首页 > 期刊论文知识库 > 水中铁离子的检测论文

水中铁离子的检测论文

发布时间:

水中铁离子的检测论文

加入硫氰酸根离子显血红色

磺基水杨酸法。测3价铁。邻菲罗林法。测2价铁。

因为氢氧根离子会跟铁离子或亚铁离子反应生成沉淀,会使测定结果偏小。

加NaOH,使得铁离子生成Fe(OH)3,红褐色乳浊液(沉淀)

水中铜离子的检测论文

浅谈重金属检测传感器技术的应用论文

摘要: 随着经济的迅猛发展和社会的日新月异, 人们对重金属的开采及加工越来越频繁, 这使得不少重金属存在于大气水以及土壤中, 在很大程度上加重了环境污染, 科学技术的迅猛发展为重金属检测传感器技术的研究提供了很好的途径。针对上述背景下, 对重金属检测传感器技术研究与应用进行合理性阐述, 以促进重金属检测传感器技术的进一步发展。

关键词: 重金属检测; 传感器技术; 环境污染;

重金属污染是环境污染的一个重要组成部分, 重金属在自然界中广泛存在, 随着人类的开采、冶炼、加工活动而使得重金属转变成化学状态或化学形态广泛分布于大气、水、土壤中, 随着时间的积累而不断留存、迁移, 从而引发严重的环境污染问题;重金属甚至还会随着废水的排出而流入海洋中, 对鱼和贝类造成严重的危害;重金属还会附着在人类的鼻腔和食物上, 造成人类呼吸道感染和重金属中毒[1]。重金属具有沉积性和不可降解性, 是一种非常危险的污染源, 因此对于重金属的研究与检测是十分关键的。通过调查与研究, 发现重金属检测传感器技术主要分为离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术四个方面, 本文通过对这四种传感器技术在重金属检测中的研究与应用作简要分析, 以推动重金属检测传感器技术的发展。

1 离子选择性电极传感器技术。

离子选择性电极传感器技术是一种操作简单、性价比高、准确有效的重金属检测传感器技术。离子选择性电极传感器技术因为不需要提前对样品进行操作而被广泛应用于重金属的在线检测中。目前, 国内外学者对离子选择性电极传感器技术进行了大量的研究, 发现选择性高、经济简单的离子选择性电极主要分为基于聚氯乙烯膜的离子选择性电极和基于流系玻璃膜的离子选择性电极两种[2]。

基于聚氯乙烯膜的离子选择性电极。

目前在对基于聚氯乙烯膜的离子选择性电极的研究中, 主要是对离子选择性电极的重金属离子的识别以及聚氯乙烯膜的结构和性能进行研究, 同时, 对不同的载体和膜增塑剂对离子选择性电极性能的影响作简要分析, 从而提高对重金属的识别能力。

基于流系玻璃膜的离子选择性电极。

基于硫系玻璃膜的离子选择性电极良好的红外线透过性是其他离子选择性电极无法相提并论的。许多发达国家都通过购买硫系玻璃膜的离子选择性电极来用于重金属检测工作。

2 光纤化学传感器技术。

对于光纤化学传感器技术的研究比离子选择性电极传感器技术的研究还要早, 光纤化学传感器技术的研究始于美国研究所, 从那以后, 许多国家都在实验室中对光纤化学传感器技术进行研究, 并应用到重金属检测中。陈雷等人对基于聚氯乙烯膜的光纤传感器进行研究并应用到铜离子的检测中, 取得了良好的效果[3]。李学强等人将注册分析法和激光激发荧光光谱技术应用到对金属离子传感器的研制中, 使我国饮用水中的重金属检测工作取得了很大的进展。

3 生物传感器技术。

第一个生物传感器始于Red String仪器公司。之后, 又在多个公司相继推出, 这些生物传感器主要是对人类血糖和尿糖中的重金属物质进行检测。重金属物质在人体中的留存和迁移会对人体的健康造成极大的威胁, 生物传感器可以与人体生物识别因素相互影响, 以达到对人体中的重金属含量进行检测, 从而预防重金属中毒的目的。通过研究发现, 生物传感器主要分为蛋白质为基础的'生物传感器以及整个细胞为基础的重金属传感器两种。

蛋白质为基础的生物传感器。

生物识别因素主要是促进消化的酶、防止病毒入侵的抗体、增强体质的金属键键合蛋白以及脱辅基酶蛋白质。以这几种生物识别因素为基础制作蛋白质为基础的生物传感器, 用来检测铜离子、锌离子、汞离子以及铅离子等金属离子。传统的生物传感器存在灵敏度低、选择性差等一系列缺点, 因此必须研制出选择性高的新型传感器来实现对重金属离子的检测, 这种新型传感器被称为蛋白质为基础的生物传感器。

整个细胞为基础的重金属传感器。

整个细胞为基础的重金属传感器可以实现对微型有机体生物标识的检测, 它具有所受干扰因素少、反应速度快等一系列优点, 可以实现对苔藓、海藻、酵母等海洋生物中的重金属的检测。随着生物医学和环境工程的蓬勃发展, 可以通过改进主传感器的途径来解决重金属检测过程中的干扰问题, 即在基因层次上设计细胞器。

4 结语。

综上所述, 本文通过对重金属检测传感器技术研究与应用进行分析, 主要从离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术这四个方面作简要分析, 为传感器检测技术在重金属中的研究与应用提供理论支持, 以减少重金属污染现象的发生。

参考文献

[1]张涛, 苏倡, 刘艳, 等.泥蚶 (Tegillarca granosa) 重组铁蛋白富集重金属离子的特性及化学传感器的研究[J].海洋与湖沼, 2017, 48 (4) :870-876.

[2]吕攀攀, 肖芳兰, 严锡娟, 等.构建一种基于双启动子模型的特异性检测镉离子的大肠杆菌传感器[J].生物工程学报, 2015, 31 (11) :1601-1611.

[3]贾朔.边超, 佟建华, 等.基于纳米金Core-satellites等离子体耦合增强效应的汞离子光纤传感器的研究[J].分析化学, 2017, 45 (6) :785-790.

copper histidine释义[医]铜-组氨酸网络组胺酸铜; 组织胺酸铜英[ˈkɔpə ˈhistidi:n]美[ˈkɑpɚ ˈhɪstɪˌdin]Optical fiber probes with various shapes and gold electrodes modified with histidine for determining copper in water have been fabricated based on self-assembled technology in this dissertation.本论文基于分子自组装技术制备了多种形貌的光纤探针和用于水中铜离子检测的组氨酸修饰金电极。

水中铁检测论文

水中铁含量是衡量水环境质量的重要指标之一。水中铁含量的测定方法主要有分光光度法、原子荧光法、电感耦合等离子体质谱法等多种方法。本文将介绍分光光度法和原子荧光法两种测定水中铁含量的方法。

一、分光光度法分光光度法是利用物质与光的相互作用的原理,通过测量光的吸收或透射度来计算物质的浓度。测定水中铁含量的分光光度法,通常采取两种方法:邻苯二甲酸氧化法和荧光酸法。1.邻苯二甲酸氧化法邻苯二甲酸氧化法是一种较为常用的测定水中铁含量的方法。该方法基于铁离子在邻苯二甲酸存在下被氧化成Fe3+离子,并与邻苯二甲酸形成紫色络合物。通过比色法或分光光度法测定络合物的吸光度,计算出铁离子的浓度。

2.荧光酸法荧光酸法是另一种测定水中铁含量的分光光度法。该方法是利用p-磺酸苯异丙酰荧光酸与铁离子反应生成荧光铁络合物,通过荧光强度测定铁离子的浓度。荧光酸法的优点是反应灵敏度高,荧光强度与浓度成正比,但其在海洋水中的测定结果误差较大。二、原子荧光法原子荧光法是一种常用于分析金属元素含量的方法,测定水中铁含量的原子荧光法比分光光度法精度更高,能够在微量水样中进行测定。原子荧光法利用原子吸收和原子发射的原理,将样品中的铁离子转化为气态原子,然后通过激发和发射原子能级的方式来测定铁离子的浓度。对于水样中铁含量较低的情况,可采用原子荧光法进行测定。原子荧光法可以尽可能避免样品前处理中铁的丢失,因此能够获得更加准确的结果。总之,对于测定水中铁离子含量,分光光度法和原子荧光法都是常用的方法,需要根据具体情况选择适合的方法。同时,在进行实验前,需要注意样品处理的正确性,以保证测试结果的准确性。

用EDAT(乙二胺四乙酸根)滴定就可以了

以尤尼柯(上海)仪器有限公司生产的UV-2000分光光度计测量地下水中微量铁含量为例.实验方法: 工作曲线的制作( 1 ) 配制铁标准贮备溶液(100μg/mL):准确取十二水硫酸铁铵,置于烧杯中,加6mol/L盐酸20mL和少量水,溶解后,定量转移入1 L容量瓶中,加水稀释至刻度,摇匀。(2)配制铁标准使用溶液(10μg/mL):用移液管移取上述铁标准贮备溶液,置于100mL容量瓶中,加6mol/L盐酸 mL,然后加水稀释至刻度,摇匀。(3)绘制工作曲线:在5只50 mL容量瓶中,用吸量管分别加入,,,,铁标准溶液(ρ=10μg/mL),再加入10%盐酸羟胺溶液1mL,邻二氮菲溶液2 mL, 1mol/ L NaAc 溶液5mL,以去离子水稀释至刻度,摇匀。在510nm波长下,用1cm比色皿,以空白试剂为参比溶液,测定各溶液的吸光度。以50mL溶液中的含铁量为横坐标,相应的吸光度为纵坐标,绘出邻二氮菲—亚铁工作曲线。 测量数据准确移取10mL 水样于50mL容量瓶中,依次加入10%盐酸羟胺溶液1 mL, 邻二氮菲溶液2mL和1mol/L NaAc 5mL, 以去离子水稀释至刻度,摇匀。在所选定的波长下测定其吸光度 。根据工作曲线找出相应的浓度,计算水样中铁的含量(以mg/L表示)。通过校准曲线拟合,用分光光度法测量水中铁的浓度,得平行数据(可列一个表格)。 建立数学模式水中铁浓度计算公式如下:c=m/v式中:m — 水样中铁的质量(μg) v — 水样体积(mL) 如果你是做实验,这样的话可以了,科研的话还可以更详细点。如果有什么不明白的可以给我留言。

茜素红S催化动力学光度法测量痕量铁

论文人体中铜离子检测

浅谈重金属检测传感器技术的应用论文

摘要: 随着经济的迅猛发展和社会的日新月异, 人们对重金属的开采及加工越来越频繁, 这使得不少重金属存在于大气水以及土壤中, 在很大程度上加重了环境污染, 科学技术的迅猛发展为重金属检测传感器技术的研究提供了很好的途径。针对上述背景下, 对重金属检测传感器技术研究与应用进行合理性阐述, 以促进重金属检测传感器技术的进一步发展。

关键词: 重金属检测; 传感器技术; 环境污染;

重金属污染是环境污染的一个重要组成部分, 重金属在自然界中广泛存在, 随着人类的开采、冶炼、加工活动而使得重金属转变成化学状态或化学形态广泛分布于大气、水、土壤中, 随着时间的积累而不断留存、迁移, 从而引发严重的环境污染问题;重金属甚至还会随着废水的排出而流入海洋中, 对鱼和贝类造成严重的危害;重金属还会附着在人类的鼻腔和食物上, 造成人类呼吸道感染和重金属中毒[1]。重金属具有沉积性和不可降解性, 是一种非常危险的污染源, 因此对于重金属的研究与检测是十分关键的。通过调查与研究, 发现重金属检测传感器技术主要分为离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术四个方面, 本文通过对这四种传感器技术在重金属检测中的研究与应用作简要分析, 以推动重金属检测传感器技术的发展。

1 离子选择性电极传感器技术。

离子选择性电极传感器技术是一种操作简单、性价比高、准确有效的重金属检测传感器技术。离子选择性电极传感器技术因为不需要提前对样品进行操作而被广泛应用于重金属的在线检测中。目前, 国内外学者对离子选择性电极传感器技术进行了大量的研究, 发现选择性高、经济简单的离子选择性电极主要分为基于聚氯乙烯膜的离子选择性电极和基于流系玻璃膜的离子选择性电极两种[2]。

基于聚氯乙烯膜的离子选择性电极。

目前在对基于聚氯乙烯膜的离子选择性电极的研究中, 主要是对离子选择性电极的重金属离子的识别以及聚氯乙烯膜的结构和性能进行研究, 同时, 对不同的载体和膜增塑剂对离子选择性电极性能的影响作简要分析, 从而提高对重金属的识别能力。

基于流系玻璃膜的离子选择性电极。

基于硫系玻璃膜的离子选择性电极良好的红外线透过性是其他离子选择性电极无法相提并论的。许多发达国家都通过购买硫系玻璃膜的离子选择性电极来用于重金属检测工作。

2 光纤化学传感器技术。

对于光纤化学传感器技术的研究比离子选择性电极传感器技术的研究还要早, 光纤化学传感器技术的研究始于美国研究所, 从那以后, 许多国家都在实验室中对光纤化学传感器技术进行研究, 并应用到重金属检测中。陈雷等人对基于聚氯乙烯膜的光纤传感器进行研究并应用到铜离子的检测中, 取得了良好的效果[3]。李学强等人将注册分析法和激光激发荧光光谱技术应用到对金属离子传感器的研制中, 使我国饮用水中的重金属检测工作取得了很大的进展。

3 生物传感器技术。

第一个生物传感器始于Red String仪器公司。之后, 又在多个公司相继推出, 这些生物传感器主要是对人类血糖和尿糖中的重金属物质进行检测。重金属物质在人体中的留存和迁移会对人体的健康造成极大的威胁, 生物传感器可以与人体生物识别因素相互影响, 以达到对人体中的重金属含量进行检测, 从而预防重金属中毒的目的。通过研究发现, 生物传感器主要分为蛋白质为基础的'生物传感器以及整个细胞为基础的重金属传感器两种。

蛋白质为基础的生物传感器。

生物识别因素主要是促进消化的酶、防止病毒入侵的抗体、增强体质的金属键键合蛋白以及脱辅基酶蛋白质。以这几种生物识别因素为基础制作蛋白质为基础的生物传感器, 用来检测铜离子、锌离子、汞离子以及铅离子等金属离子。传统的生物传感器存在灵敏度低、选择性差等一系列缺点, 因此必须研制出选择性高的新型传感器来实现对重金属离子的检测, 这种新型传感器被称为蛋白质为基础的生物传感器。

整个细胞为基础的重金属传感器。

整个细胞为基础的重金属传感器可以实现对微型有机体生物标识的检测, 它具有所受干扰因素少、反应速度快等一系列优点, 可以实现对苔藓、海藻、酵母等海洋生物中的重金属的检测。随着生物医学和环境工程的蓬勃发展, 可以通过改进主传感器的途径来解决重金属检测过程中的干扰问题, 即在基因层次上设计细胞器。

4 结语。

综上所述, 本文通过对重金属检测传感器技术研究与应用进行分析, 主要从离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术这四个方面作简要分析, 为传感器检测技术在重金属中的研究与应用提供理论支持, 以减少重金属污染现象的发生。

参考文献

[1]张涛, 苏倡, 刘艳, 等.泥蚶 (Tegillarca granosa) 重组铁蛋白富集重金属离子的特性及化学传感器的研究[J].海洋与湖沼, 2017, 48 (4) :870-876.

[2]吕攀攀, 肖芳兰, 严锡娟, 等.构建一种基于双启动子模型的特异性检测镉离子的大肠杆菌传感器[J].生物工程学报, 2015, 31 (11) :1601-1611.

[3]贾朔.边超, 佟建华, 等.基于纳米金Core-satellites等离子体耦合增强效应的汞离子光纤传感器的研究[J].分析化学, 2017, 45 (6) :785-790.

铜离子检测论文

1.你可以直接可溶性加碱,会产生蓝色沉淀氢氧化铜。

2.可以选择加入可溶性碳酸盐,也会产生蓝色沉淀碳酸铜。

3.考虑到铜单质的特殊性质,可以在铜离子中加入铁或锌单质,会有紫红色固体析出。

铜离子:

铜离子是由铜原子失去最外层的两个电子得到的,显正2价,书写为Cu2+,显蓝色 通常,铜离子Cu2+在水溶液中实际上是以 水合离子[Cu(H2O)4]2+的形式存在的,水合铜离子呈蓝色,所以我们常见的铜盐溶液大多呈蓝色。

而在 氯化铜的溶液中,不仅有水合铜离子[Cu(H2O)4]2+,还有 氯离子Cl-与铜离子结合形成的四氯合铜络离子[CuCl4]2-,该离子的颜色为黄色。 当在饱和 氯化铜溶液中加入 氯化钠或者其它氯化物和通入 氯化氢时,溶液的绿色会进一步“ 黄化”,使溶液呈鲜艳的黄绿色,而粘附在白色瓷壁上的溶液则呈现黄色,这是涉及到物理的 张力等改变了四氯合铜离子的平衡常数,使其正向移动,而在溶液中,大量的水使四氯合铜离子的转化呈可逆,因而无法使其呈现黄色。根据光学原理我们知道,蓝色和黄色的混合色为绿色,这就是为什么我们常见的一般浓度的 氯化铜溶液呈绿色的原因。

铜离子是浅蓝色的,亚铜离子不太清楚,但是亚铜离子不稳定,容易被空气中的氧气氧化,形成铜离子溶液,也可以用氨水,观察沉淀的颜色,应该是蓝色絮状沉淀。

铜离子的检验方法,除了用过量氨水能形成深蓝色的铜氨络离子之外还可以用通入H2S的方法,形成黑色不溶于酸的黑色沉淀的就能证明另外,还可以加入氢氧化钠等可溶性碱,生成蓝色絮状沉淀即是亚铜离子有一个独特的性质,在酸性条件下,能发生自身氧化还原反应生成铜单质和铜离子,现象是同时生成红色沉淀和蓝色溶液所以你用盐酸或者是硫酸把溶液调成强酸性,既可观察到

copper(II) ion

  • 索引序列
  • 水中铁离子的检测论文
  • 水中铜离子的检测论文
  • 水中铁检测论文
  • 论文人体中铜离子检测
  • 铜离子检测论文
  • 返回顶部