首页 > 期刊论文知识库 > 拓扑空间连通性的研究论文

拓扑空间连通性的研究论文

发布时间:

拓扑空间连通性的研究论文

某网友写的:本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。供参考。

你就交一篇关于拓扑学的文章吧!以下是资料,自己挑挑拣拣点有用的吧!我就不帮你了,(飘走~~~~)拓扑学拓扑定义是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογία的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。简单地说,拓扑就是研究有形的物体在连续变换下,怎样还能保持性质不变。编辑本段拓扑性质拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。换句话讲,就是从拓扑学的角度看,它们是完全一样的。在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。拓扑变换的不变性、不变量还有很多,这里不在介绍。编辑本段拓扑发展拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。编辑本段发展简史拓扑学起初叫形势分析学,这是.莱布尼茨1679年提出的名词(中文译成形势,形指一个图形本身的性质,势指一个图形与其子图形相对的性质,经过20世纪30年代中期起布尔巴基学派的补充(一致性空间、仿紧性等)和整理,纽结和嵌入问题就是势的问题)。随后波兰学派和苏联学派对拓扑空间的基本性质(分离性、紧性、连通性等)做了系统的研究。L.欧拉1736年解决了七桥问题,1750年发表了多面体公式;.高斯1833年在电动力学中用线积分定义了空间中两条封闭曲线的环绕数。拓扑学这个词(中文是音译)是.利斯廷提出的(1847),源自希腊文(位置、形势)与(学问)。这是萌芽阶段。1851年起,B.黎曼在复函数的研究中提出了黎曼面的几何概念,并且强调,为了研究函数、研究积分,就必须研究形势分析学。从此开始了拓扑学的系统研究,在点集论的思想影响下,黎曼本人解决了可定向闭曲面的同胚分类问题。如聚点(极限点)、开集、闭集、稠密性、连通性等。在几何学的研究中黎曼明确提出n维流形的概念(1854)。得出许多拓扑概念,组合拓扑学的奠基人是H.庞加莱。他是在分析学和力学的工作中,特别是关于复函数的单值化和关于微分方程决定的曲线的研究中,引向拓扑学问题的,但他的方法有时不够严密,他的主要兴趣在n维流形。在1895~1904年间,他创立了用剖分研究流形的基本方法。他引进了许多不变量:基本群、同调、贝蒂数、挠系数,并提出了具体计算的方法。他引进了许多不变量:基本群、同调、贝蒂数、挠系数,他探讨了三维流形的拓扑分类问题,提出了著名的庞加莱猜想。他留下的丰富思想影响深远,但他的方法有时不够严密,过多地依赖几何直观。特别是关于复函数的单值化和关于微分方程决定的曲线的研究中,拓扑学的另一渊源是分析学的严密化。他是在分析学和力学的工作中,实数的严格定义推动G.康托尔从1873年起系统地展开了欧氏空间中的点集的研究,得出许多拓扑概念,如聚点(极限点)、开集、闭集、稠密性、连通性等。在点集论的思想影响下,分析学中出现了泛函数(即函数的函数)的观念,把函数集看成一种几何对象并讨论其中的极限。这终于导致抽象空间的观念。这样,B.黎曼在复函数的研究中提出了黎曼面的几何概念,到19、20世纪之交,已经形成了组合拓扑学与点集拓扑学这两个研究方向。这是萌芽阶段。一般拓扑学 最早研究抽象空间的是.弗雷歇,在1906年引进了度量空间的概念。F.豪斯多夫在《集论大纲》(1914)中用开邻域定义了比较一般的拓扑空间,标志着用公理化方法研究连续性的一般拓扑学的产生。L.欧拉1736年解决了七桥问题,随后波兰学派和苏联学派对拓扑空间的基本性质(分离性、紧性、连通性等)做了系统的研究。经过20世纪30年代中期起布尔巴基学派的补充(一致性空间、仿紧性等)和整理,一般拓扑学趋于成熟,成为第二次世界大战后数学研究的共同基础。从其方法和结果对于数学的影响看,紧拓扑空间和完备度量空间的理论是最重要的。紧化问题和度量化问题也得到了深入的研究。公理化的一般拓扑学晚近的发展可见一般拓扑学。欧氏空间中的点集的研究,例如,一直是拓扑学的重要部分,已发展成一般拓扑学与代数拓扑学交汇的领域,也可看作几何拓扑学的一部分。50年代以来,即问两个映射,以.宾为代表的美国学派的工作加深了对流形的认识,是问两个给定的映射是否同伦,在四维庞加莱猜想的证明中发挥了作用。从皮亚诺曲线引起的维数及连续统的研究,习惯上也看成一般拓扑学的分支。代数拓扑学 .布劳威尔在1910~1912年间提出了用单纯映射逼近连续映射的方法, 许多重要的几何现象,用以证明了不同维的欧氏空间不同胚,它们就不同胚。引进了同维流形之间的映射的度以研究同伦分类,并开创了不动点理论。他使组合拓扑学在概念精确、论证严密方面达到了应有的标准,而欧拉数υ-e+ƒ>则是)。成为引人瞩目的学科。紧接着,.亚历山大1915年证明了贝蒂数与挠系数的拓扑不变性。如连通性、紧性),随着抽象代数学的兴起,1925年左右.诺特提议把组合拓扑学建立在群论的基础上,在她的影响下H.霍普夫1928年定义了同调群。从此组合拓扑学逐步演变成利用抽象代数的方法研究拓扑问题的代数拓扑学。如维数、欧拉数,S.艾伦伯格与.斯廷罗德1945年以公理化的方式总结了当时的同调论,后写成《代数拓扑学基础》(1952),对于代数拓扑学的传播、应用和进一步发展起了巨大的推动作用。他们把代数拓扑学的基本精神概括为:把拓扑问题转化为代数问题,通过计算来求解。同调群,以及在30年代引进的上同调环,都是从拓扑到代数的过渡(见同调论)。直到今天,三角形与圆形同胚;而直线与圆周不同胚,同调论(包括上同调)所提供的不变量仍是拓扑学中最易于计算的,因而也最常用的。不必加以区别。同伦论研究空间的以及映射的同伦分类。W.赫维茨1935~1936年间引进了拓扑空间的n维同伦群,其元素是从n维球面到该空间的映射的同伦类,而且ƒ同它的逆映射ƒ-1:B→A都是连续的,一维同伦群恰是基本群。同伦群提供了从拓扑到代数的另一种过渡,确切的含义是同胚。其几何意义比同调群更明显, 前面所说的几何图形的连续变形,但是极难计算。同伦群的计算,特别是球面的同伦群的计算问题刺激了拓扑学的发展,产生了丰富多彩的理论和方法。1950年.塞尔利用J.勒雷为研究纤维丛的同调论而发展起来的谱序列这个代数工具,最简单的例子是欧氏空间。在同伦群的计算上取得突破,为其后拓扑学的突飞猛进开辟了道路。从50年代末在代数几何学和微分拓扑学的影响下产生了K 理论,解决了关于流形的一系列拓扑问题开始,出现了好几种广义同调论。它们都是从拓扑到代数的过渡,就是一个广义的几何图形。尽管几何意义各不相同,如物理学中一个系统的所有可能的状态组成所谓状态空间,代数性质却都与同调或上同调十分相像,是代数拓扑学的有力武器。从理论上也弄清了,同调论(普通的和广义的)本质上是同伦论的一部分。从微分拓扑学到几何拓扑学 微分拓扑学是研究微分流形与微分映射的拓扑学。这些性质与长度、角度无关,.拉格朗日、B.黎曼、H.庞加莱早就做过微分流形的研究;随着代数拓扑学和微分几何学的进步, 以上这些例子启示了:几何图形还有一些不能用传统的几何方法来研究的性质。在30年代重新兴起。H.惠特尼1935年给出了微分流形的一般定义,并证明它总能嵌入高维欧氏空间作为光滑的子流形。为了研究微分流形上的向量场,他还提出了纤维丛的概念,从而使许多几何问题都与上同调(示性类)和同伦问题联系起来了。1953年R.托姆的协边理论(见微分拓扑学)开创了微分拓扑学与代数拓扑学并肩跃进的局面,许多困难的微分拓扑问题被化成代数拓扑问题而得到解决,同时也刺激了代数拓扑学的进一步发展。从动点指向其像点的向量转动的圈数。1956年.米尔诺发现七维球面上除了通常的微分结构之外,还有不同寻常的微分结构。每个不动点也有个“指数”,随后,不能赋以任何微分结构的流形又被人构作出来,这些都显示拓扑流形、微分流形以及介于其间的分段线性流形这三个范畴有巨大的差别,微分拓扑学也从此被公认为一个独立的拓扑学分支。1960年S.斯梅尔证明了五维以上微分流形的庞加莱猜想。.米尔诺等人发展了处理微分流形的基本方法——剜补术,使五维以上流形的分类问题亦逐步趋向代数化。近些年来,有关流形的研究中,几何的课题、几何的方法取得不少进展。突出的领域如流形的上述三大范畴之间的关系以及三维、四维流形的分类。80年代初的重大成果有:证明了四维庞加莱猜想,发现四维欧氏空间竟还有不同寻常的微分结构。这种种研究,通常泛称几何拓扑学,以强调其几何色彩,而环面上却可以造出没有奇点的向量场。区别于代数味很重的同伦论。拓扑学与其他学科的关系 连续性与离散性这对矛盾在自然现象与社会现象中普遍存在着,数学也可以粗略地分为连续性的与离散性的两大门类。拓扑学对于连续性数学自然是带有根本意义的,对于离散性数学也起着巨大的推进作用。例如,拓扑学的基本内容已经成为现代数学工作者的常识。拓扑学的重要性,体现在它与其他数学分支、其他学科的相互作用。拓扑学与微分几何学有着血缘关系, target="_blank">向量场问题 考虑光滑曲面上的连续的切向量场,它们在不同的层次上研究流形的性质。就看其中是否不含有这两个图之一。为了研究黎曼流形上的测地线,一个网络是否能嵌入平面,.莫尔斯在20世纪20年代建立了非退化临界点理论,把流形上光滑函数的临界点的指数与流形本身的贝蒂数联系起来,并发展成大范围变分法。莫尔斯理论后来又用于拓扑学中,证明了典型群的同伦群的博特周期性(这是K 理论的基石),并启示了处理微分流形的剜补术。微分流形、纤维丛、示性类给É.嘉当的整体微分几何学提供了合适的理论框架,也从中获取了强大的动力和丰富的课题。G.皮亚诺在1890年竟造出一条这样的“曲线”,陈省身在40年代引进了“陈示性类”,就不但对微分几何学影响深远,随一个参数(时间)连续变化的动点所描出的轨迹就是曲线。对拓扑学也十分重要。朴素的观念是点动成线,纤维丛理论和联络论一起为理论物理学中杨-米尔斯规范场论(见杨-米尔斯理论)提供了现成的数学框架, 维数问题 ">维数问题 什么是曲线?犹如20世纪初黎曼几何学对于A.爱因斯坦广义相对论的作用。规范场的研究又促进了四维的微分拓扑学出人意料的进展。拓扑学对于分析学的现代发展起了极大的推动作用。随着科学技术的发展,需要研究各式各样的非线性现象,分析学更多地求助于拓扑学。要问一个结能否解开(即能否变形成平放的圆圈),3O年代J.勒雷和.绍德尔把.布劳威尔的不动点定理和映射度理论推广到巴拿赫空间形成了拓扑度理论。后者以及前述的临界点理论,纽结问题 ">纽结问题 空间中一条自身不相交的封闭曲线,都已成为研究非线性偏微分方程的标准的工具。所以这颜色数也是曲面在连续变形下不变的性质。微分拓扑学的进步,促进了分析学向流形上的分析学(又称大范围分析学)发展。在托姆的影响下,然后随意扭曲,微分映射的结构稳定性理论和奇点理论已发展成为重要的分支学科。S.斯梅尔在60年代初开始的微分动力系统的理论,要七色才够。就是流形上的常微分方程论。.阿蒂亚等人60年代初创立了微分流形上的椭圆型算子理论。著名的阿蒂亚-辛格指标定理把算子的解析指标与流形的示性类联系起来,是分析学与拓扑学结合的范例。现代泛函分析的算子代数已与K 理论、指标理论、叶状结构密切相关。在多复变函数论方面,来自代数拓扑的层论已经成为基本工具。拓扑学的需要大大刺激了抽象代数学的发展,并且形成了两个新的代数学分支:同调代数与代数K 理论。 四色问题 在平面或球面上绘制地图,代数几何学从50年代以来已经完全改观。把曲面变形成多面体后的欧拉数υ-e+ƒ在其中起着关键的作用(见 target=_blank>闭曲面的分类).托姆的协边论直接促使代数簇的黎曼-罗赫定理的产生,后者又促使拓扑K 理论的产生。现代代数几何学已完全使用上同调的语言,在连续变形下封闭曲面有多少种不同类型?代数数论与代数群也在此基础上取得许多重大成果,例如有关不定方程整数解数目估计的韦伊猜想和莫德尔猜想的证明(见代数数论)。范畴与函子的观念,是在概括代数拓扑的方法论时形成的。范畴论已深入数学基础、代数几何学等分支(见范畴);对拓扑学本身也有影响,通俗的说法是框形里有个洞。如拓扑斯的观念大大拓广了经典的拓扑空间观念。凸形与框形之间有比长短曲直更本质的差别,在经济学方面,这说明,J.冯·诺伊曼首先把不动点定理用来证明均衡的存在性。在现代数理经济学中,对于经济的数学模型,均衡的存在性、性质、计算等根本问题都离不开代数拓扑学、微分拓扑学、大范围分析的工具。在系统理论、对策论、规划论、网络论中拓扑学也都有重要应用。托姆以微分拓扑学中微分映射的奇点理论为基础创立了突变理论,为从量变到质变的转化提供各种数学模式。在物理学、化学、生物学、语言学等方面已有不少应用"欧拉的多面体公式与曲面的分类 ">欧拉的多面体公式与曲面的分欧拉发现,除了通过各数学分支的间接的影响外,拓扑学的概念和方法对物理学(如液晶结构缺陷的分类)、化学(如分子的拓扑构形)、生物学(如DNA的环绕、拓扑异构酶)都有直接的应用。拓扑学与各数学领域、各科学领域之间的边缘性研究方兴未艾。

实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。实数包括所有的有理数和无理数,比如0、 、、π 等。但仅仅以枚举的方式不能描述实数的全体。根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。以边长为1cm的正方形为例,其对角线有多长?在规定的精度下(比如误差小于厘米),总可以用有理数来表示足够精确的测量结果(比如厘米)。但是,古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念;他们原以为:任何两条线段(的长度)的比,可以用自然数的比来表示。正因如此,毕达哥拉斯本人甚至有“万物皆数”的信念,这里的数是指自然数(1 , 2 , 3 ...),而由自然数的比就得到所有正有理数,而有理数集存在“缝隙”这一事实,对当时很多数学家来说可谓极大的打击;见第一次数学危机。从古希腊一直到十七世纪,数学家们才慢慢接受无理数的存在,并把它和有理数平等地看作数;后来有虚数概念的引入,为加以区别而称作“实数”,意即“实在的数”。在当时,尽管虚数已经出现并广为使用,实数的严格定义却仍然是个难题,以至函数、极限和收敛性的概念都被定义清楚之后,才由十九世纪末的戴德金、康托等人对实数进行了严格处理。在目前的初等数学中,没有对实数进行严格的定义,而一般把实数看作小数(有限或无限的)。实数的完整定义在几何上,直线上的点与实数一一对应;见数轴。实数可以分为有理数(如42、)和无理数(如π、√2)两类,也可以分为代数数和超越数(有理数都是代数数),或正数,负数和零三类。实数集合通常用字母R或表示。而Rn表示n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。实数可以用来测量连续变化的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。[编辑]历史在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。 直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。[编辑]定义[编辑]从有理数构造实数实数可以用通过收敛于一个唯一实数的十进制或二进制展开如{3, , , , ,…}所定义的序列的方式而构造为有理数的补全。实数可以不同方式从有理数构造出来。这里给出其中一种,其他方法请详见实数的构造。[编辑]公理化方法设R是所有实数的集合,则:集合R是一个域: 可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。域R是个有序域,即存在全序关系≥,对所有实数x, y和z:若x ≥ y则x + z ≥ y + z;若x ≥ 0且y ≥ 0则x'y ≥ 0。集合R满足戴德金完备性,即任意R的非空子集S (S ⊆ R, S ≠ ∅),若S在R内有上界,那么S在R内有上确界。最后一条是区分实数和有理数的关键。例如所有平方小于2的有理数的集合存在有理数上界,如;但是不存在有理数上确界(因为不是有理数)。实数通过上述性质唯一确定。更准确的说,给定任意两个戴德金完备的有序域R1和R2,存在从R1到R2的唯一的域同构,即代数学上两者可看作是相同的。[编辑]例子15 (整数) (有限小数)... (无限循环小数)π = ... (无限不循环小数) (无理数) (分数)[编辑]性质[编辑]基本运算在实数域内,可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数;只有非负实数才能开偶次方,其结果还是实数。[编辑]完备性作为度量空间或一致空间,实数集合是一个完备空间,它有以下性质:所有实数的柯西序列都有一个实数极限。有理数集合就不是完备空间。例如,(1, , , , , , ...)是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限。实数是有理数的完备化:这亦是构造实数集合的一种方法。极限的存在是微积分的基础。实数的完备性等价于欧几里得几何的直线没有“空隙”。[编辑]完备的有序域实数集合通常被描述为“完备的有序域”,这可以几种解释。首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素z,z + 1将更大)。所以,这里的“完备”不是完备格的意思。另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是R的子域。这样R是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。[编辑]高级性质实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。实际上,实数集的势为2ω(请参见连续统的势),即自然数集的幂集的势。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。该假设不能被证明是否正确,这是因为它和集合论的ZFS公理系统相互独立。所有非负实数的平方根属于R,但这对负数不成立。这表明R上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于R。这两个性质使R成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。实数集拥有一个规范的测度,即勒贝格测度。实数集的上确界公理用到了实数集的子集,这是一种二阶逻辑的陈述。不可能只采用一阶逻辑来刻画实数集:1. Löwenheim-Skolem定理说明,存在一个实数集的可数稠密子集,它在一阶逻辑中正好满足和实数集自身完全相同的命题;2. 超实数的集合远远大于R,但也同样满足和R一样的一阶逻辑命题。满足和R一样的一阶逻辑命题的有序域称为R的非标准模型。这就是非标准分析的研究内容,在非标准模型中证明一阶逻辑命题(可能比在R中证明要简单一些),从而确定这些命题在R中也成立。[编辑]拓扑性质实数集构成一个度量空间:x和y间的距离定为绝对值 |x - y|。作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。但实数集不是紧致空间。这些可以通过特定的性质来确定,例如,无限连续可分的序拓扑必须和实数集同胚。以下是实数的拓扑性质总览:令为一实数。的邻域是实数集中一个包括一段含有的线段的子集。是可分空间。在中处处稠密。的开集是开区间的联集。的紧子集是有界闭集。特别是:所有含端点的有限线段都是紧子集。每个中的有界序列都有收敛子序列。是连通且单连通的。中的连通子集是线段、射线与本身。由此性质可迅速导出中间值定理。区间套定理:设为一个有界闭集的序列,且,则其交集非空。严格表法如下:.[编辑]扩展与一般化实数集可以在几种不同的方面进行扩展和一般化:最自然的扩展可能就是复数了。复数集包含了所有多项式的根。但是,复数集不是一个有序域。实数集扩展的有序域是超实数的集合,包含无穷小和无穷大。它不是一个阿基米德域。有时候,形式元素 +∞和 -∞加入实数集,构成扩展的实数轴。它是一个紧致空间,而不是一个域,但它保留了许多实数的性质。希尔伯特空间的自伴随算子在许多方面一般化实数集:它们可以是有序的(尽管不一定全序)、完备的;它们所有的特征值都是实数;它们构成一个实结合代数。

拓扑关系是在语义层次上最重要的一种空间关系,拓扑推理的研究主要有两类基本的方法:基于区域连接的 RCC方法和基于点集的“n-交集”模型。GIS空间推理的关键问题是如何利用存贮在数据库中的基本数据信息并结合相关的空间约束来获取所需的未知空间信息。而对拓扑关系的推理,是GIS空间推理、查询与分析的基础,直接影响GIS的发展与应用。结合人类的认知模式,并结合时空、模糊、层次等拓扑关系来进行GIS的空间推理,使模型的描述方式更符合人们对拓扑信息的表达和认知方式,并走向网络化和大众化,是空间拓扑推理的发展趋势。

安全网络拓扑环境研究论文

可以直接做一些相关期刊的了解,然后直接联系杂志社编辑沟通一下投稿的相关事宜。评职称发论文就是一个过场了,还是一个必经的过场,随便找一个地方发就行了 网上有很多的,只要别上当就行 ,期刊在新闻出版总署都是查一下,在品忧刊同样都是可以的发的。

对计算机网络领域的某一概念、原理、技术、方法或者应用进行深入的研究与探讨

不知道你要说什么?网上论文可以百度一下,安全的就是黑客类的

计算机网络安全1 绪论随着互联网的飞速发展,网络安全逐渐成为一个潜在的巨大问题。网络安全性是一个涉及面很广泛的问题,其中也会涉及到是否构成犯罪行为的问题。在其最简单的形式中,它主要关心的是确保无关人员不能读取,更不能修改传送给其他接收者的信息。此时,它关心的对象是那些无权使用,但却试图获得远程服务的人。安全性也处理合法消息被截获和重播的问题,以及发送者是否曾发送过该条消息的问题。大多数安全性问题的出现都是由于有恶意的人试图获得某种好处或损害某些人而故意引起的。可以看出保证网络安全不仅仅是使它没有编程错误。它包括要防范那些聪明的,通常也是狡猾的、专业的,并且在时间和金钱上是很充足、富有的人。同时,必须清楚地认识到,能够制止偶然实施破坏行为的敌人的方法对那些惯于作案的老手来说,收效甚微。网络安全性可以被粗略地分为4个相互交织的部分:保密、鉴别、反拒认以及完整性控制。保密是保护信息不被未授权者访问,这是人们提到的网络安全性时最常想到的内容。鉴别主要指在揭示敏感信息或进行事务处理之前先确认对方的身份。反拒认主要与签名有关。保密和完整性通过使用注册过的邮件和文件锁来实现。2 方案目标本方案主要从网络层次考虑,将网络系统设计成一个支持各级别用户或用户群的安全网络,该网在保证系统内部网络安全的同时,还实现与Internet或国内其它网络的安全互连。本方案在保证网络安全可以满足各种用户的需求,比如:可以满足个人的通话保密性,也可以满足企业客户的计算机系统的安全保障,数据库不被非法访问和破坏,系统不被病毒侵犯,同时也可以防止诸如反动淫秽等有害信息在网上传播等。需要明确的是,安全技术并不能杜绝所有的对网络的侵扰和破坏,它的作用仅在于最大限度地防范,以及在受到侵扰的破坏后将损失尽旦降低。具体地说,网络安全技术主要作用有以下几点:1.采用多层防卫手段,将受到侵扰和破坏的概率降到最低;2.提供迅速检测非法使用和非法初始进入点的手段,核查跟踪侵入者的活动;3.提供恢复被破坏的数据和系统的手段,尽量降低损失;4.提供查获侵入者的手段。网络安全技术是实现安全管理的基础,近年来,网络安全技术得到了迅猛发展,已经产生了十分丰富的理论和实际内容。3 安全需求通过对网络系统的风险分析及需要解决的安全问题,我们需要制定合理的安全策略及安全方案来确保网络系统的机密性、完整性、可用性、可控性与可审查性。即,可用性: 授权实体有权访问数据机密性: 信息不暴露给未授权实体或进程完整性: 保证数据不被未授权修改可控性: 控制授权范围内的信息流向及操作方式可审查性:对出现的安全问题提供依据与手段访问控制:需要由防火墙将内部网络与外部不可信任的网络隔离,对与外部网络交换数据的内部网络及其主机、所交换的数据进行严格的访问控制。同样,对内部网络,由于不同的应用业务以及不同的安全级别,也需要使用防火墙将不同的LAN或网段进行隔离,并实现相互的访问控制。数据加密:数据加密是在数据传输、存储过程中防止非法窃取、篡改信息的有效手段。安全审计: 是识别与防止网络攻击行为、追查网络泄密行为的重要措施之一。具体包括两方面的内容,一是采用网络监控与入侵防范系统,识别网络各种违规操作与攻击行为,即时响应(如报警)并进行阻断;二是对信息内容的审计,可以防止内部机密或敏感信息的非法泄漏4 风险分析网络安全是网络正常运行的前提。网络安全不单是单点的安全,而是整个信息网的安全,需要从物理、网络、系统、应用和管理方面进行立体的防护。要知道如何防护,首先需要了解安全风险来自于何处。网络安全系统必须包括技术和管理两方面,涵盖物理层、系统层、网络层、应用层和管理层各个层面上的诸多风险类。无论哪个层面上的安全措施不到位,都会存在很大的安全隐患,都有可能造成网络的中断。根据国内网络系统的网络结构和应用情况,应当从网络安全、系统安全、应用安全及管理安全等方面进行全面地分析。风险分析是网络安全技术需要提供的一个重要功能。它要连续不断地对网络中的消息和事件进行检测,对系统受到侵扰和破坏的风险进行分析。风险分析必须包括网络中所有有关的成分。5 解决方案 设计原则 针对网络系统实际情况,解决网络的安全保密问题是当务之急,考虑技术难度及经费等因素,设计时应遵循如下思想:1.大幅度地提高系统的安全性和保密性;2.保持网络原有的性能特点,即对网络的协议和传输具有很好的透明性; 3.易于操作、维护,并便于自动化管理,而不增加或少增加附加操作;4.尽量不影响原网络拓扑结构,同时便于系统及系统功能的扩展;5.安全保密系统具有较好的性能价格比,一次性投资,可以长期使用;6.安全与密码产品具有合法性,及经过国家有关管理部门的认可或认证;7.分步实施原则:分级管理 分步实施。 安全策略针对上述分析,我们采取以下安全策略:1.采用漏洞扫描技术,对重要网络设备进行风险评估,保证信息系统尽量在最优的状况下运行。2.采用各种安全技术,构筑防御系统,主要有:(1) 防火墙技术:在网络的对外接口,采用防火墙技术,在网络层进行访问控制。(2) NAT技术:隐藏内部网络信息。(3) VPN:虚拟专用网(VPN)是企业网在因特网等公共网络上的延伸,通过一个私有的通道在公共网络上创建一个安全的私有连接。它通过安全的数据通道将远程用户、公司分支机构、公司业务伙伴等与公司的企业网连接起来,构成一个扩展的公司企业网。在该网中的主机将不会觉察到公共网络的存在,仿佛所有的机器都处于一个网络之中。公共网络似乎只由本网络在独占使用,而事实上并非如此。(4)网络加密技术(Ipsec) :采用网络加密技术,对公网中传输的IP包进行加密和封装,实现数据传输的保密性、完整性。它可解决网络在公网的数据传输安全性问题,也可解决远程用户访问内网的安全问题。(5) 认证:提供基于身份的认证,并在各种认证机制中可选择使用。(6) 多层次多级别的企业级的防病毒系统:采用多层次多级别的企业级的防病毒系统,对病毒实现全面的防护。(7)网络的实时监测:采用入侵检测系统,对主机和网络进行监测和预警,进一步提高网络防御外来攻击的能力。3.实时响应与恢复:制定和完善安全管理制度,提高对网络攻击等实时响应与恢复能力。4.建立分层管理和各级安全管理中心。 防御系统我们采用防火墙技术、NAT技术、VPN技术、网络加密技术(Ipsec)、身份认证技术、多层次多级别的防病毒系统、入侵检测技术,构成网络安全的防御系统。 物理安全物理安全是保护计算机网络设备、设施以及其它媒体免遭地震、水灾、火灾等环境事故以及人为操作失误或错误及各种计算机犯罪行为导致的破坏过程。为保证信息网络系统的物理安全,还要防止系统信息在空间的扩散。通常是在物理上采取一定的防护措施,来减少或干扰扩散出去的空间信号。这是政府、军队、金融机构在兴建信息中心时首要的设置的条件。为保证网络的正常运行,在物理安全方面应采取如下措施:1.产品保障方面:主要指产品采购、运输、安装等方面的安全措施。 2.运行安全方面:网络中的设备,特别是安全类产品在使用过程中,必须能够从生成厂家或供货单位得到迅速的技术支持服务。对一些关键设备和系统,应设置备份系统。 3.防电磁辐射方面:所有重要涉密的设备都需安装防电磁辐射产品,如辐射干扰机。 4.保安方面:主要是防盗、防火等,还包括网络系统所有网络设备、计算机、安全设备的安全防护。 防火墙技术防火墙是一种网络安全保障手段,是网络通信时执行的一种访问控制尺度,其主要目标就是通过控制入、出一个网络的权限,并迫使所有的连接都经过这样的检查,防止一个需要保护的网络遭外界因素的干扰和破坏。在逻辑上,防火墙是一个分离器,一个限制器,也是一个分析器,有效地监视了内部网络和Internet之间地任何活动,保证了内部网络地安全;在物理实现上,防火墙是位于网络特殊位置地以组硬件设备――路由器、计算机或其他特制地硬件设备。防火墙可以是独立地系统,也可以在一个进行网络互连地路由器上实现防火墙。用防火墙来实现网络安全必须考虑防火墙的网络拓扑结构:(1)屏蔽路由器:又称包过滤防火墙。(2)双穴主机:双穴主机是包过滤网关的一种替代。(3)主机过滤结构:这种结构实际上是包过滤和代理的结合。(4)屏蔽子网结构:这种防火墙是双穴主机和被屏蔽主机的变形。根据防火墙所采用的技术不同,我们可以将它分为四种基本类型:包过滤型、网络地址转换—NAT、代理型和监测型。 包过滤型 包过滤型产品是防火墙的初级产品,其技术依据是网络中的分包传输技术。网络上的数据都是以“包”为单位进行传输的,数据被分割成为一定大小的数据包,每一个数据包中都会包含一些特定信息,如数据的源地址、目标地址、TCP/UDP源端口和目标端口等。防火墙通过读取数据包中的地址信息来判断这些“包”是否来自可信任的安全站点 ,一旦发现来自危险站点的数据包,防火墙便会将这些数据拒之门外。系统管理员也可以根据实际情况灵活制订判断规则。 包过滤技术的优点是简单实用,实现成本较低,在应用环境比较简单的情况下,能够以较小的代价在一定程度上保证系统的安全。 但包过滤技术的缺陷也是明显的。包过滤技术是一种完全基于网络层的安全技术,只能根据数据包的来源、目标和端口等网络信息进行判断,无法识别基于应用层的恶意侵入,如恶意的Java小程序以及电子邮件中附带的病毒。有经验的黑客很容易伪造IP地址,过包过滤型防火墙。 网络地址转化—NAT 网络地址转换是一种用于把IP地址转换成临时的、外部的、注册的IP地址标准。它允许具有私有IP地址的内部网络访问因特网。它还意味着用户不许要为其网络中每一台机器取得注册的IP地址。在内部网络通过安全网卡访问外部网络时,将产生一个映射记录。系统将外出的源地址和源端口映射为一个伪装的地址和端口,让这个伪装的地址和端口通过非安全网卡与外部网络连接,这样对外就隐藏了真实的内部网络地址。在外部网络通过非安全网卡访问内部网络时,它并不知道内部网络的连接情况,而只是通过一个开放的IP地址和端口来请求访问。OLM防火墙根据预先定义好的映射规则来判断这个访问是否安全。当符合规则时,防火墙认为访问是安全的,可以接受访问请求,也可以将连接请求映射到不同的内部计算机中。当不符合规则时,防火墙认为该访问是不安全的,不能被接受,防火墙将屏蔽外部的连接请求。网络地址转换的过程对于用户来说是透明的,不需要用户进行设置,用户只要进行常规操作即可。 代理型 代理型防火墙也可以被称为代理服务器,它的安全性要高于包过滤型产品,并已经开始向应用层发展。代理服务器位于客户机与服务器之间,完全阻挡了二者间的数据交流。从客户机来看,代理服务器相当于一台真正的服务器;而从服务器来看,代理服务器又是一台真正的客户机。当客户机需要使用服务器上的数据时,首先将数据请求发给代理服务器,代理服务器再根据这一请求向服务器索取数据,然后再由代理服务器将数据传输给客户机。由于外部系统与内部服务器之间没有直接的数据通道,外部的恶意侵害也就很难伤害到企业内部网络系统。 代理型防火墙的优点是安全性较高,可以针对应用层进行侦测和扫描,对付基于应用层的侵入和病毒都十分有效。其缺点是对系统的整体性能有较大的影响,而且代理服务器必须针对客户机可能产生的所有应用类型逐一进行设置,大大增加了系统管理的复杂性。 以上回答来自: 求采纳为满意回答。

粒子群算法拓扑结构的研究论文

论文> 工业技术 > 一般工业技术 > 工程基础科学 > 工程数学 > 概率论、数理统计的应用论文下属分类: 运筹学的应用 | 工程控制论 | 可靠性理论 | ·《可重构装配线建模、平衡及调度研究》·《粒子群算法的改进与应用研究》·《压力容器用钢疲劳可靠性研究》·《稳健设计及其在工业中的应用》·《基于概率的结构动力拓扑优化设计研究》·《基于随机模拟试验的稳健优化设计方法研究》·《复杂系统可靠性工程相关理论及技术研究》·《故障部件不可修复如新的线形相邻n中连续k系统的可靠性分析》·《基于目标和空间正交分解的布局启发式算法的研究》·《考虑失效相关时不可修复工程系统的可靠性分析》·《多维数值积分的数论方法及其在结构可靠度分析中的应用》·《三维位势场快速多极边界元法》·《大规模动态过程优化的拟序贯算法研究》·《不确定性结构的分析方法研究》·《非线性结构随机分析数值模拟的方法研究》

定义粒子群优化算法(Particle Swarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。通常认为它是群集智能 (Swarm intelligence, SI) 的一种。它可以被纳入多主体优化系统 (Multiagent Optimization System, MAOS). 粒子群优化算法是由Eberhart博士和kennedy博士发明。PSO模拟鸟群的捕食行为PSO模拟鸟群的捕食行为。一群鸟在随机搜索食物,在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。从模型中得到的启示PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitnessvalue),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。PSO初始化PSO初始化为一群随机粒子(随机解),然后通过叠代找到最优解,在每一次叠代中,粒子通过跟踪两个“极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest,另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分最优粒子的邻居,那么在所有邻居中的极值就是局部极值。编辑本段算法介绍在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)present[] = persent[] + v[] (b)v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.程序的伪代码如下For each particle____Initialize particleENDDo____For each particle________Calculate fitness value________If the fitness value is better than the best fitness value (pBest) in history____________set current value as the new pBest____End____Choose the particle with the best fitness value of all the particles as the gBest____For each particle________Calculate particle velocity according equation (a)________Update particle position according equation (b)____EndWhile maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax。编辑本段遗传算法和PSO的比较共同点①种群随机初始化。②对种群内的每一个个体计算适应值(fitness value)。适应值与最优解的距离直接有关。③种群根据适应值进行复制 。④如果终止条件满足的话,就停止,否则转步骤② 。从以上步骤,我们可以看到PSO和遗传算法有很多共同之处。两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解。但是,PSO没有遗传操作如交叉(crossover)和变异(mutation),而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。不同点与遗传算法比较,PSO的信息共享机制是很不同的。在遗传算法中,染色体(chromosomes)互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动。在PSO中, 只有gBest (orlBest) 给出信息给其他的粒子, 这是单向的信息流动。整个搜索更新过程是跟随当前最优解的过程。与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解。编辑本段人工神经网络和PSO定义人工神经网络(ANN)是模拟大脑分析过程的简单数学模型,反向转播算法是最流行的神经网络训练算法。进来也有很多研究开始利用演化计算(evolutionary computation)技术来研究人工神经网络的各个方面。研究方面演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。例如在分类问题中,错误分类的比率可以用来作为适应值优缺点演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。但是缺点在于:1、在某些问题上性能并不是特别好。2. 网络权重的编码而且遗传算子的选择有时比较麻烦。最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。研究表明PSO 是一种很有潜力的神经网络算法。PSO速度比较快而且可以得到比较好的结果。而且还没有遗传算法碰到的问题。举例这里用一个简单的例子说明PSO训练神经网络的过程。这个例子使用分类问题的基准函数 (Benchmark function)IRIS数据集。(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。我们用3层的神经网络来做分类。现在有四个输入和三个输出。所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。我们也可以训练神经网络中其他的参数。不过这里我们只是来确定网络权重。粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。权重的范围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。然后记录所有的错误分类的数目作为那个粒子的适应值。现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。PSO本身并没有很多的参数需要调整。所以在实验中只需要调整隐含层的节点数目和权重的范围以取得较好的分类效果。

网络拓扑图的论文格式

、规划背景问题描述,计算机网络规划需求分析2、网络总体方案设计(包括局域网、接入网等)、该方案的特点。(网络拓扑设计)3、网络体系结构设计:确定主干网,分支网采取何种组网技术;4、选择通信媒体:用户端和中继系统选定传输电缆和传输资源;5、节点规模设计:确定网络的主要节点设备(服务器、客户机、交换机等)的性能指标、台数;6、网络服务器、工作站选型与配置。7IP地址子网划分及方案。8、参考文献(包括互联网上的引用信息)。背景资料1、某市电业局网络规划某市电业局新公楼高16层,共计有160个房间。主楼的南面是附楼,附楼高2层,每层有6个房间,共38个信息点。原电业局公楼(老楼)离新公楼约公里,高5层。该市A区供电局与局新大楼相距100米,其他四个区的供电局(B区、C区、D区、E区)离局新大楼20公里以上。修验厂在老楼院内,离老楼约100米。油务楼、保护仪表间距离老楼分别为150米、130米。油务楼周围还有物资仓库、高压试验楼、修验厂房各有2个信息点,距离在80米之内。局新大楼一期网络工程可上网约120个信息点,老楼计算机应用已有一定规模和水平,目前已有48个信息点。随着生产发展,对工作效率和管理水平现代化要求的提高,对数据流畅通和信息共享提出了更高的要求:1)对市电业局网络系统进行总体设计。2)保留原有计算机软硬件资源,让MIS原有功能模块或子系统仍能继续运行。3)解决全市局范围内的网络通信、公自动化等问题,使网络系统性能、计算机应用水平达到一个新水平。4)考虑到今后的发展、扩充和先进技术的应用,一次布线后新楼最大可供500个信息点联网,老楼最大可供200个信息点联网。

so easy啊,我刚写完论文,先帮你完成一个基本的,后面慢慢完善。

正文:本网络拓扑是某学校的网络拓扑图,该学校有教学楼区、宿舍楼区、图书馆区三个物理区域,并且由于需求,该学校内部需要搭建DHCP、WEB、DNS、FTP等服务器以及实现校园网网络全网通信。

本课题设计的校园网络采用园区网三层架构,分别为接入层、汇聚层、核心层。接入层采用XXX(型号,图片太小,看不到)交换机,分别部署在教学楼区、宿舍楼区、图书馆区,实现终端的网络接入。汇聚层采用3台XXX(型号,图片太小,看不到)交换机,用来连接接入层与核心层,并且采用双链路与核心层相连,实现冗余备份负载均衡。核心层采用两台XXX(型号,图片太小,看不到)交换机,两台核心交换机之间采用链路聚合,实现数据的高速转发。校园网边界路由器通过XXX型号防火墙连接外网,实现校园网与Internet通信;通过XXX型号交换机与服务器集群相连,提供各种服务;以及与网络中心相连。

技术:接入层,划分VLAN、MAC地址端口绑定(看是否需要)。汇聚层交换机,将网关配置在汇聚层,下联接入层交换机的端口配置为TRUNK,上联核心层交换机的接口启用三层接口,跑路由,可选择OSPF或RIP(静态也行)。核心层交换机之间做链路聚合,与上联路由器的接口以及下联汇聚交换机的接口都采用三层接口,然后跑路由。做VRRP或HSRP(该PT模拟器可以打命令,但是功能实现不了,可以采用GNS3软件来做)。路由器,启用动态路由,把与核心层交换机以及内部服务器交换机以及网络中心的接口宣告到动态路由里面,然后配置一条缺省路由指向外网。

缺陷:该拓扑图规划有几处不合理,你的上面那个区域,也就是内部服务器那个地方,该区域不应该放在那个地方,如果你有服务器想要对外开放,也就是想要让外网的人也能访问到该服务器,那你应该将这个区域放置连接在防火墙,我们称他为DMZ区域。其他不想让外网的人访问的服务器,也就是校园里面自己要访问的服务器,你应该将他们连接在核心层的两台路由器上,这样才合理。你这样的连接,无论是开题答辩,还是论文答辩的时候,肯定被老师叼了,一看图就有问题,更被说问你技术方面的问题了。还有图书馆区域,你那台电脑是想表示用无线连接到无线路由器吧?这个功能该模拟器可以实现,你可以用笔记本代替那个台式电脑,然后换上一个无线网卡,就能连接到无线路由器了。

如有问题,咱继续探讨

相关范文:

Ipv6在高校校园网中的应用

摘  要  文章对ipv6基本概念,ipv6的实现技术及实现ipv6的现行技术进行了阐述,结合学校校园网的ipv6实际解决方案,系统描述了ipv6在网络出口设备Cisco6503上的配置和在ipv6在网络核心设备Cisco6513上的配置,以及ipv6在我校校园网中的实际应用。

关键词  ipv6;隧道技术;双协议栈技术

1  引言

现有的互联网是在IPv4协议的基础上运行。IPv6是下一版本的互联网协议,它的提出最初是因为随着互联网的迅速发展,IPv4定义的有限地址空间将被耗尽,地址空间的不足必将影响互联网的进一步发展。为了扩大地址空间,拟通过IPv6重新定义地址空间。IPv4采用32位地址长度,只有大约43亿个地址,估计在2005~2010年间将被分配完毕,而IPv6采用128位地址长度,几乎可以不受限制地提供地址。按保守方法估算IPv6实际可分配的地址,整个地球每平方米面积上可分配1000多个地址。在IPv6的设计过程中除了一劳永逸地解决地址短缺问题以外,还考虑了在IPv4中解决不好的其它问题。IPv6的主要优势体现在以下几方面:扩大地址空间、提高网络的整体吞吐量、改善服务质量(QoS)、安全性有更好的保证、支持即插即用和移动性、更好实现多播功能。

2  ipv6实现技术概述

从ipv4到ipv6 的转换必须使ipv6能够支持和处理ipv4体系的遗留问题。目前,IETF( Internet Engineering Task Force)已经成立了专门的工作组,研究ipv4 到ipv6 的转换问题,并且已提出了很多方案,主要包括以下几个类型:

  双协议栈技术

在开展双堆栈网络时,主机同时运行两种协议,使应用一个一个地转向ipv6 进行传输。它主要用于与ipv4 和ipv6设备都进行通信的应用。双堆栈将在Cisco Ios软件平台上使用,以支持应用和Telnet,Snmp,以及在ipv6传输上的其它协议等。

  隧道技术

随着ipv6网络的发展,出现了许多局部的ipv6 网络,但是这些ipv6网络需要通过ipv4 骨干网络相连。将这些孤立的“ipv6 岛”相互联通必须使用隧道技术。利用隧道技术可以通过现有的运行ipv4 协议的Internet 骨干网络( 即隧道)将局部的ipv6网络连接起来,因而是ipv4向ipv6 过渡初期最易于采用的技术。

路由器将ipv6 的数据分组封装入ipv4,ipv4 分组的源地址和目的地址分别是隧道入口和出口的ipv4地址。在隧道的出口处,再将ipv6分组取出转发给目的站点。隧道技术只要求在隧道的入口和出口处进行修改,对其他部分没有要求,因而非常容易实现。但是隧道技术不能实现ipv4 主机与ipv6 主机的直接通信。

 网络地址转换/ 协议转换技术

网络地址转换/ 协议转换技术NAT-PT(Network Address Translation-Protocal Translation)通过与S||T 协议转换和传统的ipv4 下的动态地址翻译NAT 以及适当的应用层网关(ALG)相结合,实现了只安装了ipv6 的主机和只安装了ipv4机器的大部分应用的相互通信。上述技术很大程度上依赖于从支持ipv4的互联网到支持ipv6 的互联网的转换,我们期待ipv4 和ipv6 可在这一转换过程中互相兼容。目前,6tot4 机制便是较为流行的实现手段之一。

3  我校校园网ipv6解决方案

我校共有两个校区:老校区和新校区,两个校区之间通过新校区的Cisco6513和老校区Cisco6509万兆相连,Cisco6513又与边界出口Cisco6503相连。

网络拓扑图如下(图1):

针对网络从IPv4向IPv6演进过程中面临的IPv4和IPv6相互之间的通信以及如何实现IPv6网络与现有IPv4网络无缝连接等问题,所以我校在教育网上采用

隧道技术、双栈技术和地址头翻译技术实现对ipv6网络的互访,即借助当今纯熟的ipv4技术,对ipv6数据包实行ipv4格式的封装与解封装。

我校实际的ipv6配置如下:

在核心设备6573的ipv6配置如下:

interface GigabitEthernet12/47

description cumt ipv6 link

ipv6 address 2001:DA8:100D:1::2/64      // 6513与6503的三层对接ipv6地址的配置

interface Vlan12

no ip redirects

ipv6 address 2001:DA8:100D:2::1/64        // ipv6的vlan配置

ipv6 enable                              //在Cisco6513上启动ipv6协议

ipv6 route ::/0 2001:DA8:100D:1::1      // ipv6默认路由配置

在出口设备Cisco6503上的ipv6配置如下:

interface GigabitEthernet3/47

ipv6 address 2001:DA8:100D:1::1/64     // 6503与6513的三层对接ipv6地址的配置

ipv6 route 2001:DA8:100D::/48 2001:DA8:100D:1::2

ipv6 route ::/0 2001:DA8:A3:F00B::1

ipv6 unicast-routing                 //  ipv6的路由配置

interface Tunnel0                   //ipv6隧道配置

ipv6 address 2001:DA8:A3:F00B::2/64       //源端的ipv6地址

ipv6 enable//启动ipv6协议

tunnel source          //隧道源端ipv4地址

tunnel destination      //隧道目的端ipv4地址

tunnel mode ipv6ip                  //隧道模式为ipv6

教育网防火墙上的配置如下:

access-list 102 extended permit ip any host        //允许校内及校外的访问通过ipv6隧道

目前ipv6在我校已经很好的应用起来,校内用户能够方便的访问外面的ipv6网络资源,而我校也已经分别建立了ipv6的www服务器及ipv6的DNS解析,以提供外面用户对我校ipv6网络资源的访问。

(图1)

4  结论

ipv6在我校的良好应用,进一步体现了ipv6的强大魅力,虽然目前还不能完全取代ipv4,但是,在不远的将来ipv6一定能够取代ipv4,从而实现全范围的纯粹的ipv6网络的运行。

参考文献

[1] 实现ipv4向ipv6过渡的隧道技术6tot4.计算机工程与应用.  2002年 第18期

[2] ipv4向ipv6的过渡技术综述.北京邮电大学学报. 2002年 第4期

[3]  如何从ipv4过渡到ipv6. 计算机时代. 2004年 第8期

其他相关:

论文提纲格式

仅供参考,请自借鉴

希望对您有帮助

能不能把你论文发给我啊 我现在急用 谢谢

点集拓扑毕业论文

真的很难的,在很大程度上,研究拓扑学是需要天赋的!拓扑学起初叫形势分析学,是德国数学家莱布尼茨1679年提出的名词。十九世纪中期,德国数学家黎曼在复变函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。最著名的研究成果有七孔桥问题、欧拉定理和四色问题!

打击你一下,我觉得拓扑学对于初一的孩子来说太难了……不过要是真想写,还是可以写一些东西的。以初一的知识很难接触到拓扑学的核心内容,所以你可以写的就只有比较直观的那些东西了最开始可以写写拓扑学的历史:七桥问题等等的……接下来介绍拓扑学中认为两个物体等价的条件:可以通过拉伸互相转变。重点在于不能粘接,不能打洞。在这种意义下,拓扑学认为圆柱面和环带是一样的,球体和正方体是一样的,烟斗和茶杯是一样的囧。。。还有拓扑学中必不可少的东西:墨笔乌斯带……如果你知识比较丰富的话还可能知道克莱因瓶。还可以讲讲拓扑学的分类:点集拓扑,代数拓扑,微分拓扑,几何拓扑……论文的最后可以写写拓扑学和你们所学的东西的关系啥的。也可以写写拓扑学里现在还未解决的问题,展望一下拓扑学的发展……这就比较困难了单独和我谈谈吧,我可以帮你构思一下比较具体的提纲以上内容均由本人亲自输入,未经本人允许不得拷贝byfizban_yang

段学复,数学家,数学教育家。长期从事代数学的研究,在有限群的模表示理论、代数李群、有限p群、群论与组合数学的应用等方面取得重要成果。培养了一大批代数学研究人才。自1952年始,任北京大学数学系系主任近40年。段学复,1914年7月29日出生,陕西省华县人。父亲段大贞为清光绪10年(1884年)甲申进士,母亲雷咏霓亦知书达理。10岁之前,段学复一直在家由父亲教语文,认方块字,读经史书籍。“得天下英才而教育之,一乐也”的教育思想对段学复起了较大的影响。与此同时,他还跟一位当时在北京学医科的堂兄学完了初小算术。当时附中的教育质量是很高的,教材先进,要求严格,还开有选修课。以傅种孙先生为代表的数学教学更是使段学复对数学产生了浓厚的兴趣。由于对数学的爱好,1932年高中毕业后段学复考入了清华大学数学系(当时称为“算学系”)。段学复在清华大学的4年中先后听过熊庆来、郑桐荪、杨武之、赵访熊、曾远荣等教授的课。这些老师各有特点,使段学复在分析、代数、几何诸方面都得以打下了坚实的基础。在此期间,段学复还选修了来校讲学的美国麻省理工学院N.维纳(Wiener)教授开设的傅立叶级数与傅立叶积分课,旁听了法兰西学院的J.阿达马(Hadamard)院士讲授的偏微分方程课。这些都使段学复开阔了眼界。体育课老师马约翰是使段学复终生难忘的又一位教师。在马教授的热情鼓励和科学训练下,原来非常瘦弱的段学复在一学期之后居然就能顺利地跑完一英里长的距离。正是由于健康状况大为改善,才使他得以在抗战期间经受住了几千里的长途颠簸。段学复刚入学便认识了华罗庚,从第二年起两人就相当熟了。他们和华罗庚在中文系的一个同乡王兆芹(时风),三个人常常一起吃完晚饭后就在校园里长距离散步,边走边谈,既聊数学,也谈时局。华罗庚对于学习数学的方法和作法,为段学复推荐的课外数学书籍等都对段学复有较大的影响和帮助。当时,日本侵略军正在不断扩大侵华战争。在民族生死存亡的紧要关头,段学复也受到了爱国主义的洗礼。他参加了1935年12月9日和12月16日的两次示威游行以及1936年2月29日晚在清华大学新体育馆的集体灭灯静坐,抗议大批军警闯入校园逮捕学生。1936年夏,段学复获得理学士学位,毕业留校任助教。1937年7月7日,日本侵略军借口所谓芦沟桥事件悍然侵占北平,挑起全面侵华战争。段学复于7月29日傍晚与母亲等三人一起离开北平,一路辗转颠簸,于当年10月来到由北京大学、清华大学和南开大学联合组成的长沙临时大学工作。次年4月6日段学复在西安与中学语文教师雷彬如女士结婚。此后不久,段学复又独自一人去昆明,在西南联合大学-清华大学任教。当年秋天,华罗庚从英国剑桥大学访问归来,成为西南联合大学-清华大学的教授。他讲授的“近世代数”课程以当时问世不久的B.L.范德瓦尔登(vanderWaerden)的《近世代数》第一卷为蓝本,但又做了不少的修改。段学复担任了刻写讲义和批改学生习题的任务。华罗庚还在教师中作过《域论八讲》的系列报告。这些都使段学复的代数学功底提高到一个新水平。另外,华罗庚还主持一个有限群讨论班,参加的有段学复、孙本旺、樊?和徐贤修等。大家轮流报告,素材是P.霍尔(Hall)刚发表不久的重要论文《对P-群理论的贡献》和H.查森豪斯(Zassen-haus)的《群论教程I》。从这时起,华罗庚与段学复开始合作研究p群的计数定理。这也是段学复从事代数学、特别是有限群方面的理论研究和培养人才工作的开端。1939年上半年,段学复考取了留英公费生。由于第二次世界大战爆发和日本侵华战争的扩大,他几经波折才于次年9月到达加拿大,进入多伦多大学。同时入学的还有郭永怀、钱伟长、林家翘等。多伦多大学数学系是当时加拿大最大的数学系,段学复的导师R.布劳尔(Brauer)当时正在创建有限群的模表示论。系里还有G.deB.鲁宾逊(Robinson)和H.S.M.考克斯特(Coxeter)等代数学方面的著名教授。段学复在多伦多选修了四门课程,其中包括布劳尔和鲁宾逊的群论。除此之外,段学复主要是在布劳尔的指导下进行研究,很快就取得了一些关于p群的成果,并于1941年获得硕士学位。此后他于1941年8月进入美国普林斯顿大学数学系攻读博士学位。普林斯顿在当时有世界数学中心之称,著名的代数学家J.H.M.韦德伯恩(Wedderburn)就在该校任教。C.谢瓦莱(Chevalley)则是系里30多岁的年轻助教授,学术上非常活跃。而普林斯顿高等研究院更是汇集了像A.爱因斯坦(Einstein)、H.外尔(Weyl)、J.冯·诺依曼(vonNeumann)等这样一批世界闻名的科学家。在这里,段学复参加了不少课程和讨论班,其中有谢瓦莱的代数几何基础和积分方程,外尔的代数数论和二次型的算术理论,C.L.西格尔(Siegel)的解析数论和超越数论。他还听了S.莱夫谢茨(Lefschetz)的拓扑课和A.丘奇(Church)的逻辑课等。在科研方面,段学复在布劳尔和谢瓦莱的指导下,通过听课、参加讨论班,特别是通过钻研他们已经发表的论文和尚未发表的文稿、书稿,最终与他们合作完成了有限群的模表示理论和李群、代数群两方面的重要工作。1943年段学复获得普林斯顿大学哲学博士学位。这之后,他继续留在该校做了两年的博士后,还到E.阿廷(Artin)处作过4个月的访问学习。在此期间,他曾任数学系研究助理。从1945年9月起,段学复到普林斯顿高等研究院担任外尔的助手,协助他开设很有特色的群论课,并帮助修订其经典名著《典型群》(1939),受到他的熏陶,一直到1946年回国。在国外的这6年是段学复的数学生涯中很重要的一个时期。这6年里,他学习过的课程几乎涉及到了基础数学的各主要领域。而有幸向布劳尔和谢瓦莱这两位大师学习并与之合作,对于段学复的影响更是不言而喻的。抗战胜利以后,段学复婉言辞谢了外尔的挽留,毅然决定回国。他认为:落叶归根,祖国总是要回去的;不管怎样,自己的事业只能在中国!1946年7月段学复回到上海。在上海他见到了即将全家赴美的华罗庚,并与之一起参加了李公朴、闻一多两位烈士的追悼会。与此同时,段学复还会见了当时正在筹建中央研究院数学研究所的陈省身。陈省身聘请段学复作数学研究所的兼任研究员,负责指导新从浙江大学毕业到所的曹锡华。1946年10月段学复回到了阔别9年的清华园,任清华大学数学系教授,从第二年起任代理系主任。在这段时间里,他连续开设了高等代数、高等微积分、近世代数、点集拓扑等课程。1946-1947学年他指导应届毕业生万哲先的毕业论文。1947年上半年,他又指导当时已转到清华大学的曹锡华学习抽象代数和模表示论,并于1948年下半年推荐他赴美到当时在密执根大学任教的布劳尔处作博士研究生。现在曹锡华已经在华东师范大学建立起了活跃的代数群科研集体。在代理系主任期间,段学复聘请了许宝騄、申又枨、庄圻泰等北京大学教授到清华大学兼课,又聘请由英国回来的闵嗣鹤到清华大学任教。1948年12月13日清华园先北平而解放。段学复被任命为数学系主任。在中华人民共和国的新气象鼓舞下,他不顾自己大病初愈的身体,以极大的热情投身到繁重的教学、科研和行政领导工作中去。1950年春天华罗庚从美国回到清华大学,与其同时回国的程民德也应邀到清华大学任教。在全系教师的共同努力下,从1949年到1952年,清华大学数学系为中华人民共和国培养出了一批后来成为各方面骨干的优秀人才,其中在代数学及其相近领域工作的有万哲先、丁石孙、曾肯成、裘光明、王萼芳等人。段学复从1950年至1987年一直担任中国数学会常务理事,1950-1952年参加了中国科学院数学研究所的筹建工作,1952年任北京大学数学力学系主任,1955年被选为中国科学院学部委员。他参加了1956年国家“十二年科学远景规划”等全国科学规划及数学学科规划的制定和名词审定工作,参加了教育部和高教部的科研规划、教学计划的制定以及教材编审工作。1981年上半年段学复主动辞去了北京大学数学系主任的职务。但他的工作担子并没有减轻很多。1981—1984年他担任国务院学位委员会第一届数学评议分组成员兼召集人之一,同时还任北京大学数学系和数学研究所学术委员会主任。他曾任《中国科学》、《科学通报》、《数学学报》、《数学通报》和《数学年刊》编委,《数学进展》主编(1980-1987)、名誉主编。他还是《中国大百科全书》总编委会委员,数学卷执行副主编,数论、代数学分组主编。中国群表示论的奠基人几十年来,段学复先后发表了约30篇学术论文以及一些其他论著。作为一个数学家,段学复的研究领域主要是代数学。他的最早也是最重要的成就是在有限群的模表示论,特别是指标块及其在有限单群和有限线性群构造研究中的应用上。有限群的模表示论研究有限群在特征为素数P的域上的表示,当P能够整除群的阶时,其表示与通常的有限群在特征0的域上的表示有很大的不同,理论更加复杂、深刻。这一理论自1935年由布劳尔创立,到40年代已初具规模。就在这时段学复开始了这方面的研究工作。在布劳尔1942年发表的重要论文《论阶恰含某素数的一次幂的有限群》的指引下,他在同一题目的博士论文(普林斯顿大学,1943年)中,在与布劳尔合作并继续布氏的工作而完成的两篇论文中取得了一些迄今仍有意义的重要成果。它们主要是:(1)得出了其阶为pqbm的某些单群的结构,其中p和q是互不相同的素数,b和m为正整数且满足m≤p-1。(2)证明了L.E.迪克森(Dickson)在其《线性群》一书中所列出的单群表直到阶都是完全的。(3)对于pg'阶的线性群,这里p为素数且(p,g')=1,当其维数≤(2p十1)/3时,确定了它们的构造。为了得到这些结果,段学复证明了模表示论的一些基本事实,例如他确定了pg'阶群的p块的布劳尔树的重要性质。他证明的三个引理,分别被人们称为“(布劳尔-段-)斯坦顿(Stanton)原则”、“(布劳尔-段)指标块分离原则”和“布劳尔-段定理”。几十年已经过去,但这些成果并未失去它们的光彩。这一方面是由于它们所涉及的问题始终是有限群理论研究的主流,这些工作是后来发展的起点;另一方面也是由于现有的新结果仍然无法绕过或者替代段学复自己以及他和布劳尔合作得到的上述结果。正因为如此,这些结果被详细地写入W.费特(Feit)的表示论名著《有限群的表示理论》,并为群论工作者广泛引用。据不完全统计,在1945年以来的数学论著中,引用段学复的论文的就有30多处。50-60年代,段学复沿着这一研究方向继续工作。这期间他在北京大学组织过两次有限群模表示论讨论班,指导青年教师和研究生。特别是通过1964-1966年的讨论班培养的研究生洪加威、李慧陵,他们决定了一些特殊类型的单群。就在他们有可能取得突破性进展时,“文化大革命”开始了,我国在这个方向的研究被中断。也正是在这个时候,有限单群分类的工作在国际上轰轰烈烈地开始了。“文化大革命”以后,段学复指导学生继续进行这方面的研究工作,其中突出的是博士生张继平。他用表示论和单群分类定理彻底解决了维数小于p的复线性群的结构问题。段学复在代数李群方面也做了出色的工作。复数域上的代数李群是一个复矩阵群,其中的矩阵由其系数所满足的一组代数方程式所决定。这一概念的萌芽早在上个世纪末就已出现,这之后被人们遗忘了50年。但在此期间,E.嘉当(Cartan)和外尔对李群李代数进行了深入的研究。1943年,谢瓦莱首先在其题为《矩阵间的一种新关系》的论文中引进了利用矩阵的张量不变量而得到的矩阵复型的定义,然后又进一步利用矩阵的复型给出了特征为0的域上n维矩阵李(Lie)代数的子代数为代数李代数的定义。这时段学复跟随他学习李群、李代数,并合作发表了论文,概述了谢瓦莱-段学复合作工作的证明线索,而全文则因为两位作者之间的联系一度中断,迟至6年以后才得以发表。在文中他们证明了代数李群的如下基本定理:“每个代数李群的李代数是代数的李代数,而每个复数域上的代数李代数必定是某个代数李群的李代数”。由于有了这个定理,就可以利用李代数的方法把代数李群推广到特征为0的任意域上去。著名数学家A.博雷尔(Borel)曾经指出:40年代中期谢瓦莱和段学复用李代数的方法把代数李群推广到特征零的任意域上,这是1955年线性代数群一般理论诞生的前奏。80年代中,蓝以中曾进行与代数李代数有关的研究。事实上,段学复在这方面最早的一篇论文是《关于幂零矩阵的复型的一个注记》。在这篇论文中,段学复对前述谢瓦莱的第一篇文章里的定理6,给出了一个利用矩阵若尔当(Jordan)标准型的计算的直接而简单得多的证明,并将其加强且推广到特征p≠0的域上。由于P.L.M.叙洛夫(Sylow)定理的成立,p群的研究在有限群理论中具有特殊的意义。早在30年代末霍尔关于p群的重要论文刚发表不久,段学复就开始了这方面的研究。他与华罗庚合作研究了含有指数为p2(p>2)的循环子群的p群,给出了有关的计数定理,并对这种群作了完全分类,其结果用英文发表。在此基础上,华罗庚进行推广,引进了p群的秩(即pn阶群中包含的最大循环子群的指数pn-a中的a)和伪基底的概念,证明了任意奇数阶p群必有伪基底,并证明了循环子群的个数的米勒(Miller)定理的推广等计数定理(见“p群的某些计数定理”)。段学复运用华罗庚的上述结果,通过精细的分析计算,对于奇数阶p群中子群个数的库拉考夫(Kyπaков)定理进行了推广,证明了奇pn阶秩a的p群中pm阶子群的个数N(m)modp3当2a+1≤m≤n时必为1,1十p,1十p十p2或1十p十2p2之一。这方面后来有很多外国尤其是苏联的数学家进行研究,至今仍然吸引着研究者的注意。段学复还对华罗庚的伪基底定理给出了一个更加简明的证明。主要从80年代初起,段学复和王萼芳的学生徐明曜、唐守文等人在上述几篇论文的思想指引下和发展中进行工作,在p群的幂结构和换位子结构之间的联系上取得了研究成果。唐守文继续段学复1939年对于具有循环弗拉蒂尼(Frattini)子群的有限p群的工作,最终给出了这类p群的一个完全分类。段学复在《关于p群的一个定理》中,利用换位元素的运算法则证明了:若p群G包含一个最大交换正规子群A且G/A为循环群,则A/Z≌K,其中Z是G的中心而K是G的换位子群。对于G的上、下中心群列中相应的子群,他也证明了存在相应的同构。这项工作为一些中外学者所引用。布劳尔与段学复还有一些未发表的关于p群的工作,手稿保留至今。电子计算机的出现使组合数学与离散数学得到了蓬勃的发展,而有限群理论与组合数学(包括区组设计、有限几何、图论等)、编码理论以及密码学等等都有着密切的联系。同时,有限群的计算机方法、算法复杂度以及实用软件的研制等工作也由于其理论意义和实用价值,从60年代起得到了迅速的发展。70年代前期,段学复为某科研部门进行了几项应用问题的研究,所给出的方法在实际工作中使计算时效提高了许多倍。他还与其他同志一道开办讲习班,为实际工作部门培养了一批专门人才,受到有关部门的嘉奖。“文化大革命”以后,他进一步在计算群论与组合数学方面开展研究工作,并与王萼芳一起合作培养了王杰等5名这个方向的博士和硕士研究生。1985年,段学复领导的群论科研集体中的王萼芳、石生明、徐明曜三人的“有限群及其表示论与组合数学”科研项目被评为国家教委优秀科技成果,他的《有限群对一类组合问题的应用》获某科研部门科技成果奖。1985年10月9日,段学复荣获中国科学院“从事科学工作50年荣誉奖状”,1989年11月1日荣获中国科学院“学部委员荣誉章”。1990年12月荣获国家科委、国家教委“从事科技工作40年荣誉证书”。毕生为建系、育才而奋斗1952年,为了更好地适应全国解放所带来的各项事业的飞速发展,教育部在较大范围内对所属高等院校的地区分布、专业设置以及教学科研力量的配备等方面作了合理的调整。北京大学新的数学力学系由原来的老北京大学、清华大学以及燕京大学三校的数学系组建而成,段学复受聘为系主任。新中国百业待举,需要大量的各种人才。北京大学任重道远,仅数学力学系每年就要招收近200名大学生,培养约十名研究生。然而,院系调整后的北京大学数学力学系仅有30名左右的教师,只有分析和高等数学两个教研室。不仅缺乏微分方程、概率统计以及计算数学等重要学科方向的教学科研力量,而且由于西方对我国的全面封锁,就连课堂教学用的教材都十分稀少。面对这一艰巨而繁重的任务,年仅38岁的段学复团结全系教职工,特别是1955年以后,在系副主任程民德教授的协助下,支撑体弱多病的身体为筹建新的数学力学系倾注了大量的心血。首先是在学习苏联上下功夫:一是派出去,曾先后有4名教师赴苏学习;二是请进来,有系主任顾问、苏联力学家别洛娃(Белва)到系亲自指导5名力学研究生,且不久之后就在校教务长周培源教授的支持和协助下,成立了全国第一个力学专业。身为系主任的段学复十分重视发挥专家的作用,无论工作多么繁忙也要安排与别洛娃会谈工作,在1953-1954学年中甚至每周一次。值得一提的是,在国内推广重要的教学环节——习题课正是在这个时候开始的。当时到系里讲学的苏联代数学及概率论专家E.Б.邓肯(Дынкин)和波兰数理统计学家菲茨(Fitz),为在国内领先成立概率论教研室作出了贡献。其次是创造条件,充分发挥国内专家的力量,如配合高等教育部于1954年在北京大学数学力学系举办了常微分方程和偏微分方程的讲习班,听讲的有来自全国各地的教师100多人,这为扩大专业队伍进而设置微分方程教研室带了个好头。1955年,北京大学数学力学系又成立了计算数学教研室,为在国内发展这一方向奠定了基础。此后,北京大学数学力学系还与莫斯科大学制备了科学研究合作规划。在教材建设方面,自50年代起,在段学复的亲自参加下,经全系教师的努力,先后译出了A.Г.库洛什(Kypoш)的《高等代数》、A.Я.辛钦(Хинчин)的《数学分析》和B.И.斯米尔诺夫(Cмирнов)的《高等数学教程》等书籍,解决了教学的急需,其中公开出版的也为兄弟院校提供了良好的教材和参考书。就这样,在全系干部和教职员工的共同努力下,从1952年到1966年,北京大学数学力学系为国家培养出了约2000名本科毕业生和数十名研究生,同时在科研方面也取得了很好的成绩。系主任的工作是非常繁忙的,段学复的身体不好,长期患有胃肠溃疡。但就在这种情况下,他的教学和科研工作一直没有停过。他多次开设高等代数、近世代数、李代数等课程,带研究生,指导学生撰写论文。1952-1966年段学复在其他同志的协助下,培养出了许以超、沈光宇、蓝以中、徐明曜、卢才辉等代数方面的本科生和石生明、洪加威、李慧陵等研究生。特别应当指出的是,段学复在1952-1966年间举办了两期有限群模表示论讨论班。第一次是在1954—1955年,他与聂灵沼、万哲先合作撰写讲义,无保留地提出自己所了解的重要研究课题,引导王萼芳研究阶≤27000的有限单群,取得了成果。第二次是受教育部的委托于1964—1966年间举办的。段学复与王萼芳合作编写了讲义,并有陈重穆等外单位教师和本系的研究生参加,开展专题研究、撰写论文。现在陈重穆已经在西南师范大学建立起了活跃的有限群科研集体。1960—1966年段学复还兼任北京电视大学数学系主任,两次参加北京市中学生数学竞赛工作,写文章、作报告,并撰写了《对称》一书,为普通教育和成人教育付出了心血。从1978年起,随着我国学位制度的建立,段学复在其他同志的协助下,集中力量培养出了有限群及其表示论和计算群论与组合数学这两个方向的5名博士和14名硕士研究生,还指导了一名博士后。同时也培养了丘维声等中青年教师和一些外校的进修教师。1988年,他参加编写的《高等代数》获国家教委“全国高等学校优秀教材奖”。段学复曾多次参加国内外学术会议,在大会上做学术报告。1982年他主持中国数学会第一届全国代数学学术交流会,1984年主持北京国际群论讨论会,并主编了会议论文集。直到1988年离休之后,段学复仍然在为我国的数学事业勤奋工作。近年来他承担着国家自然科学基金和国家教委博士点基金的科研项目,培养博士生、指导博士后。同时他仍然用相当大的精力关心和帮助青年教师的成长。段学复的座右铭是“实事求是,认真严谨”。多年的治学经历使他深深体会到,科学是老老实实的学问,任何一点调皮都是不行的。必须勤学多练,打好基础,学深学透,做到能够灵活运用,至少有一两手过得硬的功夫。抓住问题后,要在掌握前人已有的主要工作的基础上,开阔思想,多方探索,锲而不舍,以期一旦贯通,得到成果。他以发现人才、培养人才为乐事,认为:师不必贤于弟子,能培养出胜过老师的学生是为师的最大快乐。段学复曾经多次患病,特别是1959年夏天做的直肠癌切除手术,给他带来了永久性的不便和困难。但他始终保持乐观主义的态度,与疾病做了顽强的斗争,一直坚持工作。

  • 索引序列
  • 拓扑空间连通性的研究论文
  • 安全网络拓扑环境研究论文
  • 粒子群算法拓扑结构的研究论文
  • 网络拓扑图的论文格式
  • 点集拓扑毕业论文
  • 返回顶部