首页 > 期刊论文知识库 > 毕业论文振动筛的设计

毕业论文振动筛的设计

发布时间:

毕业论文振动筛的设计

哎,别提写论文了,一想起来就惆怅,当时给我急得都不想要毕业证了,不过还好后来找了个铭文网帮我写的,没想到的是论文居然评了优秀,花了钱就是不一样,还多了个证,呵呵。

你的论文数字是要求多少的呢%D%A OtZiRiRhXA>LPnMWz

振动筛的设计是围绕用户需求而展开的:产量和精度,以及场地占地。根据用户物料的特性,所需求筛分精度和产量,选择合适的振动筛类型及型号。如:1、粗精度10-70目用直线筛,产量大。2、中精度70-180目用摇摆筛(方形和圆形),普通三次元振动筛,直线筛,其中摇摆筛较其他振动筛,产量更大。3、高精度200-500目超精细粉,选用超声波振动筛。场地占地面积决定了筛分设备的大小,需要在设备大小和产量上寻找平衡。

机械制造技术是研究产品设计、生产、加工制造、销售使用、维修服务乃至回收再生的整个过程的工程学科,是以提高质量、效益、竞争力为目标,包含物质流、信息流和能量流的完整的系统工程。随着社会的发展,人们对产品的要求也发生了很大变化,要求品种要多样、更新要快捷、质量要高档、使用要方便、价格要合理、外形要美观、自动化程度要高、售后服务要好、要满足人们越来越高的要求,就必须采用先进的机械制造技术。 1 先进制造技术的特点 是面向21世纪的技术 先进制造技术是制造技术的最新发展阶段,是由传统的制造技术发展起来的,既保持了过去制造技术中的有效要素,又要不断吸收各种高新技术成果,并渗透到产品生产的所有领域及其全部过程。先进制造技术与现代高新技术相结合而产生了一个完整的技术群,它是具有明确范畴的新的技术领域,是面向21世纪的技术。 是面向工业应用的技术 先进制造技术并不限于制造过程本身,它涉及到产品从市场调研、产品开发及工艺设计、生产准备、加工制造、售后服务等产品寿命周期的所有内容,并将它们结合成一个有机的整体。先进制造技术的应用特别注意产生最好的实际效果,其目标是为了提高企业竞争和促进国家经济和综合实力的增长。目的是要提高制造业的综合经济效益和社会效益。 是驾驭生产过程的系统工程 先进制造技术特别强调计算机技术、信息技术、传感技术、自动化技术、新材料技术和现代系统管理技术在产品设计、制造和生产组织管理、销售及售后服务等方面的应用。它要不断吸收各种高新技术成果与传统制造技术相结合,使制造技术成为能驾驭生产过程的物质流、能量流和信息流的系统工程。 是面向全球竞争的技术 20世纪 80年代以来,市场的全球化有了进一步的发展, 发达国家通过金融、经济、科技手段争夺市场,倾销产品,输出资本。随着全球市场的形成,使得市场竞争变得越来越激烈,先进制造技术正是为适应这种激烈的市场竞争而出现的。因此,一个国家的先进制造技术,它的主体应该具有世界先进水平,应能支持该国制造业在全球市场的竞争力。 是市场竞争三要素的统一 在20世纪 70年代以前,产品的技术相对比较简单,一个新产品上市,很快就会有相同功能的产品跟着上市。因此,市场竞争的核心是如何提高生产率。到了20世纪80年代以后,制造业要赢得市场竞争的主要矛盾已经从提高劳动生产率转变为以时间为核心的时间、成本和质量的三要素的矛盾。先进制造技术把这三个矛盾有机结合起来,使三者达到了统一。 2 先进机械制造技术的发展现状 近年来,我国的制造业不断采用先进制造技术,但与工业发达国家相比,仍然存在一个阶段性的整体上的差距。 (1)管理方面。工业发达国家广泛采用计算机管理,重视组织和管理体制、生产模式的更新发展,推出了准时生产(JIT)、敏捷制造(AM)、精益生产(LP)、并行工程(CE)等新的管理思想和技术。我国只有少数大型企业局部采用了计算机辅助管理,多数小型企业仍处于经验管理阶段。 (2)设计方面。工业发达国家不断更新设计数据和准则,采用新的设计方法,广泛采用计算机辅助设计技术(CAD/CAM),大型企业开始无图纸的设计和生产。我国采用CAD/CAM技术的比例较低。 (3)制造工艺方面。工业发达国家较广泛的采用高精密加工、精细加工、微细加工、微型机械和微米/纳米技术、激光加工技术、电磁加工技术、超塑加工技术以及复合加工技术等新型加工方法。我国普及率不高,尚在开发、掌握之中。 (4)自动化技术方面。工业发达国家普遍采用数控机床、加工中心及柔性制造单元(FMC)、柔性制造系统(FMS)、计算机集成制造系统(CIMS),实现了柔性自动化、知识智能化、集成化。我国尚处在单机自动化、刚性自动化阶段,柔性制造单元和系统仅在少数企业使用。 3 我国先进机械制造技术的发展趋势 (1)全球化。一方面由于国际和国内市场上的竞争越来越激烈,例如在机械制造业中,国内外已有不少企业,甚至是知名度很高的企业,在这种无情的竞争中纷纷落败,有的倒闭,有的被兼并。不少暂时还在国内市场上占有份额的企业,不得不扩展新的市场;另一方面,网络通讯技术的快速发展推动了企业向着既竞争又合作的方向发展,这种发展进一步激化了国际间市场的竞争。这两个原因的相互作用,已成为全球化制造业发展的动力,全球化制造的第一个技术基础是网络化,网络通讯技术使制造的全球化得以实现。 (2)网络化。网络通讯技术的迅速发展和普及,给企业的生产和经营活动带来了革命性的变革。产品设计、物料选择、零件制造、市场开拓与产品销售都可以异地或跨越国界进行。此外,网络通讯技术的快速发展,加速技术信息的交流、加强产品开发的合作和经营管理的学习,推动了企业向着既竞争又合作的方向发展。 (3)虚拟化。制造过程中的虚拟技术是指面向产品生产过程的模拟和检验。检验产品的可加工性、加工方法和工艺的合理性,以优化产品的制造工艺、保证产品质量、生产周期和最低成本为目标,进行生产过程计划、组织管理、车间调度、供应链及物流设计的建模和仿真。虚拟化的核心是计算机仿真,通过仿真软件来模拟真实系统,以保证产品设计和产品工艺的合理性,保证产品制造的成功和生产周期,发现设计、生产中不可避免的缺陷和错误。 (4)自动化。自动化是一个动态概念,目前它的研究主要表现在制造系统中的集成技术和系统技术、人机一体化制造系统、制造单元技术、制造过程的计划和调度、柔性制造技术和适应现化生产模式的制造环境等方面。制造自动化技术的发展趋势是制造全球化、制造敏捷化、制造网络化、制造虚拟化、制造智能化和制造绿色化。 (5)绿色化。绿色制造则通过绿色生产过程 、绿色设计、绿色材料、绿色设备、绿色工艺、绿色包装、绿色管理等生产出绿色产品,产品使用完以后再通过绿色处理后加以回收利用。采用绿色制造能最大限度地减少制造对环境的负面影响,同时使原材料和能源的利用效率达到最高。 4 结语 制造技术不仅是衡量一个国家科技发展水平的重要标志,也是国际间科技竞争的重点。我国正处于经济发展的关键时期,制造技术是我们的薄弱环节。只有跟上发展先进制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,才能尽快缩小与发达国家的差距,才能在激烈的市场竞争中立于不败之地。总之,在我国研究和发展先进制造技术势在必行

沥青搅拌振动筛设计本科毕业论文

改性沥青是指添加了橡胶、树脂、高分子聚合物、磨细了的胶粉等改性剂,或采用对沥青进行轻度氧化加工,从而使沥青的性能得到改善的沥青混合物。用它铺设的路面有良好的耐久性、抗磨性,实现高温不软化,低温不开裂。 改性沥青的特点 1、耐高温,抗低温,适应性强; 2、韧性好,抗疲劳,增大路面承载能力; 3、抗水、油和紫外线辐射,延缓老化; 4、性能稳定,使用寿命长,降低养护费用。 下面的是详细的: 改性沥青的优良性能来源于它所添加的改性剂,这种改性剂在温度和动能的作用下不仅可以互相合并,而且还可以与沥青发生反应,从而极大地改善了沥青的力学性质,犹如在混凝土中加了钢筋。为了阻止一般改性沥青可能发生的离析现象,沥青的改性过程是在一种特殊的移动设备中完成的,将液态的包含沥青和改性剂的混合料通过布满沟槽的胶体磨,在高速旋转的胶体磨的作用下,改性剂的分子被裂解,形成了新的结构然后被激射到磨壁上再反弹回来,均匀地混合到沥青当中,如此循环往复,不仅使沥青与改性得了均化处理,而且使改性剂的分子链相互牵拉,网状分布,提高了混合料的强度,增强了抗疲劳能力。当车轮压过改性沥青时,沥青层面发生相应的轻微变形,当车轮过后,由于改性沥青对骨料的粘结力强,弹性恢复好,使受挤压的部分迅速恢复平展的原状。 在沥青中加入某种称之为改性剂(Modifier)的材料,使沥青的某些特性从根本上得到改善,扩大了沥青的使用范围。这种加入改性剂的沥青,我们称为为改性沥青(Modified asphalt)。 改性沥青的种类及其特性,在国内使用情况: 在国内使用过的改性沥青有: (一)丁苯橡胶(SBR);粉碎后按2%加入沥青,制成改性沥青母体,然后使用时再加入一定比例与普通沥青混合。还有将SBR加入溶剂成为Sspan>胶乳,直接掺入沥青,但这种方法施工工艺料为繁琐,效果也不甚明显,未能大面积推广使用。 (二)聚乙稀(PE);奥地利使用了一种称之为Novophalt的改性沥青,使用已有15年的历史,其后在意大利、捷克、美国也相应推广使用。在沥青加入聚乙稀(PE)或再掺苯乙烯共聚物(热塑料性体(SBS),在表面层中还使用了石棉纤维,称之为沥青玛蹄脂碎石混合料 路面(SMA)。我国首次使用改性沥青是1994年首都机场高速公路,使用了奥地利技术NOVOPHALT。其关键技术在于利用间隙可不断调整的大型胶体磨使改性剂反复多次通过磨体而达 到非常均匀与沥青共混,用400倍显微镜面观察切片晶体结构是否混合均匀。PE对改善高温稳定性较好,而SBS对改善低温稳定性较好,96年首都机场东跑道罩面掺入4%PE+2%SBS,另外还掺入石棉纤维,使用改性剂以后,针入度比原来沥青减少了一个等级,软化点大 为升高,粘度增加了7倍,说明沥青的高温稳定性有显著提高。 96年夏季在北京至八达岭高速公路中再次使用了改性沥青仍然是奥地利技术Nobohalt,在沥青砼上面层中加入4%PE+2%SBS,中面层中加入5%PE,经胶体磨六次循环研磨,方可达到混 匀效果,每一周期约需半小时,产时为4吨。加入改性剂以后的沥青软化点可达60-70℃,马氏稳定度均在10KN以上,而稳定度的改变特别显著,号称“80度不软,30度不脆”(后者指零下温度)。其成本由于租用奥地利设备再加上原材料及能源消耗,每吨沥青混合料 约需增加100元左右。 改性沥青的施工工艺条件也有所改变,不能完全按现有施工技术规范进行控制。例如其“固化”温度明显高于变通沥青,辗压温度宜控制130-140,因此压路机必须紧随摊铺机之后不得拖延。 北京市公路局已自行研制成功大型胶体磨,研磨后的晶体直径可达15(微米)以下,其性能已超过奥地利设备,故生产成本可以大幅度降低。 (三)北美沥青UN-A:是美国犹他州东部UINTAH盆地所产的一种天然树脂,呈块状,经加工研磨成粉末,成为商品。根据北京公路局所作试验,加入5%-10%的UN-A。沥青的针入度延度脆点以及粘附性、马歇尔稳定度均有明显的改善。 UN-A是粉末状,可直接加入沥青。所以它的添加使用非常方便。目前尚未使用于工程。有 待进一步论证。 沥青玛蹄脂碎石混合料是一种由沥青、纤维稳定剂、矿粉及少量的细集料组成的沥青玛蹄脂,填充间断级配的粗集料骨架间隙而形成的眼挤型密实结构混合料。SMA改性沥青及SMA路面是一种新型的路面结构,改性沥青及SMA混合料冷却后非常坚硬,强度高。本文结合上海城市外环线(浦东段)环南一大道工程的施工,谈谈如何对改性沥青及SMA路面的施工进行控制。 一、工程综述 本工程北起张扬路立交东至环东一大道,路幅红线宽度100米,为城市Ⅰ级主干道,双向8车道,总长2387米。车行道结构形式为沥青柔性路面,结构层组成为路基+15厘米砂砾垫层+40厘米二灰碎石基层+15厘米三层式沥青混凝土面层。面层组合如下:表面层为改性沥青玛蹄脂碎石混合料(SMA-16)4厘米;中面层为中粒式改性沥青砼(LH-25)6厘米;底面层为粗粒式改性沥青砼(CLH-35)6厘米;下封层1厘米。 二、改性沥青施工质量控制的难点 1.改性沥青混合料粘度较高,各工序的施工温度均比普通沥青混合料的施工温度要求高,贮存、运输期间的降温不应超过10℃,生产厂至施工现场的距离较长,上海交通繁忙,气候变化大,混合料贮藏温度控制难。 2.沥青路面施工质量与摊铺机械的性能密切相关,沥青摊铺机械型号多种,性能不一。如何选择性能良好的施工机械,是工程质量控制的重点。 3.沥青摊铺时,必须均匀、连续,工人素质必须高,要能正确判断摊铺界面。 三、SMA沥青的拌合及施工 1.沥青混合料拌合。由于SMA与普通密级配沥青砼最大不同之处是SMA为间断级配,粗集料粒径单一、量多、细集料很少,矿粉用量多。细集料包括石屑和砂一共只需15%左右,给混合料的供料拌和带来不少困难。为此,料斗、料仓要重新安排,增加粒径为5~10毫米的骨料仓,以保证冷料数量,而细集料用量很少,冷料仓门开启很少,供料过程中要保持细集料干燥,以保证细集料顺利供料。主皮带把粗配料送入滚洞,通过燃烧器对骨料加热,有热电偶检测料温,自动调节燃烧器的风油比,使骨料温度达到190℃~200℃。热料经提升机进入振动筛,把热料按目标配合比的规格要求分筛到不同的热料仓(筛网尺寸可根据要求更换),有计算机控制各热料仓拉门,按输入的生产配合比自动配料、计量,由于SMA粗料粒径单一,细料很少,热料可能会发生粗集料仓经常不足(亏料),而细集料仓经常溢仓的不正常情况,控制室的操作人员不可调整放料的数量,使SMA的配合比不准。然后将木质素纤维加入到搅拌锅与骨料共同进行干拌,再添加经计算机控配比控制计量的石粉及沥青,拌和后,完成成品料的生产。SMA的干拌时间为4秒~5秒,湿拌30秒~45秒。 各种材料加热温度控制:沥青加热温度160℃~165℃,现场制作温度165℃~170℃,加工最高温度175℃,集料加热温度190℃~200℃,混合料出场温度175℃~185℃,混合料最高温度(废弃温度)195℃,摊铺温度不低于160℃,初始开始温度不低于150℃,复压最低温度不低于130℃,碾压终了温度不低于130℃,开放交通温度不高于60℃。 2.运输。由于SMA沥青混合料的沥青玛蹄脂的粘性较大,运输车的车厢底部要涂较多的油水混合物,而且为了防止运输车表面混合料结成硬壳,运输车运输过程中必须加盖油布,同时车量要适当增加。 3.摊铺。沥青必须缓慢、均匀连续不间断地摊铺。摊铺过程中,不得随意变换速度或中途停顿,摊铺速度应根据拌和机产量,施工机械配套情况及摊铺层厚度、宽度确定。摊铺速度为米/分钟。 4.碾压。碾压过程是面层施工中的重要环节,碾压SMA的八字方针为“紧跟、碾压、高频、低幅”,并合理地选择压路机组合方式及碾压步骤。 5.接缝。 (1)纵缝:根据本工程特点,我单位在沥青混合料摊铺过程中采用一台德国产ABG423摊铺机并排摊铺,采用此方式可以一次整幅摊铺,纵缝热接提高了路面的平整度,美化了路面的视觉效果。 (2)横缝:SMA路面的接缝处理要比普通混合料困难一些,因此,摊铺时在边部设置挡板,也可以在沥青SMA层每天施工完工后,在其尚未冷却之前,即切割好,并利用水将接缝冲洗干净。第二天涂刷粘层油,即进行摊铺新混合料。 沥青混合料施工中容易产生的问题: (1)过碾压:由于SMA路面的集料嵌挤作用,压实程度不大,压实度较易达到,但是随着碾压遍数的增加,集料不断地往下走,玛蹄脂一点点地向上浮,造成构造深度减小。在碾压过程中,特别注意表面构造保持在1~毫米,以便有适宜的构造深度。 (2)出现油斑:SMA路面通车后出现油斑也是常见的一种病害,这是由于SMA的纤维拌合不均匀造成的。因此在拌合时,要严格控制纤维的投放数量和投放时间,并延长干拌时间,确保纤维拌合均匀。还要注意储藏期间纤维干燥,防止纤维受潮成团。 (3)碾压成型温度不够高是常见的毛病。SMA在130℃碾压的效果就很差了。在低温时碾压,容易出现不平整。在行车过程中出现车辙,是因为碾压不足造成的。 虽然我对沥青懂一点,但还是回答不好你的问题。呵呵。但是有个中国沥青论坛,你可以去那里问问,那里都是有专家解答问题。 参考资料:

振动筛砂机毕业论文

推荐一个免费教育教学资源下载网站-课件素材库 ,教案/论文/反思/说课/课件下载/课本插图/试题试卷/课件视频教程/课件制作素材等资源约20多万条,相关教育教学资源应有尽有,只有你想 不到的, 没有你找不到的!

1.机械设计制造及自动化专业毕业论文选题2.双侧驱动式旋耕灭茬机设计3.温室用小型电动旋耕机设计4.玉米对心种子播种机设计5.多功能机械手设计6.越障行走机的结构设计7.秸杆原料育苗钵成型机的设计8.耐磨材料应用现状与发展趋势研究9.代写论文抠抠巴贰衫七贰杉贰零巴10.揉性清洗技术在汽车发动机清洗中的应用11.液体菌种自动接种装置的设计12.果蔬高压电场保鲜技术及装置研究13.新型变质白口铸铁犁铧及旋耕刀材料成份配比的试验研究14.气缸盖试漏机设计15.南瓜种子分选机振动筛片及工作参数的优化设计学术堂提供更多论文知识

关键词:30cm混渣+20cm碎石+4层20cm灰土 本人有幸于三月中旬到六月上旬间在天津市塘沽区的天津大道项目实习,以实习期间对天津大道项目路基工程的了解和认识为素材,并按照工程施工的顺序分析路基施工中的要点编纂论文。 一、天津地区气象水文及地质情况 天津位于北半球暖温带,中纬度亚欧大陆东岸,四季分明,介于大陆性欲海洋性气候的过渡带上,属于半湿润季风气候。春季干燥多风,冷暖多变;夏季温高湿重,雨热共济;秋季天高云淡,风和日丽;冬季寒冷干燥,雨雪稀少。年平均气温1~12℃,七月平均气温℃,一月平均气温-5℃,极端最低气温-21℃,极端最高气温℃。年平均降雨,一日最大暴雨量,最大积雪深度29mm。春秋两季降雨量分别占全年的10%和14%;夏季6月中旬~9月中旬为雨季(汛期),平均雨日34天左右,占全年降水量的73%以上;冬季与血量占全年的1%~3%. 天津地区位于海河流域下游,海河水系是华北地区最大水系,本工程自北向南,横贯扇面中央,共永定河、中亭河,子牙河等3条一级河道,龙河、中泓故道、南运河等3条二级河道,并且沿线灌溉、排水渠道密布,基本形成排灌水网系。 二、天津大道工程概况 天津大道连接天津市中心城区小白楼商务区与滨海新区于家堡、响罗湾商务区,为城市快速路,西起外环线津沽立交,东至中央大道,双向八车道,设计行车速度80km/h。 三、材料要求 (一) 路基填土 1、路基填料宜优先选用级配良好的砾类土、砂类土作为填料,泥炭、淤泥冻土、强膨胀土、有机质土及易溶盐超过允许含量的土等,不得直接用于填筑路基。 2、本工程位于冰冻地区,严禁采用未经处理的粉质土直接填筑路基。当采用其他细土时,路基填料CBR应满足要求。此外,液限大于50%,塑性指数大于26的细粒土不得直接作为路基填料。 3、禁止使用沼泽土、泥炭及淤泥、含有树根、树桩、易腐朽物质或有机质含量大于5%,氯盐含量大于3%,碳酸盐含量大于的土。 4、中央分隔带及绿化带填土按绿化回填要求进行填筑。 5、细粒土尽可能粉碎,粒径不得大于15mm。 (二) 碎石 1、碎石中不含植物残体、垃圾等杂物。 2、最大粒径应小于30mm,要求其压碎值不超过30%、强度不小于15MP(未筛分碎石)。 3、 碎石的颗粒组成应符合JTJ034-2000中第中2#级配要求,为方便施工,宜采用10~30mm的粗集料,5~10mm的中集料,0~5mm的石屑细集料三种粒料配合。 3、池塘路基处理碎石垫层用碎石强度不小于15MP(未筛分碎石),最大粒径应小于150mm,通过20mm筛孔的选料不得超过总量的30%,通过筛孔的选料不超过总量的10%。 (三) 钢塑双向土工格栅 1、钢塑双向土工格栅应采用凸结点形式,以保证连接牢靠,其性能要求如下: 纵向抗拉强度:≥80KN 横向抗拉强度:≥80KN 伸缩率:≤3% 结点剥离力:≥350N 2、同时为尽量减少搭接程数量,钢塑双向土工格栅幅宽不宜小于4m。 (四) 石灰 1、石灰应采用消石灰或生石灰粉;消石灰中不得有未消解的生石灰颗粒,石灰等级应在三级以上。 2、 如采用生石灰,钙质生石灰中有效氧化钙氧化镁的含量应大于70%;如采用消石灰,钙质消石灰中有效氧化钙氧化镁的含量应大于50%。 3、石灰剂量=石灰质量/干土质量,生石灰块应在使用前7~10天充分消解。消解的生石灰应保持一定的湿度,不得产生扬尘,也不得过湿成团。消石灰宜过孔10mm的筛,并尽快使用。 (五) 水泥 1、 水泥应符合国家技术标准的要求,宜采用的普通硅酸盐水泥、矿渣硅酸盐水泥或火山灰质硅酸盐水泥。 (六) 土壤固化剂 1、土壤固化剂采用液粉土壤固化剂路邦EN-1(浓缩液),固化剂浓缩液掺入剂量为,或根据实验确定。 2、土壤固化剂的技术性能指标应符合现行行业标准《土壤固化剂》CJ/T3073的规定,溶液的固体含量不得大于3%,不得有沉淀或絮状现象。 (七) 水 应采用饮用水或PH大于或等于6的水。 四、施工程序 (一)路基表层整体处理方案 由于本工程均处于稻、苇地等潮湿地段,路基填筑前应清除地表草皮、树根、腐殖土、垃圾、杂物等,路基清表30cm后大致找平并进行碾压,压实度应符合设计(90%)要求,如达不到压实度要求,可采用5%戗灰处理;如戗灰0~50cm仍达不到压实度要求,需换填50cm碎石垫层,以加快工程进度。 路基填筑高度小于路面和路床总厚度时,应将地基表层土进行超挖并分层回填压实,处理深度不应小于路床底面。 工程所处区域为平原地貌,土质为粘土或粉质粘土,地下水丰富,土质含水量较高,全线路基处于潮湿、中湿状态,因此需要对路基表层按实际情况分别进行处理方可进行路基填筑。 1、填土高度大于2m的路段(路床最低点距清表后地表距离): 地表整平后晾晒,对露出地下水的路段应设置临时排水沟,排除地表积水,经推土机排压后填筑30cm混渣,经12t以上压路机碾压3~4遍后通铺双向土工格栅,土工格栅反包其上灰土层(20cm厚,5%戗灰)2m,继续分层填筑分层压实灰土(5%戗灰,如达不到相应层位压实度及强度要求,增加灰量至8%)至路床顶以下80cm,对无法承受12t以上压路机地段应增加混渣厚度,各层压实度及强度满足设计说明的要求。 2、 填土高度大于、小于2m的路段(路床最低点距清表后地表距离): 地表整平后晾晒,对露出地下水的路段应设置临时排水沟,排除地表积水,经推土机排压后填筑40cm混渣,经18t以上压路机碾压3~4遍后通铺双向土工格栅,土工格栅反包其上灰土层(20cm厚,5%戗灰)2m,继续分层填筑分层压实灰土(5%戗灰,如达不到相应层位压实度及强度要求,增加灰量至8%)至路床顶以下80cm,对无法承受18t以上压路机地段应增加混渣厚度,各层压实度及强度满足设计说明的要求。 3、填土高度小于的路段(路床最低点距清表后地表距离): 地表应继续下挖至距路床顶的高度,排除地表积水后晾晒,经推土机排压后填筑30cm混渣,经18t以上压路机碾压2~3遍后继续填筑20cm的碎石,在混渣和碎石之间通铺双向土工格栅,土工格栅反包其上碎石2m,碎石经18t压路机碾压3~4遍后用平地机刮平碎石层准备填筑灰土。 (二)混渣填筑 1、混渣填筑厚度较大时应分层填筑分层压实,每层以20~25cm为宜 2、混渣填筑时应严格控制含水量,对于含水量较大的应进行适当的晾晒方可以进行碾压。而且应避免使用含土量过大的混渣,如果有含土量较大的材料进场,应先进行堆备,待其他含土量较少的混渣进场时掺拌后填入路基中。 3、混渣的强度应保证不小于15MP,最大粒径应保证小于150mm,通过20mm筛孔的选料不得超过总量的30%,其通过的不超过总量的10%,大粒径渣石应填筑在下部,小粒径渣石填筑在上层,保证混渣顶的平整度(误差不超过2cm)空隙较大时应扫入石渣(未筛分),或石屑填充,上部可填筑渣石或石屑。 4、雨天时注意对基槽进行排水,杜绝在含水量过大的情况下对混渣进行碾压。 5 、为避免地基产生过分扰动造成地基基底无法压实,压路机在碾压过程中严禁使用震动碾压。但与此同时为保证填料的密实性,在碾压过程中横向接头要重叠50cm进行碾压,做到无漏压,保证碾压均匀,且严格控制碾压遍数为四遍。碎石填料与混渣碾压要求相同。 (三)碎石填筑 1、由于碎石填筑厚度仅为20cm,应严格控制混渣顶面高程,杜绝混渣侵入碎石填筑范围,减少碎石填筑厚度。 2、碎石填料粒径应控制在5cm以内,其通过的总量不超过总量的10%,且级配良好,无杂物。 3、使用碎石强度不小于15MP(未筛分碎石)。 4、大粒径碎石应填筑在下部,小粒径碎石填筑在上层,保证碎石顶的平整度(误差不超过2cm)。 (四)钢塑双向土工格栅的铺设 1、土工格栅存放及铺设直接接触的填料中严禁含强酸性、强碱性物质、 2、一般路段土工格栅的铺设应垂直于路堤轴线方向,桥头路基处理段土工格栅应顺路堤轴线方向铺设。 3、土工格栅之间的连接应使用尼龙卡扣呈梅花型绑扎牢固,搭接长度不小于30cm,间距不得大于3各空格。 4、土工格栅铺设完成后应及时填筑调料,避免受阳光长时间暴晒,铺设与填料填筑时间间隔应不超过48小时。 5、施工中应采取措施避免是土工格栅受损,出现破损及时修补或更换。 6、土工格栅下乘层应平整,铺设时应拉直、平顺、绷紧,紧贴下承层,不得扭曲褶皱。 7、土工格栅上的第一层填料应采用轻型机械摊平和碾压,一切车辆及施工机械只允许沿路堤轴向方向行驶。 8、铺设土工格栅时,应在路堤每边各预留不小于2m的长度,回折覆裹在已压实的填筑层面上,折回外露部分应用土覆盖。 9、混渣层大致平整密实,大块石头尽量压到下层土中或者人工捡走,避免石块咯烂土工格栅。 10、平地机在整平碎石时,下刀要注意掌握力度,发现土工格栅立即收刀,整平时现场必须有人紧盯,发现问题人工及时处理。 (五)路基施工填土要求 1、一般路基段填土处理 (1)路基必须分层填筑分层碾压。每层最大压实厚度不宜超过20cm(当压实机械可以保证压实度并经现场试验、检测合格后可适当加大压实厚度),路床顶面最后一层压实厚度为20cm(遇特殊情况不满足设计要求是,最小压实厚度不得小于10cm)。 (2)含水量应控制在压实最佳含水量±2%之内。 (3)路基填筑宽度每侧应宽出填筑层设计宽度30cm,压实宽度不小于设计宽度,最后销坡。 (4)路基表面应具有2%~4%的向外横坡,防止积水。为避免路基边坡被雨水冲刷,路基填筑过程中要求在路基下坡脚外两米处设置临时排水埝和排水设施。 (5)征地边线外两侧各10m范围内禁止集中取土。 (6)路基填筑范围内严禁作为施工便道使用。 (7)路基填筑应均匀密实,路床顶面横坡于路拱横坡一致。 (8)路基填土压实度、填料最小强度及最大粒径不小于表1要求。 路基压实度、填料最小强度及最大粒径 表1 项目分类 压实度(%)(重型压实标准) 填料最大粒径(cm) 填料最小强度(CBR)% 路堤 上路床(0~30cm) ≥96 10 8 下路床(30~80cm) ≥96 10 5 上路堤(80~150cm) ≥94 15 4 下路堤(>150cm) ≥93 15 3 零填及路堑路床(0~30cm) ≥96 10 8 注:表中所列压实度系按《公路土工试验规程》(JTJ051)重型击实实验法求得的最大干密度计算所得。 (9)路基填土高度 路基最小填土高度须保证不因地下水、地表水、毛细水及冻胀作用而影响稳定性。本工程为城市道路,路基设计最小填土高度应大于路床处于潮湿或中湿状态的临界高度。根据沿线各钻孔(钻探时间为6月份最不利季节)揭示的地下水位以及Ⅱ4区路基处于潮湿、中湿状态的临界高度计算的路基最小填土高度见表2。 处于中湿、潮湿状态时的最小填土高度 表2 名称 孔位ZK48 ZK49 ZK50 ZK51 孔口标高 静止水位埋深(m) 水位标高(m) 中湿状态路基设计标高(m) 中湿填土高度(m) 潮湿状态路基设计标高(m) 潮湿填土高度(m) 2、特殊路基段处理 (1)桥头引路段 桥头引路路基填方路段处于中湿状态,应对现状地坪清表整平后,回填路基土,然后在距路床顶面以下40cm以下做20cm土壤固化剂固化石灰土(5%石灰)+20cm土壤固化剂水泥石灰土(2%水泥+3%石灰),保证土基不出现软弹现象。 (2)池塘段路基处理 ○1路线在穿越大面积池塘及大型沟渠处应打坝、抽水、清淤、整平后分层填筑分层压实混渣(每层以20cm~30cm为宜)至距路床顶以下100cm处,通铺钢塑双向土工格栅后填筑20cm碎石,碎石之上分层填筑灰土。池塘、大型沟渠等边坡应开蹬成台阶状,蹬高,两步为一蹬,蹬宽≥,开蹬处铺设≥宽的钢塑双向土工格栅。 ○2路线经大面积池塘时,应将各池塘间堤埝铲平后再进行填筑混渣垫层、铺设土工格栅等工作,以确保路基整体性。 (3)桥头路基处理 ○1桥头两侧地基处理根据地质条件、填土高度和施工周期,采用加固土桩(水泥搅拌桩)+石灰土(8%)的处理方式,加固土桩采用梅花形布置。加固土桩横向布置范围放坡一侧应超出引路坡脚以外至少。 ○2成桩后应凿出桩头50cm,桩顶先铺30cm碎石垫层,然后铺土工格栅,最后再铺30cm碎石垫层 。 ○3桥头处理范围控制在50m,根据处理前后恭候沉降差的情况,靠近桥头50m范围内(除台背回填)路堤填料采用8%石灰土,所填填料应分层碾压夯实,压实度要求达到重型90%。桥台后背回填采用14%石灰土分层碾压夯实。 (六)灰土填筑 施工时按照“四区段”和“八流程”进行。“四区段”即:“上土摊铺区、翻晒拌合区、整平碾压去、报验养生区”,“八流程”即:“上土、摊铺、翻晒、布灰、拌合、整平、碾压、养生”。具体施工工艺如下: 1、试验标定 在上土之前应取现场土样测定土的天然含水量及液塑限并进行标准击实试验确定最佳含水量和最大干密度。 2、测量放样 测量组准确放出道路中心线。 3、路堤填筑时在取土场用挖掘机和装载机将土装入自卸汽车,运到填土路基处。根据路基宽度、自卸汽车方量及松铺厚度,用白灰洒线打网格,确定每车土的卸土位置,以保证填土厚度。 4、素土摊铺粗平后,首先应根据虚铺系数追踪测定高程,在考虑虚铺系数的情况下若高程达不到设计值应及时采取措施补救,待满足要求后用铧犁和旋耕犁进行翻晒和粉碎。在上灰前,检查土的含水量,当接近最佳含水量时及时上灰。 5、 摊铺石灰:素土整平稳压后,按眼路线走向5×10m打好方格,根据配比将每格需要的石灰量人工摊铺均匀。上灰时应保证灰土中无杂质、无未消解的灰块。 6、 路拌机拌合:石灰摊铺完成后,均需用路拌机拌合,拌合遍数2遍以上,要用专人在路拌机后面随时检查拌合深度,拌合深度以打入路床顶以下5~10mm为宜,确保无素土夹层,保证拌合均匀色泽一致,没有灰花团和花条,检测混合料的含水量和灰剂量,含水量控制在最佳含水量1~2个百分点,灰剂量符合规范要求。 7、 整平和碾压:用平地机、水准仪跟踪控制高程。当高程、横坡达到规范要求时,先用振动压路机稳压一遍,再用振动压路机振压两遍,然后用18~21t压路机进行碾压三遍,由路肩向路中心碾压,碾压时轮迹重叠1/2轮宽,路肩处应多压2~3遍。严禁压路机在已完成的或正在碾压的路段上急调头或急刹车,以保证石灰土的表面不被破坏。若在碾压过程中出现“弹簧”现象,应采用挖除、重新换填或掺石灰或水泥等措施进行处理。在压路机碾压结束之前用平地机再终平一次,使其纵向顺适,路拱符合设计要求。终平应仔细进行,必须将局部高出部分刮除并扫除路外,对局部低洼之处不再进行找补,可待铺筑下层时处理。 8、 试验检测:一段路基完成后,试验人员及时进行路面外形、压实度、灰剂量等的试验检测,自检合格后报请监理工程师验收,验收合格后进行下层施工。 外形管理的测量频率和质量标准 项次 规定值 检查方法和频率 纵段高程(mm) +5~-20 每20延米1处 厚度(mm) -10~-25 每1500~2000 m26个点 宽度 不小于设计值 每40延米1处 平整度(mm) 15 3m直尺,每200延米2处,每处连续10尺 横坡(%) + 每100延米3处 我发的是word文档,有些格式肯定不正确,你自己修改

机械创新设计是一个极其重要而又困难的实践性较强的研究课题。目前创新设计方法研究虽然已取得一些成果,但创新学还处于发展初期,各种不同理论及工具不断涌现,远没有形成普遍可以接受的统一的理论体系。本文认为,要进行机械创新设计要有两个必要条件:一是充分获取适用的知识;二是要使用符合创新设计思维并能激发创新思维的设计系统。设计过程充满了矛盾,所获取的知识应有助于矛盾的迅速解决,这就要求知识获取工具紧密集成到设计过程中,因此要统一研究知识获取工具与设计系统。另外,人类的创新设计思维模式是在长期的成功设计经验中总结形成的,因此设计系统必需符合创新设计思维规律。创新设计思维规律应作为算机辅助创新设计系统的理论基础。基于上述考虑,本文从创新设计思维的研究出发,融合知识获取方法,研究创新设计理论,进而开发机械产品创新设计系统。1 机械创新设计思维规律我们常把思维的过程称为“思路”,是因为可用路径问题来说明人类思维过程。本文提出两个机械创新设计思维原则:一是最短路径原则。设计者得到产品的功能要求后,往往首先检索出最佳设计实例,这样可以最迅速接近目标,然后运用价值工程方法,找出价值较低的极少数组件作为研究对象,再分析所得对象存在的矛盾,尝试作最小变动以解决矛盾,如矛盾没有解决则拟作更大变动或扩大研究对象范围,最后得出最优结果。通过这样途径所消耗的能量最少,体现了最短路径原则。二是相似性联想。汤川秀树的定同理论认为,联想能力就是找出事物彼此相似性的创造力,相似性是指事物间的内在联系。要用计算机系统来辅助设计师从自然界中发现形态各异的事物的相似性是很困难的,因此本文只研究从机械产品实例中挖掘相似性,以促进机械创新设计。机械设计过程是从功能要求到作用原理,再到物理结构的映射过程[1]。在CBR系统中,功能要求、作用原理与物理结构可作为实例索引,因此可统称它们为索引项目。同一索引的不同类索引项目之间的联想可称为纵向联想,而不同索引的同类索引的联想可称为横向联想。判断联想是否合理的依据是相似性,相似性由已有产品实例确定。比如,“超声波研磨机产品实例”使“超声波振动”作用原理与“研磨”功能要求纵向地产生了内在联系;又如,多种产品实例可满足同一功能要求,那么它们用于实现该功能的作用原理及物理结构具有相似性。功能要求是联想的起点,经验丰富的设计师通常记忆有大量的设计实例,因而掌握纵向及横向相似性,所以能迅速地进行横向及纵向的联想,能触类旁通,得出具有相似作用原理及物理结构的实例(简称相似实例)并进行组合优化,最后得到最优解。 这两项原则已被多种设计方法不自觉地采用了,基于实例推理不但能迅速接近最优解,体现最短路径原则;物场分析法(简称TRIZ)分析了上百万设计实例,确定功能要求与作用原理及物理载体的内在联系,以及不同作用原理或物理载体的可替代关系,使设计师可根据功能要求找到适当的作用原理及物理载体,体现相似性联想原则。2 计算机辅助创新设计系统 两项创新设计思维原则充分体现在计算机辅助创新设计系统的设计中,系统还利用了多种创新设计方法及人工智能技术。计算机辅助创新设计系统的流程如图1所示,它包含如下关键技术: 实例检索 利用基于实例推理(CBR)技术时首先要深入研究它的优缺点。CBR是一种以实例为知识载体的知识供应方法。当前它仍有如下不足:首先,系统为了达到实用通常建立庞大的实例库,这导致管理困难,系统运行效率低;其次,通过检索得到的只是一个或很少实例,而其它不符合检索要求但含有适用知识的实例没有利用,支持创新的力度不够;最后,实例调整严重依赖领域知识,难度大,所以很多CBR系统简化为实例检索系统[2]。导致这三项缺点的深层原因是实例是独立的,不同实例所蕴含的知识难以组合利用。为了克服这个矛盾本文提出通过相似性联想找出相似实例,并利用遗传算法进行组合优化,实现实例知识的重用。本系统的实例检索功能用商品化PDM系统IMAN中的产品结构与配置管理功能及搜索功能来实现,实例的可视化表示与管理依靠IMAN的产品结构树功能实现。可视化的实例模型表达及矛盾分析概念设计技术的发展方向为研究一种统一的设计方案表达方法[3]。文献[4]对日本学者吉川弘之提出的FBS图进行扩充,使用两个框架分别描述一个设计方案的功能层次与结构层次,并存储功能单元与结构单元的对应关系,使计算机理解产品的结构及其功能。这种方法的缺点是结构与功能的关系不够直观,因此本系统在功能层次图与结构层次图的基础上增加功能关系图,以语义网络的方式描述结构及之间的作用关系,使结构与功能处于同一张图中,设计者可直观地理解产品原理,根据功能关系图并运用价值工程方法分析实例存在的矛盾。实现创新的关键是正确分析产品中所存在的矛盾[5]。产品设计中的基本矛盾是产品功能成本比不能满足用户要求,它有两种表现形式,一是未能实现某些产品功能质量目标;二是某些功能质量得到改善而某些功能质量却恶化。矛盾分析结果用于指导新作用原理、新物理结构的联想,进而找出相似实例。基于WEB的创新设计知识库本系统的创新设计知识库包括作用原理库、物理结构库与实例库。当系统根据相似性搜索到新作用原理或物理结构后,相应的实例自动调出。作用原理库与物理结构库的开发借鉴了TRIZ的成果,再针对机械领域补充整理出二百四十余种作用原理(其中包括五十余种基本措施)。在每种作用原理下分别存储多种物理结构,形成物理结构库。实例库主要针对几种常见的家电产品进行开发。创新设计知识库是创新设计系统的核心部件,它是一种WEB文本知识库,文本经过笔者开发的机械知识XML标记处理,使知识库建立在国际标准XML文本之上,因此可实现知识资源的异地共享,并且在此知识库之上可建立基于WEB的机械产品计算机辅助创新设计系统,满足异地协同设计的需要。相似性的量化方法及改进的遗传算法每种产品的结构不同,需要不定相同的遗传算法编码。本系统为了提高运行效率,采用浮点数编码方式。在传统的遗传算法中,初始群体是通过用随机的方法来产生的[6],这具有一定的盲目性。因此本文提出利用实例的作用原理或物理结构的相似性作为筛选实例产生初始群体的依据。实现该途径的关键在于相似性的量化也即相似度的计算方法。相似度实质是实例的关联知识,必须以一定的算法在实例集合中挖掘得到。纵向联想的相似度实质是功能目标与实现手段的关系程度,横向联想的相似度实质是实现手段的可替代关系程度。相似度越高意味着得到已有产品实例的更多支持。根据相似度来筛选初始群体就等于利用以前的设计经历,使初始群体的产生有合理的基础,因此能加快遗传算法的收敛。本文根据相似性联想原理提出如下纵向及横向联想的相似度计算方法。设产品实例集合为C,功能元素集合为F,作用原理或物理结构元素集合为G。分别记为:C={Ci|i=1,2,…,n}; F={Fj|j=1,2,…,m}; G={Gk|k=1,2,…,q}。实例集合中的实例Ci以不同的隶属度uij及uik分别隶属于Fj及Gk。 设元素Gk到元素Fj的纵向联想相似度为rkj,则:rkj = 又设G空间中有元素Gk和Gm。实例Cji分别以隶属度uik和uim隶属于元素Gk和Gm,设从Gk到Gm的横向联想相似度为rkm,则:rkm = 隶属度作为实例对象的一项属性来存储。系统根据以上算法从实例集合中挖掘相似度知识,辅助设计师从相似度较高的方向进行联想,并用于指导遗传算法初始群体的产生,从而促进设计创新。3 结论 本文研究创新设计思维规律并用于指导机械产品创新设计系统的开发,系统的成功应用证明了关于创新设计思维规律论断的正确性以及多种新技术的可行性。系统可通过矛盾分析与联想,搜索到适用的作用原理、措施、物理结构及实例以解决矛盾,完成概念设计阶段的功能优化与原理优化,是实现机械广义优化设计方法的新成果。也不知道你是否满意啊!

直线振动筛毕业论文

是机制砂生产过程中常用到的筛分设备,具有体积小、重量轻、便于安装维修、筛分效果好等优势特点。下列给大家介绍直线振动筛原理,具体分析如下:

直线振动筛采用双电机驱动,在运行时,两个振动电机同步反向旋转使偏心块产生激振力,其激振力在水平方向上相互抵消,并在垂直于电机轴的方向上折成合力,因此筛机的运动轨迹为直线。

两个电机轴相对于屏幕表面有一个倾斜角,在激振力和重力的共同作用下,物料被抛到筛面上,呈直线跳跃前进,从而达到筛分分级的目的。可在生产线上使用,实现自动化操作。

1、直线振动筛筛机采用全新的设计原理,是一款结构全新的高效筛面振动筛分设备。

2、直线振动筛采用叠层筛网,筛网的使用寿命长,可防止堵塞和磨损。

3、直线振动筛采用橡胶弹簧支撑筛框,在生产过程中噪音低,设备负荷小,不需要混凝土基础。

4、直线振动筛出砂率高,能耗低,耗电比传统筛分设备降低20%左右,在生产过程中无粉尘污染问题,节能又环保。

5、直线振动筛设备体积小,布局紧凑,占地面积小,生产流程简单、方便,维修和保养时也更便捷,降低了企业的生产投资费用。

上述给大家介绍了直线振动筛的工作原理和优势特点,如果以上回答对您有用,请鼓励我为我点赞,让我能帮助更多的人,谢谢!

振动筛是制砂生产线中常用的设备,其种类有很多,按照物料的运动轨迹可分为圆形振动筛和直线振动筛,这两种振动筛也是普遍使用的筛分设备,下面给大家介绍两者之间的不同之处:

物料在圆形振动筛上做圆周运动,在直线振动筛上做直线运动。

圆形振动筛又叫单轴振动筛,其激振器是一根轴,利用惯性电机工作;直线振动器又称双轴振动筛,其激振器是由两根轴组成的,利用振动电机激振工作。

圆形振动筛的物料在筛面做圆形运动,提高了物料的弹跳力,物料分散的较广,能减少堵孔现象。

直线振动筛的筛面倾斜角较小,能减小筛子的高度,便于安装布置。

圆形振动筛可根据物料颗粒的大小,改变筛面的倾角,从而改变物料的运动速度,提高振动筛的处理量;直线振动筛的筛面倾角一边都较小。

一般情况圆形振动筛使用的板材较厚,箱体采用锰钢制作,这样能抵抗物料在筛分过程中的冲击力;而直线振动筛一般使用不锈钢板材或者轻型板材为主。

圆形振动筛适用于筛分颗粒大、硬度高、比重大的物料,常用于采石场、矿山、煤炭等行业领域;直线振动筛适用于筛分颗粒细、硬度不高、比重轻的物料,或者是粉状物料,通常应用在建材、化工、食品和医药等行业领域。

圆形振动筛有利于物料迅速散开,而且排料端的椭圆长轴上端和排料方向相反,能减轻物料的运动速度,圆形振动筛的主轴可以翻转,能提高筛分效率,有利于难筛物料的筛分,再加上圆形振动筛的圆弧状筛面增大了有效面积,能提高处理能力。

直线振动筛可采用封闭式结构,防止粉尘溢散,更环保。在建筑用砂的制砂生产过程中,应用较多的是圆形振动筛。在实际生产中,需要根据根据物料的类型和应用领域、筛分的目的等来选择合适的筛分设备。

直线筛概况: DY系列直线振动筛是利用振动电机激振作为振动源,使物料在筛网上被抛起,同时向前作直线运动,物料从给料机均匀地进入筛分机的进料口,通过多层筛网产生数种规格的筛上物、筛下物、分别从各自的出口排出。具有耗能低、产量高、结构简单、易维修、全封闭结构,无粉尘溢散,自动排料,更适合于流水线作业。直线筛工作原理:振动筛工作时,两电机同步反向旋转使激振器产生反向激振力,迫使筛体带动筛网做纵向运动,使其上的物料受激振力而周期性向前抛出一个射程,从而完成物料筛分功课。可用于流水线中实现自动化功课。具有能耗低、效率高、结构简朴、易维修、全封锁结构无粉尘溢散的特点。最高筛分目数325目,可筛分出7种不同粒度的物料。直线筛的工作原理直线振动筛也是采用惯性激振器来产生振动的,直线振动筛振源有电动机带动激振器,激振器有两个轴,每个轴上有一个偏心重(图2-1),而且以相反方向旋转,故又称双轴直线振动筛,由两齿轮啮合以保证同步。当两个带偏心重的圆盘转动时,两个偏心重产生的离心力F,在x 轴的分量互相抵消,在y轴的分量相加,其结果在y轴方向产生一个往复的激振力,使筛箱在y 轴方向上产生往复的直线轨迹振动。当直线振动筛振源采用振动电机时,必须布置二台,其轴线与直线振动筛纵向轴线方向一致(不平行,具有一夹角)。二台振动电机对称布置在筛箱的上方、下部和两侧均可以。

直线振动筛与圆振动筛的基础区别是:直线振动筛筛分物料多为粉末、颗粒状物料,而圆振动筛又称矿用振动筛,多用于矿山、煤矿等行业。

筛分机设计毕业论文

筛面的宽度和长度的选择筛面的宽度和长度是筛分机很重要的一个工艺参数。一般说来,筛面的宽度决定着筛分机的处理能力,筛面的长度决定着筛分机的筛分效率,因此,正确选择筛面的宽度和长度,对提高筛分机的生产能力和筛分效率是很重要的。筛面的宽度不仅受筛分机处理能力的影响,还受筛分机结构强度的影响。宽度越大,必然加大了筛分机的规格,筛分机的结构强度上需要解决的问题越多也越难,所以筛面的宽度不能任意增加。目前我国振动筛的最大宽度为;共振筛的最大宽度为4m。筛面的长度影响被筛物料在筛面上的停留时间。筛分试验表明,筛分时间稍有增加,就有许多小于筛孔的颗粒,大量穿越筛孔面透筛,所以筛分效率增加很快。试验结果表明,筛面越长,物料在筛面上停留的时间越久,所得的筛分效率越高。但是随着筛分时间的增长,筛面上的易筛颗粒越来越少,留下的大部分是“难筛颗粒”,即物料的粒度尺寸接近筛孔尺寸的这些颗粒。这些难筛颗粒的透筛,需要较长的时间,筛分效率的增加越来越慢。所以,筛面长度只在一定范围内,对提高筛分效率起作用,不能过度加长筛面长度,不然会致使筛分机结构笨重,达不到预期的效果。一般来说,筛面长度和宽度的比值为2~3。对于粗粒级物料的筛分,筛面长度为;对于中细粒级物料的筛分,筛面长度为5~6m;对于物料的脱水和脱介筛分,筛面长度为6~7m;预先筛分的筛面可短些,最终筛分的筛面应长些。各国筛分机的宽度和长度尺寸系列,多数采用等差级数。它特点是:使用比较方便,尾数比较整齐。但是由于等差级数的相对差不均衡,随着数列的增长,相对差就会急剧下降,因此,在有的筛分机系列中,只能采用两种级数公差。这里选金属丝编制筛面,取筛孔尺寸为8mm,轻型钢丝直径d为2mm,开孔率选取为64%,长、宽比取3:1。圆振动筛处理量的计算:公式近似计算[7]: (4-1)式中: ——按给料计算的处理量(t/h);M——筛分效率修正系数,见表4—10[7];M也可按以下公式计算:M=——筛分效率;——单位面积容积处理量(/·h),见表4-11[7];——筛面计算宽度(m);=;B——实际筛面宽度(m);L——筛面工作长度(m);——物料的松散密度(t/)。经表4-10[7]和表4-11[7],取筛分效率为98%时的M为,为,为·h,Q=,根据实际要求取筛面长度为宽度的三倍,即:L=2B,=,则:所以 B=取筛面的宽为330mm,长为660mm,筛面的倾斜角为20°。如图:电动机的选取与计算如何合理的选择和计算筛分电动机的传动功率,是有重要意义的。传动功率选择得合适,就能保证筛分机的正常运转。筛分机电动机功率的计算,有数种不同的办法,下面的计算公式是其中之一[7]。P= (4-2)式中 P——电动机的计算功率(KW);——参振质量(kg);——振幅(m);n——振动次数(r/min);d——轴承次数(m);C——阻尼系数,一般取C=;f——轴承摩擦系数,对滚动轴承取f=;——传动效率,取=。根据实践经验,一般按下列范围选取振幅:圆振动筛 =这里我们任取=3mm,n=600r/min,P=5kw,d=50mm;试求=计算得出参振质量太大,势必造成制造成本增大,所以,不与采用,现将P取为,计算得出为,比较适合。查机械设计课程设计手册(表12-1)[1],选取电动机Y801-4型,功率P为,转速为1390r/min,质量m=17kg。如图:图4-2 电动机轴承的选择与计算轴承的选择根据振动筛的工作特点,应选用大游隙单列向心圆柱滚子轴承。取轴承内径d=50mm,振动筛振动时,轴及轴承将受到较大的径向承载力,而轴向力相对而言比较小,因此这里采用圆柱滚子轴承。当量动载荷P()的一般计算公式为P=X (4-3)式中,X、Y分别为径向动载荷系数和轴向动载荷系数,其值见参考文献[2]表13-5。由表所示:X=1,Y=0;所以:P=实际上,在许多支撑中还会出项一些附加载荷,如冲击力、不平衡作用力、惯性力以及轴绕曲或轴承座变形产生的附加力等等。为了计及这些影响,可对当量动载荷乘上一个根据经验而定的载荷系数,其值参见参考文献[2]表13-6。故实际计算时,轴承的当量动载荷应为:P=取=,故: P==滚动轴承寿命计算:轴承基本额定寿命 (4-4)n代表轴承的转速(单位为r/min),为指数,对于球轴承,=3,对于滚子轴承,=。查机械课程设计手册得C=。==计算得出来的寿命符合设计要求,故轴承内径d取50mm,查机械课程设计手册可得:D=90mm,B=20mm。如图:图4-3 轴承轴承的寿命计算轴承的寿命公式为:=() (6-4)式中: 的单位为10r——为指数。对于球轴承,=3;对于滚子轴承,=10/3。计算时,用小时数表示寿命比较方便。这时可将公式()改写。则以小时数表示的轴承寿命为: =() (6-5)式中:——基本额定动载荷=——轴承转数——当量动负荷选取额定寿命为6000h。将已知数据代入公式()得:==15249h>6000h 满足使用要求。因此设计中选用轴承的使用寿命为15249小时。带轮的设计与计算已知大带轮的转速为600r/min,电动机功率为P=,转速为1390r/min。小带轮==1390r/min,所以传动比i=这里取传动比i为,每天工作8小时。 确定计算功率由表8-7查得工作情况系数=,故=P= 选择V带的带型根据、由图8-10选用A型。 确定带轮的基准直径并验算带速v1、初选小带轮的基准直径。由参考文献[2]表8-6和表8-8,取小带轮的基准直径=80mm。2、验算带轮v。按公式计算带轮速度:因为5m/s<v<30m/s,故带速合适。3、计算大带轮的基准直径。根据已知,计算大带轮的基准直径=i=根据参考文献[2]表8-8,圆整为=180mm。确定V带的中心距和基准长度1、初定=300mm,由表8-2选带的基准长度=1000mm。2、计算实际中心距。3、验算小带轮上的包角4、计算带的根数z计算单根V带的额定功率。由和=1390r/min,查表8-4a得=。根据=1390r/min,i=和A型带,查表8-4b的=。查表8-5得=,表8-2得=,于是计算V带的根数z。所以取一根带。计算单根V带的初拉力的最小值由参考文献[2]表8-3得A型带的单位长度质量q=,所以应用带的实际初拉力>。计算压轴力压轴力的最小值为=192N如图:图4-4 大带轮 弹簧的设计与计算选取弹簧端部结构为端部并紧,磨平,支承圈为1圈;弹簧的材料为C级碳素弹簧钢65Mn,弹簧的振动次数n=600r/min。取弹簧丝直径=4mm,旋绕比C=,则得曲度系数查表得,F=符合要求,取d=4mm,D=Cd=18mm,。如图:图4-5 弹簧弹簧验算1)弹簧疲劳强度验算由文献[6],图16-9,选取所以有:由弹簧材料内部产生的最大最小循环切应力:可得: =由文献[6],式(16-13)可知:疲劳强度安全系数计算值及强度条件可按下式计算:式中:——弹簧材料的脉动循环剪切疲劳极限——弹簧疲劳强度的设计安全系数,取=按上式可得: ==所以此弹簧满足疲劳强度的要求。2)弹簧静应力强度验算静应力强度安全系数计算值及强度条件为:式中——弹簧材料的剪切屈服极限,——静应力强度的设计安全系数,=所以得: =所以弹簧满足静应力强度。所以此弹簧满足要求。 轴的设计与计算 求输出轴上的功率、转速和转矩;于是 初步确定轴的最小直径初步估计轴的最小直径。选取轴的材料为45钢,调质处理。根据参考文献[2]表15-3,取,于是得:由前面的轴承和皮带轮确定轴最小直径,这里取输出的最小直径,也就是安装大带轮处的直径。 轴的结构设计1)带轮宽度,所以取L=48mm,取轴套长度为16mm,因此。初步选择轴承盖。轴肩高度h一般取为()d,这里轴承盖的直径,所以:,,取=8mm,这里为M8螺钉。,,,,,, 取m=26mm。所以。取主偏心块,因此。3)轴承长度选取。由前面轴承计算所知,轴承长度为20mm,所以。,是箱体的长度,是箱体壁厚。所以;至此,已初步确定了轴的各段直径和长度。如图:图4-6 轴尺寸图 轴上零件的周向定位带轮、主偏心块与轴的周向定位采用平键连接。按由参考文献[1]查得平键截面,键槽用键槽铣刀加工,长为32mm,同时为了保证带轮与轴配合有良好的对中性,故选择带轮与轴的配合为H7/g6;同样,主偏心块与轴的连接,选用平键为,长为22mm,与轴的配合为H7/g6。滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的直径尺寸公差为m6。确定轴上圆角和倒角尺寸参考参考文献[2]表15-2,取轴倒角为。 求轴上的载荷图4-6,受力分析及弯矩图:图4-7支反力:弯矩M:扭矩T: 按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面的强度。根据表中的数据,以及轴单向旋转,扭转切应力为脉动循环变应力,取,轴的计算应力:前已选定轴的材料为45钢,调质处理,由表15-1查得。因此<,故安全。 精确校核轴的疲劳强度1)判断危险截面无键连接的轴部因只受扭矩作用,所引起的应力集中均将削弱轴的疲劳强度,所以无需校核。从应力集中对轴的疲劳强度的影响来看,与主偏心块连接的轴部应力集中最为严重。2)截面校核抗弯截面系数抗扭截面系数截面弯矩M为截面扭矩为截面上的弯曲应力截面上的扭转切应力轴的材料为45钢,调质处理。有表15-1查得,,。截面上由于轴肩而形成的理论应力集中系数及按参考文献[2]附表3-2查取。因,,经插值后可查得,又由附图3-1可得轴的材料敏性系数为,故有效应力集中系数按式(附表3-4)为由附图3-2的尺寸系数;由附图3-3的扭转尺寸系数。轴按磨削加工,由参考文献[2]附图3-4得表面质量系数为轴未经表面强化处理,即,则按公式得综合系数为又由及得碳钢的特性系数,取,取于是,计算安全系数值,按公式计算得远大于S=故可知其安全。至此,轴的设计计算即告结束。如图4-8:图4-8 轴

筛面的宽度和长度的选择筛面的宽度和长度是筛分机很重要的一个工艺参数。一般说来,筛面的宽度决定着筛分机的处理能力,筛面的长度决定着筛分机的筛分效率,因此,正确选择筛面的宽度和长度,对提高筛分机的生产能力和筛分效率是很重要的。筛面的宽度不仅受筛分机处理能力的影响,还受筛分机结构强度的影响。宽度越大,必然加大了筛分机的规格,筛分机的结构强度上需要解决的问题越多也越难,所以筛面的宽度不能任意增加。目前我国振动筛的最大宽度为;共振筛的最大宽度为4m。筛面的长度影响被筛物料在筛面上的停留时间。筛分试验表明,筛分时间稍有增加,就有许多小于筛孔的颗粒,大量穿越筛孔面透筛,所以筛分效率增加很快。试验结果表明,筛面越长,物料在筛面上停留的时间越久,所得的筛分效率越高。但是随着筛分时间的增长,筛面上的易筛颗粒越来越少,留下的大部分是“难筛颗粒”,即物料的粒度尺寸接近筛孔尺寸的这些颗粒。这些难筛颗粒的透筛,需要较长的时间,筛分效率的增加越来越慢。所以,筛面长度只在一定范围内,对提高筛分效率起作用,不能过度加长筛面长度,不然会致使筛分机结构笨重,达不到预期的效果。一般来说,筛面长度和宽度的比值为2~3。对于粗粒级物料的筛分,筛面长度为;对于中细粒级物料的筛分,筛面长度为5~6m;对于物料的脱水和脱介筛分,筛面长度为6~7m;预先筛分的筛面可短些,最终筛分的筛面应长些。各国筛分机的宽度和长度尺寸系列,多数采用等差级数。它特点是:使用比较方便,尾数比较整齐。但是由于等差级数的相对差不均衡,随着数列的增长,相对差就会急剧下降,因此,在有的筛分机系列中,只能采用两种级数公差。

帕夫努季·利沃维奇·切比雪夫出身于贵族家庭。他的祖辈中有许多人立过战功。父亲列夫·帕夫洛维奇·切比雪夫(ЛевПaвлович Чебышев)参加过抵抗拿破仑(Napoleon)入侵的卫国战争,母亲阿格拉费娜·伊万诺夫娜·切比雪娃(AгpaфеHaИвaновa Чебышевa)也出身名门,他们共生育了五男四女,切比雪夫排行第二。他的一个弟弟弗拉季米尔·利沃维奇·切比雪夫(Влaдимир Лbвович Чебb Iшев)后来成了炮兵将军和彼得堡炮兵科学院的教授,在机械制造与微震动理论方面颇有建树。切比雪夫的左脚生来有残疾,因而童年时代的他经常独坐家中,养成了在孤寂中思索的习惯。他有一个富有同情心的表姐,当其余的孩子们在庄园里嬉戏时,表姐就教他唱歌、读法文和做算术。一直到临终,切比雪夫都把这位表姐的像片珍藏在身边。1832年,切比雪夫全家迁往莫斯科。为了孩子们的教育,父母请了一位相当出色的家庭教师П. H. 波戈列日斯基(Погорелский),他是当时莫斯科最有名的私人教师和几本流行的初等数学教科书的作者。切比雪夫从家庭教师那里学到了很多东西,并对数学产生了强烈的兴趣。他对欧几里得(Euclid)《几何原本》(Elements)当中关于没有最大素数的证明留下了极深刻的印象。 1837年,年方16岁的切比雪夫进入莫斯科大学,成为哲学系下属的物理数学专业的学生。在大学阶段,摩拉维亚出生的数学家H. Д. 布拉什曼 (Брaшмaн) 对他有较大的影响。1865年9月30日切比雪夫曾在莫斯科数学会上宣读了一封信,信中把自己应用连分数理论于级数展开式的工作归因于布拉什曼的启发。在大学的最后一个学年,切比雪夫递交了一篇题为“方程根的计算” (Вычисление корней урaвнений, 1841) 的论文,在其中提出了一种建立在反函数的级数展开式基础之上的方程近似解法,因此获得该年度系里颁发的银质奖章。大学毕业之后,切比雪夫一面在莫斯科大学当助教,一面攻读硕士学位。大约在此同时,他们家在卡卢加省的庄园因为灾荒而破产了。切比雪夫不仅失去了父母方面的经济支持,而且还要负担两个未成年的弟弟的部分教育费用。1843年,切比雪夫通过了硕士课程的考试,并在J. 刘维尔 (Liouville) 的《纯粹与应用数学杂志》(Journal des mathématiques pures et appliquées)上发表了一篇关于多重积分的文章。1844年,他又在L. 格列尔 (Grelle) 的同名杂志 (Journal für die reine und angewandte Mathematik) 上发表了一篇讨论泰勒级数收敛性的文章。1845年,他完成了硕士论文“试论概率论的基础分析” (Опыт елементaрногоaнaлизa теории вероятностей, 1845) ,于次年夏天通过了答辩。 1846年,切比雪夫接受了彼得堡大学的助教职务,从此开始了在这所大学教书与研究的生涯。他的数学才干很快就得到在这里工作的B. Я. 布尼亚科夫斯基 (Буняковский) 和M. B. 奥斯特罗格拉茨基 (Острогрaдский) 这两位数学前辈的赏识。1847年春天,在题为“关于用对数积分” (Об интегрировaнии с номошьюлогaрифмов, 1847) 的晋职报告中,切比雪夫彻底解决了奥斯特罗格拉茨基不久前才提出的一类代数无理函数的积分问题,他因此被提升为高等代数与数论讲师。他在文章中提出的一个关于二项微分式积分的方法,今天可以在任何一本微积分教程之中找到。1849年5月27日,他的博士论文“论同余式”(Теория срaвнений, 1849)在彼得堡大学通过了答辩,数天之后,他被告知荣获彼得堡科学院的最高数学荣誉奖。切比雪夫于1850年升为副教授,1860年升为教授。1872年,在他到彼得堡大学任教25周年之际,学校授予他功勋教授的称号。1882年,切比雪夫在彼得堡大学执教35年之后光荣退休。35年间,切比雪夫教过数论、高等代数、积分运算、椭圆函数、有限差分、概率论、分析力学、傅里叶级数、函数逼近论、工程机械学等十余门课程。他的讲课深受学生们欢迎。A. M. 李雅普诺夫 (Ляпунов) 评论道:“他的课程是精练的,他不注重知识的数量,而是热衷于向学生阐明一些最重要的观念。他的讲解是生动的、富有吸引力的,总是充满了对问题和科学方法之重要意义的奇妙评论。”1853年,切比雪夫被选为彼得堡科学院候补院士,同时兼任应用数学部主席。1856年成为副院士。1859年成为院士。切比雪夫曾先后六次出国考察或进行学术交流。他与法国数学界联系甚为密切,曾三次赴巴黎出席法国科学院的年会。他于1860年、1871年与1873年分别当选为法兰西科学院、柏林皇家科学院的通讯院士与意大利波隆那科学院的院士,1877年、1880年、1893年分别成为伦敦皇家学会、意大利皇家科学院与瑞典皇家科学院的外籍成员。同时他也是全俄罗斯所有大学的荣誉成员、全俄中等教育改革委员会的成员和彼得堡炮兵科学院的荣誉院士。他还是彼得堡和莫斯科两地数学会的热心支持者。他发起召开的全俄自然科学家和医生代表大会对于科学界之间的相互了解与科学在民众中的影响起到了很大的作用。 切比雪夫是彼得堡数学学派的奠基人和领袖。19世纪以前,俄国的数学是相当落后的。在彼得大帝去世那年建立起来的科学院中,早期数学方面的院士都是外国人,其中著名的有L.欧拉(Euler)、尼古拉·伯努利(Bernoulli,NikolausⅢ)、丹尼尔·伯努利(Bernoulli,Daniel)和C.哥德巴赫(Goldbach)等。俄罗斯没有自己的数学家,没有大学,甚至没有一部象样的初等数学教科书。19世纪上半叶,俄国才开始出现了像H.И.罗巴切夫斯基(Лобaчевский)、布尼亚科夫斯基和奥斯特罗格拉茨基这样优秀的数学家;但是除了罗巴切夫斯基之外,他们中的大多数人都是在外国(特别是法国)接受训练的,而且他们的成果在当时还不足以引起西欧同行们的充分重视。切比雪夫就是在这种历史背景下从事他的数学创造的。他不仅是土生土长的学者,而且以他自己的卓越才能和独特的魅力吸引了一批年轻的俄国数学家,形成了一个具有鲜明风格的数学学派,从而使俄罗斯数学摆脱了落后境地而开始走向世界前列。切比雪夫是彼得堡数学学派的奠基人和当之无愧的领袖。他在概率论、解析数论和函数逼近论领域的开创性工作从根本上改变了法国、德国等传统数学大国的数学家们对俄国数学的看法。切比雪夫是在概率论门庭冷落的年代从事这门学问的。他一开始就抓住了古典概率论中具有基本意义的问题,即那些“几乎一定要发生的事件”的规律——大数定律。历史上的第一个大数定律是由雅格布·伯努利(Bernoulli, Jacob I)提出来的,后来 S-D.B.泊松(Poisson)又提出了一个条件更宽的陈述,除此之外在这方面没有什么进展。相反,由于有些数学家过分强调概率论在伦理科学中的作用甚至企图以此来阐明“隐蔽着的神的秩序”,又加上理论工具的不充分和古典概率定义自身的缺陷,当时欧洲一些正统的数学家往往把它排除在精密科学之外。1845年,切比雪夫在其硕士论文中借助十分初等的工具——ln(1+x)的麦克劳林展开式,对雅格布·伯努利大数定律作了精细的分析和严格的证明。一年之后,他又在格列尔的杂志上发表了“概率论中基本定理的初步证明”(Démonstration èlèmentaired’une proposition génerale de la théorie des probabilités, 1846)一文,文中继而给出了泊松形式的大数定律的证明。1866年,切比雪夫发表了“论平均数”(Oсредних величинaх,1866),进一步讨论了作为大数定律极限值的平均数问题。1887年,他发表了更为重要的“关于概率的两个定理”(Oдвух теоремaх относительно вероятностей,1887),开始对随机变量和收敛到正态分布的条件,即中心极限定理进行讨论。切比雪夫引出的一系列概念和研究题材为俄国以及后来苏联的数学家继承和发展。A.A.马尔科夫(Мaрков)对“矩方法”作了补充,圆满地解决了随机变量的和按正态收敛的条件问题。李雅普诺夫则发展了特征函数方法,从而引起中心极限定理研究向现代化方向上的转变。以20世纪30年代A.H.柯尔莫哥洛夫(Колмогоров)建立概率论的公理体系为标志,苏联在这一领域取得了无可争辩的领先地位。近代极限理论——无穷可分分布律的研究也经C.H.伯恩斯坦(Бернштейн)、A.Я.辛钦(Хинчин)等人之手而臻于完善,成为切比雪夫所开拓的古典极限理论在20世纪抽枝发芽的繁茂大树。关于切比雪夫在概率论中所引进的方法论变革的伟大意义,苏联著名数学家柯尔莫哥洛夫在“俄罗斯概率科学的发展”(Роль сусской нaуки в сaзвии теории вероятносгей,ИБИД,стр,53—64)一文中写道:“从方法论的观点来看,切比雪夫所带来的根本变革的主要意义不在于他是第一个在极限理论中坚持绝对精确的数学家(A.棣莫弗(de Moivre)、P-S.拉普拉斯(Laplace)和泊松的证明与形式逻辑的背景是不协调的,他们不同于雅格布·伯努利,后者用详尽的算术精确性证明了他的极限定理),切比雪夫的工作的主要意义在于他总是渴望从极限规律中精确地估计任何次试验中的可能偏差并以有效的不等式表达出来。此外,切比雪夫是清楚地预见到诸如‘随机变量’及其‘期望(平均)值’等概念的价值,并将它们加以应用的第一个人。这些概念在他之前就有了,它们可以从‘事件’和‘概率’这样的基本概念导出,但是随机变量及其期望值是能够带来更合适与更灵活的算法的课题。”切比雪夫对解析数论的研究集中在他初到彼得堡大学任教的头四年内,当时他正担任着高等代数与数论的讲师,同时兼任欧拉选集数论部分的编辑;后一任命是布尼亚科夫斯基向彼得堡科学院推荐的。1849年,欧拉选集的数论部分(L. Euleri commenta-tiones arithmeticae collectae, 1849)在彼得堡正式出版了。切比雪夫为此付出了巨大的心血,同时他也从欧拉的著作中体会到了深邃的思想和灵活的技巧结合在一起的魅力,特别是欧拉所引入的ξ函数及用它对素数无穷这一古老命题所作的奇妙证明,吸引他进一步探索素数分布的规律。理论联系实际是切比雪夫科学工作的一个鲜明特点。他自幼就对机械有浓厚的兴趣,在大学时曾选修过机械工程课。就在第一次出访西欧之前,他还担任着彼得堡大学应用知识系(准工程系)的讲师。这次出访归来不久,他就被选为科学院应用数学部主席,这个位置直到他去世后才由李雅普诺夫接任。应用函数逼近论的理论与算法于机器设计,切比雪夫得到了许多有用的结果,它们包括直动机的理论、连续运动变为脉冲运动的理论、最简平行四边形法则、绞链杠杆体系成为机械的条件、三绞链四环节连杆的运动定理、离心控制器原理等等。他还亲自设计与制造机器。据统计,他一生共设计了40余种机器和80余种这些机器的变种,其中有可以模仿动物行走的步行机,有可以自动变换船桨入水和出水角度的划船机,有可以度量大圆弧曲率并实际绘出大圆弧的曲线规,还有压力机、筛分机、选种机、自动椅和不同类型的手摇计算机。他的许多新发明曾在1878年的巴黎博览会和1893年的芝加哥博览会上展出,一些展品至今仍被保存在苏联科学院数学研究所、莫斯科历史博物馆和巴黎艺术学院里。1856年,切比雪夫被任命为炮兵委员会的成员,积极地参与了革新炮兵装备和技术的工作。他于1867年提出的一个计算圆形炮弹射程的公式很快被弹道专家所采用,他关于插值理论的研究也部分地来源于分析弹着点数据的需要。他在彼得堡大学教授联席会上作的“论地图制法”(Черченйе геогрaфических кaрт,1856)的报告精辟地分析了数学理论与实践结合的意义,这份报告也详尽讨论了如何减少投影误差的问题。在法国科学院第七次年会上,切比雪夫提出了一篇名为“论服装裁剪”(Sur la coupe des vte-ments,1878)的论文,其中提出的“切比雪夫网”成了曲面论中的一个重要概念。切比雪夫终身未娶,日常生活十分简朴,他的一点积蓄全部用来买书和制造机器。每逢假日,他也乐于同侄儿女们在一起轻松一下,但是他最大的乐趣是与年轻人讨论数学问题。1894年11月底,他的腿疾突然加重,随后思维也出现了障碍,但是病榻中的他仍然坚持要求研究生前来讨论问题,这个学生就是后来成为俄国在代数领域中的开拓者的Д.A.格拉韦(Грaве)。1894年12月8日上午9时,这位令人尊敬的学者在自己的书桌前溘然长逝。他既无子女,又无金钱,但是他却给人类留下了一笔不可估价的遗产——一个光荣的学派。彼得堡数学学派是伴随着切比雪夫几十年的舌耕笔耘成长起来的。它深深地扎根在大学这块沃土里,它的成员们大都重视基础理论和实际应用,善于以经典问题为突破口,并擅长运用初等工具建立高深的结果。19世纪下半叶,俄国数学主要是在切比雪夫的领导下,首先在概率论、解析数论和函数逼近论这三个领域实现了突破。科尔金、佐洛塔廖夫、Ю.B.索霍茨基(Сохоцкий)、K.A.波谢(Поссе)、马尔科夫、李雅普诺夫、格拉韦、Г.Ф.伏罗诺伊(Вороной)、C.И.沙图诺夫斯基(Шaтуновский)A.H.克雷洛夫(Крылов)、H.E.茹科夫斯基(Жуковский)、B.A.斯捷克洛夫(Стеклов)等人又在复变函数、微分方程、代数、群论、数的几何学、函数构造、数学物理等领域大显身手,使俄国数学在19世纪末大体跟上了世界先进的潮流,某些领域的优势则一直保留到今日。时至今日,俄罗斯已经是一个数学发达的国家,俄罗斯数学界的领袖们仍以自己被称为切比雪夫和彼得堡学派的传人而自豪。

气流筛主机摈弃了传统的重力势能作业原理,开辟了载流体动能做功的筛理新途径,它是在密闭状态下利用高速气流作载体,使充分扩散的粉料微粒以足够大的动能向筛网喷射,达到快速分级之目的。微细粉物料经进料斗进入进料口,立即扩散并与空气混合成雾状,经旋转风轮的作用,使物料呈旋风状喷射过网,通过筛网的细粉经振动输送进入或直接落入负压循环风道,在引风机的作用下,气体与细粉全部进入沉降室,成品细粉沉降后由下部的排料绞龙排出,带有少量粉尘的气体大部分进入除尘布袋,经净化后排出袋外,还有一小部分,由回风管进入筛体下的环行循环风道,再经引风机进入沉降室进行二次分离。不能通过筛网的物料,落入筛盘内由排渣口排出机外。对于含有大颗粒的物料,应先用装有40--60目筛网的振动筛或旋振筛进行过筛处理,将大颗粒的物料或异物筛出,以免主机内的筛网被刺穿或打坏。

  • 索引序列
  • 毕业论文振动筛的设计
  • 沥青搅拌振动筛设计本科毕业论文
  • 振动筛砂机毕业论文
  • 直线振动筛毕业论文
  • 筛分机设计毕业论文
  • 返回顶部