我看了一下下面那个问题的回答除了复杂度之外余下的完全不靠谱,很明显这个人根本不懂计算数学如果没有额外的信息,"稳定地解决大规模线性方程组"只是一个梦想,因为即使是很小规模的矩阵,也容易构造难以稳定求解的例子,所以一般不能很含糊地讨论,而要根据实际的情况先做一些必要的分析然后才能选择适当的算法,或者下结论说没有好的算法比较基础的文献有G. H. Golub and C. F. Van Loan, Matrix Computations , Iterative methods for sparse linear systems 2edJ. H. Wilkinson, The Algebraic Eigenvalue Problem然后还得看具体问题,光有上面的理论知识并不足以解决问题如果是门外汉,建议找专业人士合作解决,而且即便如此很多情况下仍然得看问题的难度
石油论文参考文献
石油是一种粘稠的、深褐色液体,被称为“工业的血液”。下面,我为大家分享石油论文参考文献,希望对大家有所帮助!
爆炸荷载作用下大型立式圆柱形储油罐动力响应分析
延迟焦化装置主分馏塔及吸收稳定系统的模拟计算与优化
天然气管道无线监控系统的研究与实现
定向井井眼轨迹可视化技术研究
精细控压钻井井内压力计算方法研究
分隔壁塔双效精馏热集成系统的稳态和动态行为研究
高层办公建筑的空间流线解析及研究
再生水源热泵应用于供热系统的研究与评价
基于MVC的图形定制系统的研究与实现
电磁感应数据传输系统的硬件研制
大庆钻探工程公司内部控制评价与优化研究
长春岭低温低压高含蜡油藏开发技术对策研究
“固—气—液”联产的生物质能源转换工艺及产物利用的研究
香菇纤维素酶基因cel6B的克隆及其在大肠杆菌中的表达
碳钢热浸镀铝镀层的组织与性能及稀土改性研究
大型半潜船工程项目的可行性与市场评估研究
吉林油田公司油气田地面工程建设项目竣工验收规范流程的设计
新立油田整体改造工程可行性分析
管道局管道工程项目物流整合研究
新型PIP系统在大型石化工程项目管理中的应用
变温荷载作用下饱和粉质粘土的固结特性研究
XX油田井下作业工程公司配液站改扩建项目环境影响后评价研究
吉林油田公司企业生产安全文化建设研究
有机涂层下船用钢电偶腐蚀规律研究
逆向跨国并购的动因和绩效研究
基于GIS的海上石油平台溢油应急管理信息系统的开发研究
一类n+1维乘积型偏微分方程Cauchy问题
燃气轮机—加热炉系统集成优化研究
古平一井井眼轨道设计与控制
大规模稀疏线性方程组的预条件迭代法的研究
深圳湾滨海休闲带海洋工程对海洋环境影响的研究
疏浚工程对碣石湾环境影响评价研究
改性提高生物降解材料聚丁二酸丁二醇酯(PBS)耐撕裂性的研究
共聚物橡胶的结构性能分析及其物理特性的'分子模拟
半纤维素基温敏性水凝胶的制备与性能研究
基于危险率分析的风浪参数联合设计标准研究
深水采油管柱在地震荷载作用下的动力响应
导管架平台结构整体安全水平分析与标定
采油螺杆泵光杆扭矩和轴向力集成传感器的研究
随钻地层压力测量装置的设计与仿真研究
石油钻进工程中竖直井钻柱振动问题的ANSYS模拟计算与分析
微介孔复合炭膜的制备及其性能研究
中国石油山东天然气管网工程可行性研究
化学反应放热失控安全泄放设计及评估技术研究
H型垂直轴风力发电机组支承塔架的结构选型和受力性能研究
天然气涡旋压缩机增压装置供油系统压力和流量的优化控制
烃类厌氧降解过程中互营细菌的分布特征和系统发育研究
中石油南美地区工程项目冲突管理研究
面向吊装工程的履带起重机站位优化研究
多尺度三维地质对象可视化关键技术研究与实现
数学领域中的一些著名悖论及其产生背景
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。 线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数 上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。 线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数 上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出 物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,意思是 “ 解行列式问题的方法 ” ,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家, 微积分学奠基人之一 莱布 尼 兹 ( Leibnitz , 1693 年) 。 1750 年 克莱姆( Cramer ) 在他的《线性代数分析导言》( Introduction d l'analyse des lignes courbes alge'briques )中 发表了求解线性系统方程的重要基本公式(既人们熟悉的 Cramer 克莱姆法则)。 1764 年 , Bezout 把确定行列式每一项的符号的手续系统化了。对给定了含 n 个未知量的 n 个齐次线性方程 , Bezout 证明了系数行列式等于零是这方程组有非零解的条件。 Vandermonde 是第一个对行列式理论进行系统的阐述 ( 即把行列 ' 式理论与线性方程组求解相分离 ) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。 Laplace 在 1772 年的论文《对积分和世界体系的探讨》中 , 证明了 Vandermonde 的一些规则 , 并推广了他的展开行列式的方法 , 用 r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。 德国数学家雅可比( Jacobi )也于 1841 年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家 柯西 (Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了 laplace 的展开定理。相对而言,最早利用矩阵概念的是 拉格朗日( Lagrange ) 在 1700 年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为 0 ,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。 高斯( Gauss ) 大约在 1800 年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯 - 约当消去法则最初是出现在由 Wilhelm Jordan 撰写的测地学手册中。许多人把著名的数学家 Camille Jordan 误认为是“高斯 - 约当”消去法中的约当。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的 . Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。 Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在 1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。 数学家 Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论, 数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既 v x w 不等于 w x v )的向量代数是由 Hermann Grassmann 在他的《线性扩张论》( Die lineale Ausdehnungslehre ) 一 书中提出的。 (1844) 。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为 1 的矩阵,或简单矩阵。在 19 世纪末美国数学物理学家 Willard Gibbs 发表了关于《向量分析基础》 ( Elements of Vector Analysis ) 的著名论述。其后物理学家 P. A. M. Dirac 提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在 20 世纪由物理学家给出的。 矩阵的发展是与线性变换密切相连的。到 19 世纪它还仅占线性变换理论形成中有限的空间。现代向量空间的定义是由 Peano 于 1888 年提出的。二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。 由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。
线性代数是代数学科的一个分支。代数学的起源早在中世纪。在公元820年左右,被冠以 “代数学之父”的称号的阿拉伯数学家花拉子米编著了《代数学》一书这就是Algebra一词的最初来源,书中开始探讨了数学问题的一般解法,尝试用代数方法处理线性方程组与二次方程,同时引进了移项、合并同类项等代数运算。12世纪花拉子米的数学成果传入欧洲,对欧洲数学的发展产生了巨大影响,并作为欧洲人的标准教学课本,使用了几个世纪。 16世纪,法国科学家韦达首先有意识地、系统地使用数学符号,引入了符号体系,这种思想不仅带来了代数学领域的一次突破,而且为以后整个数学的发展奠定了基础.成为近代、现代代数学最明显的标志.18世纪,代数学的主题仍是代数方程,其中代数学发展的一个方向就是方程组理论.首先是线性方程组与行列式理论,莱布尼茨的行列式及其在解线性方程组中的应用思想得到了发展,瑞士数学家克莱姆提出了著名的“克莱姆法则”,即由系数行列式莱确定线性方程组解的表达式法则;接着范得蒙行列式、拉普拉斯展开等重要结果被相继提出. 18-19世纪由欧拉开启了数论的新领域“代数数论”;1824年挪威数学家阿贝尔发表了题为《论代数方程.证明一般方程五次的不可解性》的论文,解决了困扰数学界200多年的难题,在此过程中引发了他对群论的研究,引进了“域”的概念,加上伽罗华对全新的群的探讨,以及后来F.克莱茵和S.李等人的研究,在此基础之上,产生了代数学的一门新学科——群论,从而结束了代数学中以解方程为中心的时代,开始用一种更加抽象的观点来研究代数学,代数学由于群的概念的引进发展而获得新生.在中国,代数学的发展始自华罗庚,他自上个世纪40至50年代在体论,矩阵几何和典型群三方面进行了深入系统的研究,作出了重要的贡献.线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表示的 ,含有n个未知量的一次方程称为线性方程.线性关系问题简称线性问题,解线性方程组的问题是最简单的线性问题.线性代数作为一个独立的分支是在20世纪才形成的,而最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术.方程》中已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换、消去未知量的方法.随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18 —19世纪先后产生,为处理线性问题提供了有力的工具.从而推动了线性代数的发展.随着向量的引入,形成了向量空间的概念.凡是线性问题都可以用向量空间的观点进行讨论.因此,向量空间及其线性变换,以及与此相联系的矩阵理论构成了线性代数的中心内容.线性代数的含义随数学的发展而不断扩大,线性代数的理论与方法已经渗透到数学的许多分支.很多实际问题的处理最后往往归结为比较容易处理的线性问题,因此线性代数在工程技术上和国民经济的许多领域都有着广泛的应用.所以线性代数是一门基本的和重要的学科,线性代数的计算方法是计算数学的一个重要内容.
1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
1 中国古代数学的发展 在古代世界四大文明中,中国数学持续繁荣时期最为长久。从公元前后至公元14世纪,中国古典数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期和宋元时期,并在宋元时期达到顶峰。 与以证明定理为中心的希腊古典数学不同,中国古代数学是以创造算法特别是各种解方程的算法为主线。从线性方程组到高次多项式方程,乃至不定方程,中国古代数学家创造了一系列先进的算法(中国数学家称之为“术”),他们用这些算法去求解相应类型的代数方程,从而解决导致这些方程的各种各样的科学和实际问题。特别是,几何问题也归结为代数方程,然后用程式化的算法来求解。因此,中国古代数学具有明显的算法化、机械化的特征。以下择要举例说明中国古代数学发展的这种特征。 线性方程组与“方程术” 中国古代最重要的数学经典《九章算术》(约公元前2世纪)卷8的“方程术”,是解线性方程组的算法。以该卷第1题为例,用现代符号表述,该问题相当于解一个三元一次方程组: 3x+2y+z=39 2x+3y+z=34 x+2y+3z=26 《九章》没有表示未知数的符号,而是用算筹将x�y�z的系数和常数项排列成一个(长)方阵: 1 2 3 2 3 2 3 1 1 26 34 39 “方程术”的关键算法叫“遍乘直除”,在本例中演算程序如下:用右行(x)的系数(3)“遍乘”中行和左行各数,然后从所得结果按行分别“直除”右行,即连续减去右行对应各数,就将中行与左行的系数化为0。反复执行这种“遍乘直除”算法,就可以解出方程。很清楚,《九章算术》方程术的“遍乘直除” 算法,实质上就是我们今天所使用的解线性方程组的消元法,以往西方文献中称之为“高斯消去法”,但近年开始改变称谓,如法国科学院院士、原苏黎世大学数学系主任教授在他撰写的教科书[4]中就称解线性方程组的消元法为“张苍法”,张苍相传是《九章算术》的作者之一。 高次多项式方程与“正负开方术” 《九章算术》卷4中有“开方术”和“开立方术”。《九章算术》中的这些算法后来逐步推广到开更高次方的情形,并且在宋元时代发展为一般高次多项式方程的数值求解。秦九韶是这方面的集大成者,他在《数书九章》(1247年)一书中给出了高次多项式方程数值解的完整算法,即他所称的“正负开方术”。 用现代符号表达,秦九韶“正负开方术”的思路如下:对任意给定的方程 f(x)=a0xn+a1xn-1+……+an-2x2+an-1x+an=0 (1) 其中a0≠0,an<0,要求(1)式的一个正根。秦九韶先估计根的最高位数字,连同其位数一起称为“首商”,记作c,则根x=c+h,代入(1)得 f(c+h)=a0(c+h)n+a1(c+h)n-1+……+an-1(c+h)+an=0 按h的幂次合并同类项即得到关于h的方程: f(h)=a0hn+a1hn-1+……+an-1h+an=0 (2) 于是又可估计满足新方程(2)的根的最高位数字。如此进行下去,若得到某个新方程的常数项为0,则求得的根是有理数;否则上述过程可继续下去,按所需精度求得根的近似值。 如果从原方程(1)的系数a0,a1,…,an及估值c求出新方程(2)的系数a0,a1,…,an的算法是需要反复迭代使用的,秦九韶给出了一个规格化的程序,我们可称之为“秦九韶程序”, 他在《数书九章》中用这一算法去解决各种可以归结为代数方程的实际问题,其中涉及的方程最高次数达到10次,秦九韶解这些问题的算法整齐划一,步骤分明,堪称是中国古代数学算法化、机械化的典范。 多元高次方程组与“四元术” 绝不是所有的问题都可以归结为线性方程组或一个未知量的多项式方程来求解。实际上,可以说更大量的实际问题如果能化为代数方程求解的话,出现的将是含有多个未知量的高次方程组。 多元高次方程组的求解即使在今天也绝非易事。历史上最早对多元高次方程组作出系统处理的是中国元代数学家朱世杰。朱世杰的《四元玉鉴》(1303年)一书中涉及的高次方程达到了4个未知数。朱世杰用“四元术”来解这些方程。“四元术”首先是以“天”、“地”、“人”、“物”来表示不同的未知数,同时建立起方程式,然后用顺序消元的一般方法解出方程。朱世杰在《四元玉鉴》中创造了多种消元程序。 通过《四元玉鉴》中的具体例子可以清晰地了解朱世杰“四元术”的特征。值得注意的是,这些例子中相当一部分是由几何问题导出的。这种将几何问题转化为代数方程并用某种统一的算法求解的例子,在宋元数学著作中比比皆是,充分反映了中国古代几何代数化和机械化的倾向。 一次同余方程组与“中国剩余定理” 中国古代数学家出于历法计算的需要,很早就开始研究形如: X≡Ri (mod ai) i=1,2,...,n (1) (其中ai 是两两互素的整数)的一次同余方程组求解问题。公元4世纪的《孙子算经》中已有相当于求解下列一次同余组的著名的“孙子问题”: X≡2(mod3) ≡3(mod5) ≡2(mod7) 《孙子算经》作者给出的解法,引导了宋代秦九韶求解一次同余组的一般算法——“大衍求一术”。现代文献中通常把这种一般算法称为“中国剩余定理”。 插值法与“招差术” 插值算法在微积分的酝酿过程中扮演了重要角色。在中国,早从东汉时期起,学者们就惯用插值法来推算日月五星的运动。起初是简单的一次内插法,隋唐时期出现二次插值法(如一行《大衍历》,727年)。由于天体运动的加速度也不均匀,二次插值仍不够精密。随着历法的进步,到了宋元时代,便产生了三次内插法(郭守敬《授时历》,1280年)。在此基础上,数学家朱世杰更创造出一般高次内插公式,即他所说的“招差术”。 朱世杰的公式相当于 f(n)=n△+ n(n�1)△2+ n(n�1)(n�2)△3 + n(n�1)(n�2)(n�3)△4+…… 这是一项很突出的成就。 这里不可能一一列举中国古代数学家的所有算法,但仅从以上介绍不难看到,古代与中世纪中国数学家创造的算法,有许多即使按现代标准衡量也达到了很高的水平。这些算法所表达的数学真理,有的在欧洲直到18世纪以后依赖近代数学工具才重新获得(如前面提到的高次代数方程数值求解的秦九韶程序,与1819年英国数学家W. 霍纳重新导出的“霍纳算法”基本一致;多元高次方程组的系统研究在欧洲也要到18世纪末才开始在E. 别朱等人的著作中出现;解一次同余组的剩余定理则由欧拉与高斯分别独立重新获得;至于朱世杰的高次内插公式,实质上已与现在通用的牛顿-格列高里公式相一致)。这些算法的结构,其复杂程度也是惊人的。如对秦九韶“大衍求一术”和“正负开方术”的分析表明,这些算法的计算程序,包含了现代计算机语言中构造非平易算法的基本要素与基本结构。这类复杂的算法,很难再仅仅被看作是简单的经验法则了,而是高度的概括思维能力的产物,这种能力与欧几里得几何的演绎思维风格截然不同,但却在数学的发展中起着完全可与之相媲美的作用。事实上,古代中国算法的繁荣,同时也孕育了一系列极其重要的概念,显示了算法化思维在数学进化中的创造意义和动力功能。以下亦举几例。 负数的引进 《九章算术》“方程术”的消元程序,在方程系数相减时会出现较小数减较大数的情况,正是在这里,《九章算术》的作者们引进了负数,并给出了正、负数的加减运算法则,即“正负术”。 对负数的认识是人类数系扩充的重大步骤。公元7世纪印度数学家也开始使用负数,但负数的认识在欧洲却进展缓慢,甚至到16世纪,韦达的著作还回避负数。 无理数的发现 中国古代数学家在开方运算中接触到了无理数。《九章算术》开方术中指出了存在有开不尽的情形:“若开方不尽者,为不可开”,《九章算术》的作者们给这种不尽根数起了一个专门名词——“面”。“面”,就是无理数。与古希腊毕达哥拉斯学派发现正方形的对角线不是有理数时惊慌失措的表现相比,中国古代数学家却是相对自然地接受了那些“开不尽”的无理数,这也许应归功于他们早就习惯使用的十进位制,这种十进位制使他们能够有效地计算“不尽根数”的近似值。为《九章算术》作注的三国时代数学家刘徽就在“开方术”注中明确提出了用十进制小数任意逼近不尽根数的方法,他称之为“求微数法”,并指出在开方过程中,“其一退以十为步,其再退以百为步,退之弥下,其分弥细,则……虽有所弃之数,不足言之也”。 十进位值记数制是对人类文明不可磨灭的贡献。法国大数学家拉普拉斯曾盛赞十进位值制的发明,认为它“使得我们的算术系统在所有有用的创造中成为第一流的”。中国古代数学家正是在严格遵循十进位制的筹算系统基础上,建立起了富有算法化特色的东方数学大厦。 贾宪三角或杨辉三角 从前面关于高次方程数值求解算法(秦九韶程序)的介绍我们可以看到,中国古代开方术是以�c+hn的二项展开为基础的,这就引导了二项系数表的发现。南宋数学家杨辉著《详解九章算法》(1261年)中,载有一张所谓“开方作法本源图”,实际就是一张二项系数表。这张图摘自公元1050年左右北宋数学家贾宪的一部著作。“开方作法本源图”现在就叫“贾宪三角”或“杨辉三角”。二项系数表在西方则叫“帕斯卡三角”�1654年。 走向符号代数 解方程的数学活动,必然引起人们对方程表达形式的思考。在这方面,以解方程擅长的中国古代数学家们很自然也是走在了前列。在宋元时期的数学著作中,已出现了用特定的汉字作为未知数符号并进而建立方程的系统努力。这就是以李冶为代表的“天元术”和以朱世杰为代表的“四元术”。所谓“天元术”,首先是“立天元一为某某”,这相当于“设为某某”,“天元一”就表示未知数,然后在筹算盘上布列“天元式”,即一元方程式。该方法被推广到多个未知数情形,就是前面提到的朱世杰的“四元术”。因此,用天元术和四元术列方程的方法,与现代代数中的列方程法已相类似。 符号化是近世代数的标志之一。中国宋元数学家在这方面迈出了重要一步,“天元术”和“四元术”,是以创造算法特别是解方程的算法为主线的中国古代数学的一个高峰�。 2 中国古代数学对世界数学发展的贡献 数学的发展包括了两大主要活动:证明定理和创造算法。定理证明是希腊人首倡,后构成数学发展中演绎倾向的脊梁;算法创造昌盛于古代和中世纪的中国、印度,形成了数学发展中强烈的算法倾向。统观数学的历史将会发现,数学的发展并非总是演绎倾向独占鳌头。在数学史上,算法倾向与演绎倾向总是交替地取得主导地位。古代巴比伦和埃及式的原始算法时期,被希腊式的演绎几何所接替,而在中世纪,希腊数学衰落下去,算法倾向在中国、印度等东方国度繁荣起来;东方数学在文艺复兴前夕通过阿拉伯传播到欧洲,对近代数学兴起产生了深刻影响。事实上,作为近代数学诞生标志的解析几何与微积分,从思想方法的渊源看都不能说是演绎倾向而是算法倾向的产物。 从微积分的历史可以知道,微积分的产生是寻找解决一系列实际问题的普遍算法的结果�6�。这些问题包括:决定物体的瞬时速度、求极大值与极小值、求曲线的切线、求物体的重心及引力、面积与体积计算等。从16世纪中开始的100多年间,许多大数学家都致力于获得解决这些问题的特殊算法。牛顿与莱布尼兹的功绩是在于将这些特殊的算法统一成两类基本运算——微分与积分,并进一步指出了它们的互逆关系。无论是牛顿的先驱者还是牛顿本人,他们所使用的算法都是不严格的,都没有完整的演绎推导。牛顿的流数术在逻辑上的瑕疵更是众所周知。对当时的学者来说,首要的是找到行之有效的算法,而不是算法的证明。这种倾向一直延续到18世纪。18世纪的数学家也往往不管微积分基础的困难而大胆前进。如泰勒公式,欧拉、伯努利甚至19世纪初傅里叶所发现的三角展开等,都是在很长时期内缺乏严格的证明。正如冯·诺伊曼指出的那样:没有一个数学家会把这一时期的发展看作是异端邪道;这个时期产生的数学成果被公认为第一流的。并且反过来,如果当时的数学家一定要在有了严密的演绎证明之后才承认新算法的合理性,那就不会有今天的微积分和整个分析大厦了。 现在再来看一看更早的解析几何的诞生。通常认为,笛卡儿发明解析几何的基本思想,是用代数方法来解几何问题。这同欧氏演绎方法已经大相径庭了。而事实上如果我们去阅读笛卡儿的原著,就会发现贯穿于其中的彻底的算法精神。《几何学》开宗明义就宣称:“我将毫不犹豫地在几何学中引进算术的术语,以便使自己变得更加聪明”。众所周知,笛卡儿的《几何学》是他的哲学著作《方法论》的附录。笛卡儿在他另一部生前未正式发表的哲学著作《指导思维的法则》(简称《法则》)中曾强烈批判了传统的主要是希腊的研究方法,认为古希腊人的演绎推理只能用来证明已经知道的事物,“却不能帮助我们发现未知的事情”。因此他提出“需要一种发现真理的方法”,并称之为“通用数学”(mathesis universakis)。笛卡儿在《法则》中描述了这种通用数学的蓝图,他提出的大胆计划,概而言之就是要将一切科学问题转化为求解代数方程的数学问题: 任何问题→数学问题→代数问题→方程求解而笛卡儿的《几何学》,正是他上述方案的一个具体实施和示范,解析几何在整个方案中扮演着重要的工具作用,它将一切几何问题化为代数问题,这些代数问题则可以用一种简单的、几乎自动的或者毋宁说是机械的方法去解决。这与上面介绍的古代中国数学家解决问题的路线可以说是一脉相承。 因此我们完全有理由说,在从文艺复兴到17世纪近代数学兴起的大潮中,回响着东方数学特别是中国数学的韵律。整个17—18世纪应该看成是寻求无穷小算法的英雄年代,尽管这一时期的无穷小算法与中世纪算法相比有质的飞跃。而从19世纪特别是70年代直到20世纪中,演绎倾向又重新在比希腊几何高得多的水准上占据了优势。因此,数学的发展呈现出算法创造与演绎证明两大主流交替繁荣、螺旋式上升过程: 演绎传统——定理证明活动 算法传统——算法创造活动 中国古代数学家对算法传统的形成与发展做出了毋容置疑的巨大贡献。 我们强调中国古代数学的算法传统,并不意味中国古代数学中没有演绎倾向。事实上,在魏晋南北朝时期一些数学家的工作中,已出现具有相当深度的论证思想。如赵爽勾股定理证明、刘徽“阳马”�一种长方锥体体积证明、祖冲之父子对球体积公式的推导等等,均可与古希腊数学家相应的工作媲美。赵爽勾股定理证明示意图“弦图”原型,已被采用作2002年国际数学家大会会标。令人迷惑的是,这种论证倾向随着南北朝的结束,可以说是戛然而止。囿于篇幅和本文重点,对这方面的内容这里不能详述,有兴趣的读者可参阅参考文献�3�。 3 古为今用,创新发展 到了20世纪,至少从中叶开始,电子计算机的出现对数学的发展带来了深远影响,并孕育出孤立子理论、混沌动力学、四色定理证明等一系列令人瞩目的成就。借助计算机及有效的算法猜测发现新事实、归纳证明新定理乃至进行更一般的自动推理……,这一切可以说已揭开了数学史上一个新的算法繁荣时代的伟大序幕。科学界敏锐的有识之士纷纷预见到数学发展的这一趋势。在我国,早在上世纪50年代,华罗庚教授就亲自领导建立了计算机研制组,为我国计算机科学和数学的发展奠定了基础。吴文俊教授更是从70年代中开始,毅然由原先从事的拓扑学领域转向定理机器证明的研究,并开创了现代数学的崭新领域——数学机械化。被国际上誉为“吴方法”的数学机械化方法已使中国在数学机械化领域处于国际领先地位,而正如吴文俊教授本人所说:“几何定理证明的机械化问题,从思维到方法,至少在宋元时代就有蛛丝马迹可寻,”他的工作“主要是受中国古代数学的启发”。“吴方法”,是中国古代数学算法化、机械化精髓的发扬光大。 计算机影响下算法倾向的增长,自然也引起一些外国学者对中国古代数学中算法传统的兴趣。早在上世纪70年代初,著名的计算机科学家就呼吁人们关注古代中国和印度的算法�5�。多年来这方面的研究取得了一定进展,但总的来说还亟待加强。众所周知,中国古代文化包括数学是通过著名的丝绸之路向西方传播的,而阿拉伯地区是这种文化传播的重要中转站。现存有些阿拉伯数学与天文著作中包含有一定的中国数学与天文学知识,如著名的阿尔·卡西《算术之钥》一书中有相当数量的数学问题显示出直接或间接的中国来源,而根据阿尔·卡西本人记述,他所工作的天文台中就有不少来自中国的学者。 然而长期以来由于“西方中心论”特别是“希腊中心论”的影响以及语言文字方面的障碍,有关资料还远远没有得到发掘。正是为了充分揭示东方数学与欧洲数学复兴的关系,吴文俊教授特意从他荣获的国家最高科学奖中拨出专款成立了“吴文俊数学与天文丝路基金”,鼓励支持年轻学者深入开展这方面的研究,这是具有深远意义之举。 研究科学的历史,其重要意义之一就是从历史的发展中获得借鉴和汲取教益,促进现实的科学研究,通俗地说就是“古为今用”。吴文俊对此有精辟的论述,他说:“假如你对数学的历史发展,对一个领域的发生和发展,对一个理论的兴旺和衰落,对一个概念的来龙去脉,对一种重要思想的产生和影响等这许多历史因素都弄清了,我想,对数学就会了解得更多,对数学的现状就会知道得更清楚、更深刻,还可以对数学的未来起一种指导作用,也就是说,可以知道数学究竟应该按怎样的方向发展可以收到最大的效益”。数学机械化理论的创立,正是这种古为今用原则的硕果。我国科学技术的伟大复兴,呼唤着更多这样既有浓郁的中国特色、又有鲜明时代气息的创新。
令向量组的线性组合为零(零向量),研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关,若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。
通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;线性方程组有非零解向量组就线性相关,反之,线性无关。通过向量组的秩研究向量组的相关性。若向量组的秩等于向量的个数,则该向量组是线性无关的,若向量组的秩小于向量的个数,则该向量组是线性相关的。
定义
若x1=c1,x2=c2,…,xn=cn代入所给方程各式均成立,则称(c1,c2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。
人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程.而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?.”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大贝祖(Bezout Etienne )法国数学家.少年时酷爱数学,主要从事方程论研究.他是最先认识到行列式价值的数学家之一.最早证明了齐次线性方程组有非零解的条件是系数行列式等于零.他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法.他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理.1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究. 十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根. 十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》. 十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角. 十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现.后人所称的“杨辉三角”即指此法. 十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作. 1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方. 1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例. 1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”.书中提出的联立一次同余式的解法,比西方早五百七十余年. 1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作. 1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和. 1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法. 1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等). 十四世纪中叶前,中国开始应用珠算盘. 1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”. 1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学. 1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识. 1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式. 1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题. 1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论. 1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表. 1614年,英国的耐普尔制定了对数. 1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积. 1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分. 1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”. 1638年,法国的费尔玛开始用微分法求极大、极小问题. 1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就. 1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作. 1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”. 1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱. 1654年,法国的帕斯卡、费尔玛研究了概率论的基础. 1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学. 1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》. 1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究. 1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分. 1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法. 1670年,法国的费尔玛提出“费尔玛大定理”. 1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线. 1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》. 1686年,德国的莱布尼茨发表了关于积分法的著作. 1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究. 1696年,法国的洛比达发明求不定式极限的“洛比达法则”. 1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线. 1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》. 1711年,英国的牛顿发表《使用级数、流数等等的分析》. 1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》. 1715年,英国的布·泰勒发表《增量方法及其他》. 1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试. 1733年,英国的德·勒哈佛尔发现正态概率曲线. 1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机. 1736年,英国的牛顿发表《流数法和无穷级数》. 1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作. 1742年,英国的麦克劳林引进了函数的幂级数展开法. 1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面. 1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论. 1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一. 1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷.书中包括微分方程论和一些特殊的函数. 1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用. 1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法. 1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始. 1772年,法国的拉格朗日给出三体问题最初的特解. 1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学. 1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》. 1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表. 1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学. 1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多. 1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根. 微分方程:大致与微积分同时产生 .事实上,求y′=f(x)的原函数问题便是最简单的微分方程.I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动.他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组.用现在叫做“首次积分”的办法,完全解决了它的求解问题.17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型…….因而微分方程的研究是与人类社会密切相关的.当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等.但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题.方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等.这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解.但是在实际工作中,常常出现一些特点和以上方程完全不同的问题.比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等.物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数.也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数.解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式.但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方.在数学上,解这类方程,要用到微分和导数的知识.因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程.微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解.后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论.常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的.数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具.牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量.微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.
要型美义美,
第一种是利用向量组的秩,如果向量组满秩,则该向量组线性无关,如果不满秩则线性相关。还有一种就是将向量组化成行列式求值,若值不为0则无关,否则相关。其实就是求该向量组的秩,满秩无关,否则相关。如果相关,就把向量组化成行阶梯式,有几阶就将这个行阶梯里面的向量取出来构成最大无关组。