。它是最早开发的燃料电池技术。目前德国一家公司开发的AFC在潜艇动力实验上获得了成功。国内对AFC的研究工作是从20世纪60年代开始的,主要是集中在中科院的下属研究机构。武汉大学和中科院长春应化所在上世纪60年代中期即开始对AFC进行基础研究。上世纪70年代,由于航天工业的需求,天津电源研究所研制出lkW AFX2系统。与此同时,A型号(即以纯氢、纯氧为燃料和氧化剂)、B型号(即以N2H4分解气、空气氧为燃料和氧化剂)燃料电池系统也在中科院大连化物所研制成功。此外,其它的研究机构也都展开了对AFC的研究。2.2 磷酸型燃料电池(PAFC)PAFC也是第一代燃料电池技术,也是目前最为成熟的应用技术。已经进入了商业化应用和批量生产。目前美国、日本、欧洲各国已有100多台200KW 发电机组投入使用或在安装中,最长的已经运行了37000小时。因此已经证实了PAFC是高度可靠的电源。只是由于其成本太高,目前只能作为区域性电站来现场供电、供热。国内对PAFC的研究工作相对较少。尽管如此,在对PAFC的研究过程中仍进行了卓有成效的工作,取得了不俗成绩。如国内学者魏子栋等人在对氧化还原发应的电催化剂研究过程中发现了Fe、Co对Pt的锚定效应。2.3 熔融碳酸型燃料电池(MCF℃)MCFC是属于第二代燃料电池技术。目前对MCF℃ 的研究国家有美国、日本和西欧,主要是应用于设备发电,目前还处于试验阶段。美国对MCFC的研究单位有国际燃料电池公司和能源研究公司及M—C动力公司。而日本对MCFC的主要是NEIX)公司、电力公司、煤气公司和机电设备厂商组成的MCFC研究开发组。大坂工业技术研究所从1991年开始10kW的MCFC单电池的长期运行试验,到1995年l1月止,累计运行了4万小时,确证了MCFC实用化的可能。德国MTU宣布在MCFC技术方面取得了突破。由该公司开发出来的世界上最大的280kW 的单电池还在运行。国内对MCFC的研究是中科院大连化物所从1993年开始的。现在正处于组合电池的研究阶段。而经过多年的艰苦努力与创新突破,上海交通大学科研人员率先在国内成功进行了1~1.5l 的熔融碳酸型燃料电池(M ℃)发电实验,取得了在国外一些国家至少需要6年甚至10年左右时间才能获得的成果。参加项目评审的专家认为,它整体水平达到了当前国内领先水平、国际20世纪90年代初同类技术的先进水平。2.4 质子交换膜型燃料电池系统(PEMF℃)PEMFC是属于第三代燃料电池技术。20世纪60年代,美国就已将PEMFC应用于宇航飞行,但由于技术问题,使得在其发展过程中受到了影响。直到20世纪80年代,加拿大Ballad公司才展开对PEMFC的研究工作。并取得了突破性进展。目前开发出来的电池组合功率达到了1000W/L、700W/kg的指标,因此这一技术引起了各国的广泛关注。目前Ballad公司在这一技术领域处于领先地位。国内对PEMFC的研究是从20世纪70年代天津电源研究所展开一聚苯乙烯蟥酸膜为电解质的PEM—FC基础研究。但进展缓慢。而国外在这一领域发展较快。因此在90年代开展了PEMFC的跟踪研究。目前,在PEM 方面,国内技术在多个方面取得了突破,北京富原新技术开发总公司已出现了50W、75W、150W、5KW 等样机。而上海神力科技有限公司已研制出5KW,10KW 的大功率型质子交换墨燃料电池系统,这大大缩小了与世界先进水平的距离。

其主要原理是基于原子的杂化掺杂改变了碳原子的电子云分布,使氧气容易被碳材料所吸附从而提高介孔碳的氧还原催化性能。

  • 索引序列
  • 电催化材料的研究论文
  • 新型光催化材料的研究论文
  • 光催化材料的研究现状的综述论文
  • 光催化材料论文参考文献
  • 电催化氧还原机理研究论文
  • 返回顶部