教师先进个人主要事迹材料
在学习、工作、生活中,许多人都有过写事迹材料的经历,对事迹材料都不陌生吧,事迹材料以先进对象的先进事迹为主要内容,以叙事为主要表达方式。事迹材料到底怎么拟定才正确呢?以下是我精心整理的教师先进个人主要事迹材料,欢迎阅读与收藏。
王春凤老师2004年参加工作,硕士研究生,副教授,现任黑龙江外国语学院应用英语系教学副主任。多年来一直从事一线教学及管理工作,曾获得省优秀师德师风奖,全国大学生英语竞赛特等奖指导老师,《新视野大学英语》课件征集大赛一等奖,黑龙江省高等教育学会第二十二次优秀高等教育成果一等奖,黑龙江省外语学科优秀科研成果二等奖,院级青年教学能手奖,院级教学成果一等奖,院级优秀教师,教学优质奖等荣誉称号二十余次。2018年她荣获第三届全国高等院校英语教师基本功大赛国家级一等奖,第三届全国高等院校英语教师基本功大赛省级一等奖,全国高等院校英语教学学术论文一等奖,第三届全国高等院校英语教师基本功大赛最佳课件使用奖。工作期间,曾发表科研论文二十余篇,出版教材五部,科研立项十余项。王春凤老师治学严谨、教风端正,具有强烈的事业心和责任感,甘于奉献,在工作中贯彻落实爱国奋斗精神,用党的教育思想武装头脑。三尺讲台,一颗爱心。放飞希望,乐此不疲。这就是王春凤主任从师15年的真实写照。
一、学高为师,身正为范
教书育人是教师的天职,但如果教师没有扎实的教学基本功,空有一腔热情是没办法完成教书育人这一使命的。多年来,王春凤老师把提高教学水平当成是终身的一个目标去追求,同时她坚信精深广博的专业知识是高质量教学的关键,她始终把提高个人专业知识,提升个人专业素养作为教育教学工作的行动指南。从走进课堂的那一天起,她就不断探索增强教学针对性、实效性的新方法、新路子。她不断更新自己的教育理念,努力尝试新的教学方法和手段,汲取优秀教师的先进经验,在教学中始终保持前瞻的教学理念和教学方法。王春凤老师总是以自己正直、好学、积极、乐观的态度来影响学生,感染学生,将传授知识与塑造学生健全人格相结合。作为一线教师,她对学生要求严格,自己更是以身作则。工作15年来,她上课从未迟到一次,也从未提前下课1分钟,以身作则的精神深深地影响到了班级的每个学生。她坚持育人为本,因材施教,关爱每一名学生,公平公正对待学生,受到师生的广泛赞誉。
二、热爱学生,严谨治学
“我爱我所教过的每一个学生”。作为一名知识分子,王春凤用自己的所学所思,践行新时代知识分子的爱国奋斗精神。王春凤老师善于寻找学生身上蕴藏的闪光点,以找到教育的着力点。在平常与学生接触的过程中用爱心感化他们,把热爱与严格要求结合起来,做到严出于爱、严寓于爱,严而有格、严而有理、严而有情、严而有方、严而有恒。她不仅教书,重在育人。工作15年来,她坚持每学期辅导成绩落后学生,了解学生落后的原因,找出合理的解决办法,在学习方法方面找出突破口,使学生能够顺利毕业,找到工作。
她不仅注重教书,还致力于科学研究,从2006年至今,她共计申报参与省级、校级科研项目11项,发表文章20余篇。除此外,她坚持给学生最需要的知识,不仅指导学生不断学习,自己也从未停止学习,2013年她到香港理工大学参加民办院校教师培训项目,给学校和学生带来新的理念和方法,应用到了教学中;2014年5月至6月,她又到台湾的亚洲大学学习,期间访问了静宜大学,台北基督学院,景文科技大学等学校访问学习,将其所学应用到实际教学中去,取长补短,因材施教;同年8月,她又到加拿大菲沙河谷大学学习西方的教学理念和方法,在学生服务方面有了新的认识;2015年,她到华东师范大学访学一年,在教学和科研两方面都有显著提高;2016年1月,她又到美国西雅图各大学访问,学习,为系里和专业的建设提出了新的观点和法。
三、善于奋斗,注重实践
作为新时代的知识分子,王春凤老师注重实践,在实践中以新的担当和作为,让奋斗成为主旋律。王春凤老师具有较高的英语水平,英语听、说、读、写、译等能力都很强,其中英语口语、听力能力十分突出,专业基础扎实,能熟练使用英语开展教育教学工作。她从大学开始就与来自不同国家的外教一起工作,比较了解不同国家的文化和习俗,有着很强的对外交际能力。她连续两年被省外事办聘为27届和28届哈尔滨国际冰雪节(Harbin International Ice and Snow Sculpture Festival)评选翻译,为 Juhani Lillberg 主席做现场比赛翻译。
面对新时代新任务新要求,她坚守正道、追求真理、甘于奉献。十五年的磨砺与成长,使她在挥洒间得到了许多。她始终坚信,成功只属于过去,所有的荣誉只是对过去的一种肯定,而她必将以百倍的信心和热情走下去。这就是我们的王春凤老师,都说育人者无私,她用自己满腔的热情和不懈的耕耘,诠释了孜孜不倦、创新实践的教师品质,谱写了爱岗敬业、甘于奉献的感人篇章。演绎了教师们为了学生的明天,真诚奉献的博大情怀,向我们展示了一个教师经历风霜后发出的最耀眼的荣光。都说真情育人香满园,硕果满枝的王老师且看桃花闹春风吧!
马先果,中共党员,博士,教授,硕士研究生导师。现为化学工程学院教师。
马先果老师2014年6月毕业于中国科学院大学,同年任职贵州理工学院化学工程学院,主要从事新能源材料与储能器件方面的研究工作。“为师者,善良为心,奉献为本,传承为志”,这是马先果老师用来作为自己行动指南的一句话。
教育是灯塔,照亮前行的路。在教学工作中,注重立德树人,始终把德育工作放在工作首位,“新冠肺炎”疫情期间授课,注重学生心理健康,积极主动与学生交流,答疑解惑。马先果老师注重课程思政建设,将思政元素融入到专业教学全过程,积极打造课程思政示范课程。她为大一新生开设《新能源科学与工程导论》,引导学生爱国、爱校、爱专业,帮助学生树立正确的世界观、人生观和价值观;每年都以极大的热情为本专业和其他专业学生义务进行考研动员,指导学校和专业的选择及填报工作,辅导专业课知识,学生受益匪浅。
马先果老师在教学当中注重引领学生了解知识体系的构建,培养学生的独立思考和创新能力,与学生交流自己的学习心得。先后主讲《储能原理与技术》、《化学电源技术》、《新能源科学与工程导论》、《新能源专题实验》等理论课与实践类课程,以学生为中心,注重教学改革,采用“雨课堂”和“学堂在线”等先进的教学方式,将科研成果引入课堂和实践教学中,注重教学内容与科学发展前沿、专业需求紧密联系,自编大量的思考题和练习题教学效果优异,得到了师生们的一致好评。
作为新能源科学与工程教研室主任,马先果老师在工作中起到了模范带头作用,积极主动完成教学院长和教务科安排的各项任务,协调教研室老师的各项工作。同时她积极参与学科建设、专业建设和专业实验室建设,作为执笔人制定2020级新能源科学与工程专业人才培养方案,修订2018和2019级该专业人才培养方案,建立了完整的新能源科学与工程专业人才培养体系。
科研是火,点燃未来之光。马老师主要从事清洁能源材料的研究工作,致力于研发出清洁无污染的能源材料,先后主持校级以上教学和科研项目6项,包括国家自然科学基金2项、贵州省科学技术基金1项、教育部协同育人项目1项等。迄今以第一作者或通讯作者共发表SCI/EI论文10余篇,其中SCI1区论文4篇,2区论文3篇,获批中国发明专利6项。马老师在教学工作中注重把科学研究工作作为教学案例融入到日常的教学工作中,她注重科学创新,持续挖掘、培养人才,积极调动学生的创新意识,及时与学生分享教学科研当中的心得和前沿的热点,尽一切可能为学生提供科技创新项目和实验条件,经常与他们一起进行实验,发现问题,解决问题,培养学生的科研能力和实践能力,先后指导30余名学生参加创新创业项目,指导的学生获批国家级创新创业项目3项,指导学生完成贵州理工学院师生共创脱贫攻坚项目1项。
师者,传道授业解惑也!马先果老师没有惊天动地的事业,只是用三尺讲台书写人生梦想。她将始终牢记初心,专心教学和科研工作,勇往直前,以教师和科技工作者的身份奉献自己的青春!
王新颖,中共党员,讲师,现为我校教学质量评估监控中心教职工。
工作以来,不管是从事管理工作,还是在一线教学岗位教学,她都以一种积极乐观的心态,一种负责任的态度,一种踏实肯干的工作作风不断地努力工作,受到部门领导与同事的认可和学生的欢迎。
思想上,她注重学习党的各项时事方针、政策,关心国家大事,并运用学到的政治理论指导日常工作实践。她带头践行社会主义核心价值观,弘扬真善美,传递正能量,认真执行党的教育路线方针,严格按照党的教育政策 ,教书育人、为人师表,全心全意做好工作。无论在任何岗位,她都以高度的责任感和事业心将全部的热情投入到工作中去。
她乐于教学,积极做好学生的'引路人。在教学工作中,她严谨细致,注重方法,充分尊重学生个性,因材施教。为了上好每一堂课,她都充分做好的课前准备,注重教学方法的改进,注重发挥学生在课堂上的主体作用,加强与学生的课内互动,针对不同的内容采用案例教学、项目教学、分组教学等让学生由被动变为主动,充分调动学生学习的主动性。
她关心学生,注重言传身教。作为班主任,她关心每一个学生的身心健康与学业。有一次一名学生的头部被树给砸到了,她立即放下手头的工作赶到现场,带学生前往医院检查,一直陪着他,直到医生确诊没有问题。学业上,每学期她都认真分析学生的成绩,并鼓励他们努力学习。除此之外,她更关注学生的思想动态,狠抓思想教育工作,经常与学生进行谈话,注重言传身教,用爱心去塑造,用真情去感化,用榜样去激励,用人格去熏陶。
她爱岗敬业,积极提升服务能力。教学管理中,她对工作一丝不苟、精益求精,认真钻研本职业务,力求在工作中干好本职工作,尽职尽责地完成上级领导布置的每一项任务。在日常工作中,她时刻把工作放在首位,服务教师,服务学生,以最饱满的热情投入到工作中,切实做好教学质量监控、评估的各项工作。
在学校的学位评估期间,评估中心人手少,工作又繁重,即使人手再少,工作的质量必须要保证。预评估一年,“五加二”、“白加黑”俨然变成她工作的常态;办公室无数次深夜通明的灯光,她拖着疲惫的身体顶着困意为迎评工作通宵加班的身影还历历在目。她的工作得到了学校各级领导的一致好评,2015年、2017年年终考核获优秀个人,2019年获合格评估先进个人。
面对未来,王新颖老师表示,她将继续默默耕耘,用无私的爱感染、教育每一位学生,用甘为孺子牛的精神,为教育事业奋斗终身。她相信,只要心中有爱,有高尚的师德,不断的地学习进取,去追求更高更远的目标,就能做到最好!
环境工程领域的脉冲功率技术应用论文
脉冲功率技术在我国高新技术发展中有着重要的应用,同时其应用范围也在不断地扩展,在民用部门、手工业、环境保护等领域都有着广泛的应用,并随着科学技术的发展对其的应用技术也在不断成熟。随着生活水平和经济水平的上升,环境问题逐渐成为了众多人关注的焦点,对环境工程领域中的技术应用也提出了更高的要求。
一、脉冲功率技术简述
1.脉冲功率技术在我国的发展
在国际上对脉冲功率技术的研究是开始于二十世纪三十年代的,到六十年代,该技术就成为了一个独立的发展学科,之后美国、日本、俄罗斯等国家都对该技术开始了深入研究。在我国,对脉冲功率的研究是开始于二十世纪七十年代末的,我国对它的研究是开始于“高功率电子束发器的研究”,“1979年北京高能物理所建成了当时我国最大的强流脉冲电子束加速器闪光—I,应用于射线模拟源”,随之而来的是对脉冲功率技术研究的高潮,层出不穷的强流脉冲电子加速器逐渐建成,进而为我国当时高新技术的研究,如准分子激光、集体离子加速、闪光射线照相、电磁轨道炮以及高功率微波等提供了很好的研究条件。
脉冲功率技术发展
(1)脉冲功率装置
通常来讲,脉冲功率的装置包括以下几个部分,如图所示:
图一:脉冲功率装置图示
(2)高功率脉冲发展方向
当前,高功率脉冲的主要发展方向有以下几方面,第一,元件储能密度还需要提高。随着电容制造技术的提高以及分子工程技术的广泛应用,为储能元件储能密度的提高提供了发展条件,同时脉冲电容器储能空间也能够得到一定提升,这就有利于缓解大体积、大重量给脉冲功率系统带来的不良影响。根据不同器件电气强度极限值不同,其要求的储能密度也是不同的。但是,无论密度要求如何,电容的储能密度要远远低于电感储能密度,所以,不仅在我国,在国际上对这种电感储能高功率脉冲电源的研究也非常重视。第二、发展重复高功率脉冲。原来我国应用多是单次的脉冲功率技术,这种技术主要是为我国国防科学研究提供服务,应用范围与社会发展的要求产生了不可避免的矛盾,所以,为了适应民用、工业以及新兴领域对脉冲功率的要求,必须要发展重复频率高且具有平均功率的脉冲功率技术。第三、高频、大功率开关技术的研究。开关元件的相关参数对脉冲功率系统的整体都存在着一定的影响,这也决定了开关元件技术是脉冲功率技术中重点技术之一。随着社会科技的发展以及应用要求的提高,同时,大功率全控型的产品器件被大量生产并且产品化,为开关技术的发展研究提供了可靠的器件基础,为此“高重复率脉冲电源转换开关和开关的串联均压技术被大量使用在脉冲电源中,并取得了较为理想的结果”。第四,脉冲电源多元化发展。脉冲功率应用范围的扩展给脉冲电源的技术标准提出了更高的要求,所以在未来的研究中要加大对脉冲电源多元化的发展,比如低成本化、小型化、多样化等。第五,脉冲功率电源超高功率输出技术。近些年“高电压大功率多电平逆变技术”的发展为超高功率的输出技术的发展有着重要的意义。
二、环境工程领域脉冲功率技术的应用
1.脉冲功率技术在除尘中的应用
传统的除尘系统中在集尘极和放电极之间是使用直流的高压电源,这就导致了在除尘中出现了一些问题,比如,除尘的效率受到粉尘比电阻限制比较严重。在高比电阻之下,粉尘的导电率是非常小的,所以粉尘就容易在集尘极端积聚,一旦粉尘集中太多就会很多电荷无法通过集尘极释放,进而也就导致了集尘层电势升高而产生电晕,相反极离子就会被动的进入电晕场,最终会导致粉尘吸收率严重下降。而在比电阻比较小的情况下,电阻率就会比较高,负电荷和其转带的正电荷就会被大量释放入集尘极,同时因为电场力的存在,就导致了气流的进入,之后这一过程会重复进行,所以说,在这种情况下,除尘效果也不是很理想。
那么,若脉冲功率技术应用于除尘系统当中,就会解决以上的麻烦。高压脉冲所制造的电晕流能够贯穿两级之间,这样就会使得在高比电阻情况下,积尘层被击穿,能够通过电荷的释放来抑制反电晕的.发生,进而提高除尘效率。除此之外,脉冲电晕能够在放点空间之内产生很多高能电子,它是一种气体成分,能够产生活性粒子,此时,除尘器除了吸尘之外还能消除粉尘携带的SO2以及有机物分子等,起到了净化空气,环境保护的作用。在相等的电压之下,应用脉冲功率技术中的高压脉冲电源,能够比直流电源的使用跟家节省能量,净化空气、节能环保,是该技术应用的环境保护效果,这也是该技术被大量应用于环境工程领域的重要原因。
2.脉冲功率技术在废水处理中的应用
由高压脉冲电源输出的电压波形有着前沿比较陡,脉冲比较窄的特点,如果将其施加在液相内部的非平衡电极中间,很容易引起处理对象的分子发生结构性的改变,其中,质量轻的电子在获得一定的能量之后就会变成高能的自由电子,在这种高能的自由电子运动时,会与其他分子发生碰撞,也就会导致水相化学过程的发生,会产生水等活性的物质,从而能够降解污水中的各种有机物。在发生这些电化学反应过程中,因为分子被电离了,电子的跃迁会产生很多的物理效应,比如说超声波的产生、冲击波的产生等,而这些物理效应也会有力的降解有机物。
首先,电子辐射作用的产生。在废水中会有很多的分子和原子,而脉冲电源放电会导致很多等离子体产生,而这些等离子体中又含有高能电子,这些电子会与废水中的分子发生碰撞,会产生很多活性粒子,比如过氧自由基、双氧水、水合电子、水合氢离子等。其次,会产生臭氧氧化反应。臭氧是一种强氧化剂,在水中的氧化途径如公式所示:
再次,紫外光线的分解作用。在脉动电源放电过程中能够产生一些紫外光线,这些紫外光线对有害物质有分解作用。最后,能够产生超声波作用。液相的超声波能够产生很多的空化气泡,这些气泡能够裂解形成高压和局部的高温状态,这样就会产生氢自由基,同时,超声波还能够分解水中所含有的溶解氧。
污水处理中尤其是有机污水处理中的脉冲电源的能量利用率相对来说比较高,控制起来也比较方便,还不会产生二次污染,比较清洁,在环保工程领域中的应用具有较强的优势,发展空间也比较广阔。
三、结束语:
其实,脉动功率技术是电力技术中的一部分,拥有比较强的高效节能作用。也正是因为其有着快放慢充的独特特性,使其成为了非平衡态等离子产生的有效手段之一,这也恰恰适应了近些年社会发展的新要求,为环境保护工程做出了很多的贡献,在除尘方面、废水处理方面都有着重要的作用,推动了破坏环境的重要因素——废水的处理高效化实现。本文只是简单的从几个方面进行了论述,还望能够为实践活动提供帮助。
那是谁给不知道从哪复制了那么多的东西,其实很简单,储能器原理和弹簧一样,你压下去相当于就是储存能量,需要的时候它自己释放出来
泵摘要:本文主要介绍了泵的发展历史,泵的分类及生活中常用泵的工作原理及相关应用,并大胆展望了泵的发展方向。关键词:发展史,分类,原理,应用,方向。引言:泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。泵主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。生活及工业生产中我们已经离不开泵。泵的发展史水的提升对于人类生活和生产都十分重要。古代就已有各种提水器具,例如埃及的链泵(公元前17世纪),中国的桔槔(公元前17世纪)、辘轳(公元前11世纪)和水车(公元1世纪)。比较著名的还有公元前三世纪,阿基米德发明的螺旋杆,可以平稳连续地将水提至几米高处,其原理仍为现代螺杆泵所利用。公元前200年左右,古希腊工匠克特西比乌斯发明的灭火泵是一种最原始的活塞泵,已具备典型活塞泵的主要元件,但活塞泵只是在出现了蒸汽机之后才得到迅速发展。1840-1850年,美国沃辛顿发明泵缸和蒸汽缸对置的,蒸汽直接作用的活塞泵,标志着现代活塞泵的形成。19世纪是活塞泵发展的高潮时期,当时已用于水压机等多种机械中。然而随着需水量的剧增,从20世纪20年代起,低速的、流量受到很大限制的活塞泵逐渐被高速的离心泵和回转泵所代替。但是在高压小流量领域往复泵仍占有主要地位,尤其是隔膜泵、柱塞泵独具优点,应用日益增多。回转泵的出现与工业上对液体输送的要求日益多样化有关。早在1588年就有了关于四叶片滑片泵的记载,以后陆续出现了其他各种回转泵,但直到19世纪回转泵仍存在泄漏大、磨损大和效率低等缺点。20世纪初,人们解决了转子润滑和密封等问题,并采用高速电动机驱动,适合较高压力、中小流量和各种粘性液体的回转泵才得到迅速发展。回转泵的类型和适宜输送的液体种类之多为其他各类泵所不及。利用离心力输水的想法最早出现在列奥纳多•达芬奇所作的草图中。1689年,法国物理学家帕潘发明了四叶片叶轮的蜗壳离心泵。但更接近于现代离心泵的,则是1818年在美国出现的具有径向直叶片、半开式双吸叶轮和蜗壳的所谓马萨诸塞泵。1851~1875年,带有导叶的多级离心泵相继被发明,使得发展高扬程离心泵成为可能。尽管早在1754年,瑞士数学家欧拉就提出了叶轮式水力机械的基本方程式,奠定了离心泵设计的理论基础,但直到19世纪末,高速电动机的发明使离心泵获得理想动力源之后,它的优越性才得以充分发挥。在英国的雷诺和德国的普夫莱德雷尔等许多学者的理论研究和实践的基础上,离心泵的效率大大提高,它的性能范围和使用领域也日益扩大,已成为现代应用最广、产量最大的泵。泵的分类泵通常按工作原理分容积式泵、动力式泵和其他类型泵,如射流泵、水锤泵、电磁泵、气体升液泵。泵除按工作原理分类外,还可按其他方法分类和命名。例如,按驱动方法可分为电动泵和水轮泵等;按结构可分为单级泵和多级泵;按用途可分为锅炉给水泵和计量泵等;按输送液体的性质可分为水泵、油泵和泥浆泵等。泵的工作原理容积式泵容积式泵在一定转速或往复次数下的流量是一定的,几乎不随压力而改变;往复泵的流量和压力有较大脉动,需要采取相应的消减脉动措施;回转泵一般无脉动或只有小的脉动;具有自吸能力,泵启动后即能抽除管路中的空气吸入液体;启动泵时必须将排出管路阀门完全打开;往复泵适用于高压力和小流量;回转泵适用于中小流量和较高压力;往复泵适宜输送清洁的液体或气液混合物。总的来说,容积泵的效率高于动力式泵。 动力式泵靠快速旋转的叶轮对液体的作用力,将机械能传递给液体,使其动能和压力能增加,然后再通过泵缸,将大部分动能转换为压力能而实现输送。动力式泵又称叶轮式泵或叶片式泵。离心泵是最常见的动力式泵。动力式泵动力式泵在一定转速下产生的扬程有一限定值,扬程随流量而改变;工作稳定,输送连续,流量和压力无脉动;一般无自吸能力,需要将泵先灌满液体或将管路抽成真空后才能开始工作 ;适用性能范围广;适宜输送粘度很小的清洁液体,特殊设计的泵可输送泥浆、污水等或水输固体物。动力式泵主要用于给水、排水、灌溉、流程液体输送、电站蓄能、液压传动和船舶喷射推进等。其他其他类型的泵是指以另外的方式传递能量的一类泵。例如射流泵是依靠高速喷射出的工作流体 ,将需要输送的流体吸入泵内,并通过两种流体混合进行动量交换来传递能量;水锤泵是利用流动中的水被突然制动时产生的能量,使其中的一部分水压升到一定高度;电磁泵是使通电的液态金属在电磁力作用下 ,产生流动而实现输送;气体升液泵通过导管将压缩空气或其他压缩气体送至液体的最底层处,使之形成较液体轻的气液混合流体,再借管外液体的压力将混合流体压升上来。4. 泵在生产生活中的应用不锈钢冲压离心泵在用水系统中的应用不锈钢冲压离心泵 ,液控阀门校验泵站 ,主要用于小流量、高扬程的用水系统,如饮用水供应系统、压力锅炉供水系统、高纯度净水系统以及医药、食品、精细化工、造纸等行业的冲洗、喷洒等工艺过程。国家经贸委节能信息传播中心最近将不锈钢冲压离心泵列入“最佳节能实践案例研究”,并对该设备的应用及效益进行了分析。据了解,传统铸造泵是通过制模、灌模、机械加工等复杂工艺制造,耗电、耗料、劳动强度大,严重污染环境,并且无法铸造出口宽度窄的小流量的叶轮。不锈钢冲压离心泵是采用冲压、焊接工艺制造,取代了传统的铸造工艺。泵体生产可节省材料70%以上,效率提高3%-5%,较易实现机械化与自动化批量生产,减少环境污染,减轻劳动强度。对于冲压离心泵生产厂家,生产2082台不锈钢冲压离心泵,新工艺比传统工艺节约不锈钢材料吨,降低铸造电耗7634千瓦小时。对于洗瓶灌装机的用户,在满足生产要求的情况下,水泵的实际运行功率也从原来的千瓦下降到千瓦,每台节电。此外,由于该泵的重量轻、体积小、整体结构合理、维护方便,也减少了维护费用。根据国家统计局和中国机械工业联合会的统计数据,全国铸造泵类年需求量为457万台,合金铸造小流量泵每年需求在38万台以上。不锈钢冲压离心泵因其外形轻巧美观、效率高且价格比铸造泵低,是进口泵的一半,具有显著的经济效益,应用范围广,市场前景广阔。液压水锤泵原理及推广应用实例液压水锤泵的工作原理和提水性能液压水锤泵自动供水设备是利用液压冲击原理和液压传动原理设计制造的水力能量升级转换装置,主机设备由脉冲发生器、能量耦合器和蓄能器三个组件构成。它是一种新式微型水力站的主机设备,这种水力泵实质上是利用水力能量传输特性的特种往复泵或泵组,在整体上构成特殊型式的变容式水力机械。在液压系统中,由于某种原因,液体压力瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。液压冲击的峰值压力往往比正常压力高出许多倍。水锤泵利用的就是液压冲击原理,即水流在正常流动的过程中,突然关闭出水口阀门,就会在泵体内产生很大的冲击力。利用这个冲击力,就可以把水送到高处。液压冲击是非定常流动,压力波以速度C沿进水动力管道(长引水管)来回传播。在水锤泵设计中,一般都是利用阀门突然关闭后管道压力最大升高量ΔP作为泵的扬水动力。由于液压冲击为一衰减过程,故研究压力升高第一波传至管道入口时的情况。假定管道断面积为A,管长为L,管道液体的初始流速为V,液体密度为ρ,压力波从排水冲击阀门传至上游供水池的进水口的时间为T,对这段时间运用动量方程:ΔP•A•T=ρALV所以 ΔP=ρLV/ T=CρV式中C=L/T,为压力波在水中的传播速度,取C=1400m/s。可以计算水从2m高处经长引水管进入水锤泵后,突然关闭排水冲击阀门产生的最大升高压力ΔP,并由能量守恒定律求水流初始速度V:mgh=mV•V/2,则 V=(2gh)(2**2)≈所以,突然关闭冲击阀门时产生的最大升高压力ΔP为:ΔP= CρV=1400*1000*再计算把水提升100米所需的压力P:P=ρgh=1000**100=可以看出ΔP远大于P,所以从理论上说,利用液压冲击原理,将2米落差水流的一部分水量通过水锤泵提升到百米的高处是不成问题的。简单地说,泵装置由泵室、泵座、蓄能器所组成。泵室中有两个阀:一个是排水冲击阀W,一个是输水阀D,双阀构成一个组合自动阀件。组合自动阀件在落差水流作用下自动启闭产生液压脉冲:由进水管引来的水进入冲击阀W后泄流。当泄流流速达到设计值,冲击阀W突然关闭,因此产生一个升压波,在此高压力下输水阀D开启,一部分运动着的水流入空气罐,然后再从空气罐流向使用点或高位蓄水池。进水管的质量流量的动能由于输水而耗尽,使水暂时停止。此时压力波衰减,输水阀D由于上下压差而自动关闭。由于进水管路和水柱的弹性,在扬水冲击减弱以后,水柱朝流动方向微微往后摆动,于是在泵壳内就出现了负压,促使冲击阀W自行打开。冲击阀W开启继续泄流,然后,不断重复以上过程进行提水。为了获得连续和均匀的流量,在输水侧装置了集水器,也称蓄能器。因此,水锤泵在结构上也就由蓄能器和组合自动阀件二大核心部件组成。泵结构最重要的往复运动部件是冲击阀与输水阀的构造及其特性。通过改进自动阀门可以改进泵的工作性能。水锤泵是在无人控制的条件下工作的,所以要求各零部件的运动及时准确和安全可靠。据资料介绍,水锤泵的冲击阀开关次数最好不少于40次/分。从水锤泵的工作过程可以看出,要使泵正常工作,设计生产一种能够自动启闭,反应迅速的组合阀件至关重要。水锤泵液压冲击公式为:△P=CρV=LV/t,式中△P为冲击压力;L为冲击波传播距离;V为冲击前进水管内平均流速;t为冲击阀阀门关闭时间。从公式可以看出,要提高液压冲击的压力,必须提高冲击前进水管内平均流速V,缩短冲击阀阀门关闭时间t,及增大冲击波传播距离L。在水锤泵站已建成的先决条件下( H、L、V三者已定),要产生明显的液压冲击并兼顾泵站效率,主要靠减少冲击阀阀门关闭时间t。|^7水锤泵组合自动阀件是两个特殊的专用阀门,其操作动力只有水流的脉动力和其自重。从自动阀门的力学分析可以看出,冲击阀阀门的关闭时间主要取决于有无增速机构、垫胶的弹力、阀盘的重量和出水口的流速等因素。冲击阀阀门的开启时间主要取决于泵壳内负压、垫胶的回弹力、阀盘的重量和出水口的流速等因素。武汉润泽水利技术中心研制的液压水锤泵,其自动冲击阀门在构造上可自启闭且不采用轴承,并力求防止阀杆的磨损。另外,为防止冲击阀关闭时产生的冲击和振动,在构造上采用了缓冲结构,因此泵壳内的冲击力、与泵连接的进水管道作用的应力,以及作用于基础的冲击力均很小。在进行研制开发时,采用特征线法对液压冲击和柔性水锤进行电算分析,并从材料和强度方面进行了综合的实验研究和理论分析。液压水锤泵通过水力能量传输特性的合理设计来加大能流密度,精准设计脉冲发生组件液压冲击波的脉冲泵水作用,加快液压水锤泵缷载及加载,从而使脉冲发生组件自动冲击阀门(包含辅助增速阀盘装置)实现每分钟30到300次开关频率,达到中高频运转。落差水流从1至7米高处的进水池(泵站供水池),再经长引水管进入底座为泵室灌水,一直灌到进水池的水平面高度,这时自动阀门是关闭的。为了启动水锤泵,须用手多次打开冲击阀W,以进一步增加蓄能器内的空气室压头。当空气室压力达到落差的3倍左右,则进水管水柱回摆所产生的压强足以使输出阀自行打开,并使水锤泵动作起来。这时,空气室压头不断增加,一直上升到输水管出口顶端的压头值,然后压头基本稳定下来。在扬程压头较高时,一般蓄能器的空气室中的空气渐渐被高压水吸收,使空气室最终不起作用,压力峰值不断升高并会造成机械事故。因此,高扬程应用时需要对水锤泵重新设计液压蓄能器部件,主要是采用气囊式蓄能器,或者采取措施对空气罐人工补气或自动补气。落差水源的水头和流量是泵扬程和扬水量的重要决定因素之一。另外,泵工作性能还受到引水管安装角度、引水管和扬水管口径及长度、冲击阀开关次数等因素的影响。经过多次工程试验和现场安装应用测试,得到以下几个经验公式:①、扬程h与水流落差H的关系:h/H=10-50;②、将液压水锤泵作为动力机和水泵的联合体来考虑,其效率可由下式定义:η=qh/(QH)η为泵效率;q为扬水流量;h为扬水高度;Q为进水管来水流量;H为落差水头。泵效率的经验公式:1、η=()((h-H)/H)(h-H)/H=3-17(采用各类空气罐作液压蓄能器)2、90%≥η≥60%, (h-H)/H=2~49(采用隔膜式蓄能器作液压蓄能器)③、水锤泵扬水量q:q=ηHQ/(h-H+ηH)④、引水管长度L: L=7-12H(随落差水头大小相应变化取值)⑤、引水管安装角度α:仰角要大于5°,小于20°,以7°-15°为最佳安装角度。⑥、引水管口径D: D=(60Q)(Q是进泵水源的常年保证流量)⑦、扬水管口径d: d=(随扬程落差比h/H相应变化取值)水锤泵性能的主要技术指标是功率及其效率,但由于受到安装的场所、地形条件及水源等的限制,设计时还应对供给水量、水头、进水管长度、扬水高度和扬水流量等,综合地考虑各种因素进行设计。据资料显示,国外水锤泵的工作寿命最长可达100年以上,其易损件仅为橡胶垫、密封件、螺栓等。液压水锤泵使用带来的优点1、液压水锤泵通过水力能量传输特性的合理设计来加大能流密度,精准设计脉冲发生组件液压冲击波的脉冲泵水作用,加快液压水锤泵缷载及加载,从而使脉冲发生组件自动冲击阀门(包含辅助增速阀盘装置)实现每分钟30到300次开关频率,达到中高频运转。?.据资料介绍,水锤泵自动冲击阀门的开关频率最好不少于每分钟40次。工程应用的资料表明,国内同类产品一般运行频率较低(引进德国BIL系列水锤泵只有每分钟20—40次,不超过每分钟60次)。2、运行噪音小,新型RZ-50饮水型液压水锤泵运转噪音小于80分贝,国内同类新产品(如引进德国BIL系列水锤泵)运转噪音高达105-130分贝。3、“液压水锤泵”采用不锈钢等耐蚀材料制造蓄能器筒体,以免水锤泵微型水力站的提升水流遭受铁锈污染。4、液压蓄能器有效容积可通过(含手动)充气装置等简单措施得到有效保证,特别是长年运行中不会丧失气室容积和储能量;液压蓄能器的补气不需要泄空补气,不会造成水锤泵停机。国内同类产品(如引进德国BIL系列水锤泵),大多采用的蓄能器为半蓄能器(没有气体预压缩措施的蓄能器),泄空补气时会造成水锤泵停机。5、液压蓄能器组件采取等温加载循环工作方式,由脉冲发生组件自动冲击阀门的中高频快速加载工作所可能造成的液压蓄能器气室中的热力损失得到降低,并取消了常规水锤消除器(系气囊式蓄能器,采用绝热加载循环工作方式)筒体内表面的聚丙烯套隔离部件,降低了加工工艺难度和制造成本。6、“液压水锤泵”,全称“组件式复合液压传动型水锤泵”,由脉冲发生组件、能量耦合组件和蓄能组件这三部分构成。液压水锤泵采用能量耦合组件作为特殊能量转换器实现能量耦合,可以实现直流/交流液压工作方式转换。液压水锤泵自动供水设备—新型RZ系列饮水型液压水锤泵是利用液压冲击原理和液压传动原理设计制造的水力能量升级转换装置。故液压水锤泵设计原理有别于单一采用水锤原理的传统水锤泵。5. 泵的发展趋势泵的技术发展一如其他产业的发展一样,是由市场需求的推动取得的。如今,历史已进入到二十一世纪,人们在以环保、电子等领域高科技发展及世界可持续发展为主所产生的巨大需求的大背景下,对于包括泵行业在内的许多行业或领域都带来了技术的飞速变革和发展。泵的技术发展趋势,主要有以下几个方向:(1)产品的多元化产品的生命力在于市场的需求。如今的市场需求正是要求有各自的特色特点,做到与众不同;正是这一点,造就了泵产品的多元化趋势。它的多元性主要体现在泵输送介质的多样性、产品结构的差异性和运行要求的不同性等几个方面。从输送介质的多样性来看,最早泵的输送对象为单一的水及其它可流动的液体、气体或浆体到现在可输送固液混合物、气液混合物、固液气混合物,直至输送活的物体如土豆、鱼等等。不同的输送对象对于泵的内部结构要求均不同。除了输送对象对泵的结构有不同要求外,在泵的安装形式、管道布置形式、维护维修等方面对泵的内在或外在的结构提出新要求。同时,各个生产厂商,在结构的设计上又加入了各自企业的理念,更加提高了泵结构的多元化程度。基于可持续发展和环保的总体背景,泵的运行环境对泵的设计又提出了众多的要求,如泄漏减少、噪声振动降低、可靠性增加、寿命延长等等均对泵的设计提出了不同的侧重点或几个着重点并行均需考虑,也必然形成泵的多元化形式。(2)泵设计水平提升与制造技术优化的有机结合进入信息时代的今天,泵的设计人员早已经利用计算机技术来进行产品的开发设计(如CAD的利用),大大提高了设计本身的速度,缩短了产品设计的周期。而在生产为主的制造当中,以数控技术CAM为代表的制造技术业已深入到泵的生产当中。但是,从目前国内的情况看,数控技术CAM主要应用在批量产品的生产上。对于单件或小批的生产,目前CAM技术尚未在泵行业当中普遍实施,单件小批的生产仍旧以传统生产设备为主。由于市场要求生产厂商的货期尽可能缩短,尤其对于特殊产品(针对用户要求生产的产品)供货周期缩短,必然要求泵的生产企业加速利用CAM技术,甚至是计算机集成制造系统(CIMS)、柔性制造(FMC和FMS)对从设计到制造模具、零件加工等各环节协调一致处理,保证一但设计完成,产品零部件的加工也是趋于同期完成,以确保缩短产品的生产周期。与此同时,除利用计算机制图外,还将在计算机这个载体上实现产品的强度分析、可靠性预估和三维立体设计,将原来需要在生产中发现和解决的工艺问题和局部结构问题及装配性问题等方面提到生产前进行防范,缩短产品的试制期。(3)产品的标准化与模块化在产品出现多元化的同时,泵作为通用产品,总体总量依旧巨大。在市场中,除出现技术性竞争外,产品的价格竞争尤其是通用化产品的价格竞争是必然趋势。在产品出现多元化的趋势下,要实现产品价格的竞争优势,提高产品零部件的标准化程度,实现产品零部件的模块化是必须的。在众多零部件实现模块化后,通过不同模块的组合或改变个别零件的特性,以实现产品的多元化。同时,只有当零部件标准化程度提高后才有可能基于产品的多元化基础上实际规模化的零部件生产,用以降低产品的生产成本和形成产品的价格竞争优势,也可以在产品多元化的基础上进一步地缩短产品的交货周期。(4) 泵内在特性的提升与追求外在特性所谓泵的内在特性是指包括产品性能、零部件质量、整机装配质量、外观质量等在内的产品固有特性,或者简称之为品质。在这一点上,是目前许多泵生产厂商所关注的也是努力在提高、改进的方面。而实际上,我们可以发现,有许多的产品在工厂检测符合发至使用单位运行后,往往达不到工厂出厂检测的效果,发生诸如过载、噪声增大,使用达不到要求或寿命降低等等方面的问题;而泵在实际当中所处的运行点或运行特征,我们称之为泵的外在特性或系统特性。技术人员在进行产品设计时,为提高某一产品的百分之一效率常常花费不少心思;而泵运行如果偏离设计的高效点,实际运行的效率远不止降低百分之一。现在,泵生产厂家同时为用户配套包括变频在内的控制设备及成套设备,实际上已介入到泵的外在特性的追求上了。在此基础上,再关注泵的集中控制系统,提高整个泵及泵站运行效率,则是在泵外特性的追求上更上一层楼。从销售角度看,推销产品即是在推销泵的内在特性;而关注泵的外特性则是生产厂商不仅是推销产品,而是在推销泵站(成套项目)。从使用角度看,好的产品必定是适合运行环境的产品而非出厂检测判别的产品。(5)机电一体化的进一步发展正如科学技术的发展一样,现阶段科技领域中交叉学科、边缘学科越来越丰富,跨学科的共同研究是十分普遍的事情,作为泵产品的技术发展亦是如此。以屏蔽式泵为例,取消泵的轴封问题,必须从电机结构开始,单局限于泵本身是没有办法实现的;解决泵的噪声问题,除解决泵的流态和振动外,同时需要解决电机风叶的噪声和电磁场的噪声;提高潜水泵的可靠性,必须在潜水电机内加设诸如泄漏保护、过载保护等措施;提高泵的运行效率,须借助于控制技术的运用等等。这些无一不说明要发展泵技术水平,必须从配套的电机、控制技术等方面同时着手,综合考虑,最大限度地提升机电一体化综合水平。参考文献[1] 李云,姜培正主编,过程流体机械. 北京:化学工业出版社,2009[2] 孙启才,金鼎五主编,离心机原理结构与设计计算. 北京:机械工业出版社,1987.[3] 关醒凡主编,现代泵技术手册,北京:宇航出版社,1995.
液压储能器工作原理:由于液压油是不可压缩液体,因此利用液压油是无法蓄积压力能的,必须依靠其他介质来转换、蓄积压力能。例如,利用气体(氮气)的可压缩性质研制的皮囊式充气蓄能器就是一种蓄积液压油的装置。皮囊式蓄能器由油液部分和带有气密封件的气体部分组成,位于皮囊周围的油液与油液回路接通。当压力升高时油液进入蓄能器,气体被压缩,系统管路压力不再上升;当管路压力下降时压缩空气膨胀,将油液压入回路,从而减缓管路压力的下降。液压蓄能器:是液压气动系统中的一种能量储蓄装置。它在适当的时机将系统中的能量转变为压缩能或位能储存起来,当系统需要时,又将压缩能或位能转变为液压或气压等能而释放出来,重新补供给系统。当系统瞬间压力增大时,它可以吸收这部分的能量,以保证整个系统压力正常。
液压传动系统的故障分析与排故液压传动是以液压油为工作介质进行能量转换和动力传递的,它具有传送能量大、布局容易、结构紧凑、换向方便、转动平稳均匀、容易完成复杂动作等优点,因而广泛应用于工程机械领域。但是,液压传动的故障往往不容易从外部表面现象和声响特征中准确地判断出故障发生的部位和原因,而准确迅速地查出故障发生的部位和原因,并及时排除。在工程机械的使用、管理和维修中是十分重要的。��1 液压系统的主要故障��在相对运动的液压元件表面、液压油密封件、管路接头处以及控制元件部分,往往容易出现泄漏、油温过高、出现噪音以及电液结合部分执行动作失灵等现象。具体表现:一是管子、管接头处及密封面处的泄漏,它不仅增加了液压油的耗油量,脏污机器的表面,而且影响执行元件的正常工作。二是执行动作迟缓和无力,表现为推土机铲刀提升缓慢、切土困难,挖掘机挖掘无力、油马达转不起来或转速过低等。三是液压系统产生振动和噪音。四是其他元件出现异常。��2 故障的检查�� 直接检查法 �凭借维修人员的感觉、经验和简单工具,定性分析判断故障产生的原因,并提出解决的办法。 � 仪器仪表检测法 �在直接观察的基础上,根据发生故障的特征和经验,采取各种检查仪器仪表,对液压系统的流量、压力、油温及液压元件转速直通式检测,对振动噪音和磨损微粒进行量的分析。 � 元件置换法 �以备用元件逐一换下可能发生故障的元件,观察液压系统的故障是否消除,继而找出发生故障的部位和原因,予以排除。在施工现场,体积较大、不易拆装且储备件较少的元件,不宜采用这种方法。但对于如平衡阀、溢流阀及单向阀之类的体积小,易拆装的元件,采用置换法是比较方便的。 � 定期按时监控和诊断�根据各种机械型号、检查内容和时间的规定,按出厂要求的时间和部位,通过专业检测、监控和诊断来检测元器件技术状况,及时发现可能出现的异常隐患,这是使液压系统的故障消灭在发生之前的一种科学技术手段。当然,执行定期检测法,首先要培养一些专业技术检测人员,使他们既精通工程机械液压元件的构造和原理,又掌握和钻研检测液压传动系统的各种诊断技术,在不断积累靠人的直感判断故障经验的同时,逐步发展不解体诊断技术,来完成技术数据采集,辅以电脑来分析判断故障的原因及排除方法。��3 液压系统的故障预防�� 保证液压油的清洁度 �正确使用标定的和要求使用的液压油及其相应的替代品(详参《工程机械油料手册》),防止液压油中侵入污物和杂质。因为在液压传动系统中,液压油既是工作介质,又是润滑剂,所以油液的清洁度对系统的性能,对元件的可靠性、安全性、效率和使用寿命等影响极大。液压元件的配合精度极高,对油液中的污物杂质所造成的淤积、阻塞、擦伤和腐蚀等情况反应更为敏感。 �造成污物杂质侵入液压油的主要原因,一是执行元件外部不清洁;二是检查油量状况时不注意;三是加油时未用120目的滤网过滤;四是使用的容器和用具不洁净; 五是磨损严重和损坏的密封件不能及时更换;六是检查修理时,热弯管路和接头焊修产生的锈皮杂质清理不净;七是油液贮存不当等等。�在使用检查修理过程中,应注意解决这些问题,以减少和防止液压系统故障的发生。 � 防止液压油中混入空气 �液压系统中液压油是不可压缩的,但空气可压缩性很大,即使系统中含有少量空气,它的影响也是非常大的。溶解在油液中的空气,在压力较低时,就会从油中逸出产生气泡,形成空穴现象;到了高压区,在压力的冲击下,这些气泡又很快被击碎,急剧受到压缩,使系统产生噪音。同时,气体突然受到压缩时,就会放出大量的热能,因而引起局部受热,使液压元件和液压油受到损坏,工作不稳定,有时会引起冲击性振动。 �故必须防止空气进入液压系统。具体做法:一是避免油管破裂、接头松动、密封件损坏;二是加油时,避免不适当地向下倾倒;三是回油管插入油面以下;四是避免液压泵入口滤油器阻塞使吸油阻力增大,不能把溶解在油中的空气分离出来。 � 防止液压油温度过度�液压系统中的油液的工作温度一般在30℃~80℃范围内比较好,在使用时必须注意防止油温过高。如油箱中的油面不够,液压油冷却器散热性能不良,系统效率太低,元件容量小,流速过高,选用油液粘度不正确,它们都会使油温升高过快。粘度高增加油液流动时的能量损耗,粘度低会使泄漏增多,因此在使用中能注意并检查这些问题,就可以预防油温过高。此外对液压油定期过滤,定期进行物理性能检验,既能保证液压系统的工作性能,又能减少液压元件的磨损和腐蚀,延长油液和液压元件的使用寿命。��4 液压系统的故障分析�� 传动系统分析法 �工程机械的液压传动系统如果维护得好,一般说来故障是比较少的。由于密封件老化、变质和磨损而产生外泄是很容易观察到的,根据具体情况可设法排除。但是如果液压元件的内部发生了故障是观察不到的,往往不容易一下子就找出原因,有时虽然是同样的故障现象,但产生的原因却不一定相同,要想准确而迅速地找出液压元件的故障的部位和原因,首先要根据发生故障元件的构造图、系统图,分析了解和研究元件的工作原理和特性,再使了解的构造原理与实物对号,具体情况具体分析,检查寻找故障发生的部位和产生的原因,以便采取相应的技术措施来排除故障。 � 逻辑流程分析法 �此方法是根据液压传动系统的基本原理进行逻辑分析,减少怀疑对象,逐步逼近找出故障发生的部位和原因。��5 液压系统故障的排除��(1) 液压系统中管子、管子接头和焊接处,由于振动频率较高,常常发生破坏。在换用时要根据压力和使用场合,选用强度足够,内壁光滑清洁,无砂、无伤、无锈蚀、无氧化皮的管子。当管子需要焊接时,最好采用加套管的办法,因为对接可能使管的内径局部缩小;截段时,油管的截面与管子轴线的不垂直度不得大于°,并清除铁屑和锐边倒钝。当管子支承距离过大或支承松动时要设卡固定拧紧,当弯曲半径过小时,易形成弯曲应力,弯曲半径一般应大于管外径的3倍。 �在密封表面处,密封元件的老化变质会使泄漏量增大。密封件的有效寿命通常是:固定元件之间的密封寿命时间为10000h,运动元件之间密封寿命时间为1500h~2000h。到了规定的使用寿命时间后,即使还可用的元件也应该更换。密封面的泄漏还与预压面的压力不够或不均匀有关。预压量增大时,其封油量压力增大,密封效果好,反之则差。再者摩擦表面光洁度与硬度不足也会缩短密封件的寿命。 �密封件设计不合理以及安装时扭曲刮伤也是导致密封圈早期磨损而引起泄漏的原因。 �油液中杂质过多,易加速密封件与摩擦表面的磨损,形成密封件的早期失效,油封工作温度过高或过低也会影响其寿命和工作性能。� (2) 执行元件运动的速度降低,主要是由于输入执行元件的液压油流量不足;执行元件无力的原因主要是输入液压油压力不足,以及回油管路背压过高等因素所造成的。 �工程机械液压系统所用的油泵多为齿轮泵,其工作压力为210×102kPa,柱塞泵的工作压力可达320×102kPa。泵的输出压力是由荷载决定的,并随着荷载的变化而变化。荷载无限增加,泵的压力也无限升高,直到系统某一部分被破坏。对于齿轮泵:主要是轴承、齿轮啮合面、齿顶与壳体、齿轮端面与泵盖间的磨损和密封件的磨损、老化、损坏使齿轮泵的内漏表现更为突出。在一定转速与一定压力下,对无端面间隙补偿的齿轮泵,其轴线磨损引起的泄漏约占全部内漏量的75%~85%,齿顶间隙内漏量约占15%~20%,其他内漏约占4%~5%,因此我们要抓住主要问题,采取有效的技术措施予以解决,就能使泵恢复其原有性能。 �在维修工作中,我们发现使用了一定时间的齿轮泵,由于啮合挤压,在齿顶和端面会产生毛刺,使泵体和端盖的磨损加剧,尤其是铝合金泵盖更为严重。如能定期修理检查,用油石磨掉所产生的毛刺,则可以延长油泵的寿命。叶片泵的主要故障是定子、叶片、转子、轴承和两侧配流盘的磨损,定子的内表面是由圆弧和过渡曲线组成的,过渡曲线如果采用“阿基米德”螺旋线,则叶片径向等速运动。实践证明,当我们将叶片泵解体修理时,定子内表面就在曲线与圆弧连接部分磨损最严重,换掉磨损严重的定子,可以使叶片泵恢复原有的性能,采用这种修理方法是比较经济的。叶片泵转子、叶片的使用寿命约相当于定子使用寿命的两倍,这在备料时应予以考虑。 �(3) 液压系统的蓄能器是用来调节能量、贮存能量、减少设备容积、降低功率消耗、减少系统发热、缓冲吸收冲击和脉动压力的辅助元件。常见的蓄能器有胶囊式的,它具有漏气损失小、反应灵敏、可以吸收急速的压力冲击和脉动、重量轻、体积小等特点。蓄能器发生故障会影响液压系统的正常工作,因此在检查气压量不足时,应按时充入惰性气体。 �(4) 液压系统中,要求装备精度高的还有液压马达。如果注意日常维护和保养,防止油液污染,一般不会发生故障,进入液压马达的油液须仔细过滤,以减少杂质,防止过快磨损。修理后的马达,应注满干净的液压油,排尽系统中的空气。确定不了马达是否有故障,最好不要拆卸,这样可减少污染的机会和保持配合的精度。液压缸是液压系统中的执行元件,常见的故障有漏油和运动不正常。缸头因密封件损坏而外泄,应立即更换密封件;油缸运动不正常有油缸内漏、油路中有空气、活塞密封件老化和损坏、油液有杂质、平衡阀发生故障等。 �(5) 控制元件是用来实现系统和执行元件对压力、流量方向的要求的。控制阀及时控制系统中最重要的元件,由于阀的配合一般都比较精密,所以在修理时应特别注意,不需拆阀芯的尽量不要抽出阀芯;配合副方位不要错乱,偶件不要互换;螺丝的拧紧力矩要均匀一致,锥形阀芯的接触线磨损可采用研磨修正接触线的办法解决;回位弹簧疲劳时,可予更换。
储能是能源转型的关键技术,北美、欧洲各国为了促进储能产业的可持续发展,制订并实施了许多鼓励性政策和补贴。中国储能领域的技术、市场、政策、立法、标准、监管等产业基本要素尚不成熟,如何促进国内储能产业可持续发展值得深入思考。在未来能源格局中,储能产品与服务将全面覆盖交通、建筑和工业三大用能领域,电化学储能技术将成为主流储能技术,综合能源服务与智慧能源技术将成为未来能源企业的基本配置,与储能相结合的电力将取代传统能源成为新时代最重要的国际贸易商品之一。目前,储能产业集中度不高,基础与核心技术研发投入不足,大型能源企业需要做好前瞻布局,把握产业全局、引领市场方向,注重储能技术储备,适时开发超大规模化学储能技术,承担起可再生能源时代能源安全保障任务。近十几年来,随着能源转型的持续推进,作为推动可再生能源从替代能源走向主体能源的关键,储能技术受到了业界的高度关注。2019年,全球储能增速放缓,呈理性回落态势,为储能未来发展留下了调整空间。储能产业在技术路线选择、商业应用与推广、产业格局等方面仍存在很多不确定性。
光热微驱动器具有原理新颖、结构简单、选材广泛、操控简便、输出力大、可非接触控制、易于微小化和集成化等优点,是一种具有广泛发展和应用前景的新型微驱动器。 本文首先介绍了MOEMS技术和微驱动器的发展历史及现状。随后介绍了与微驱动器加工密切相关的微纳米加工技术的发展现状。回顾了LIGA加工技术的发展历史,详细描述了LIGA技术的典型工艺流程、各种应用及优点。介绍了北京同步辐射装置LIGA工作站的相关情况以及LIGA加工过程中涉及到的一些工艺与参数的选择。 开展了对光热膨胀机制的理论及仿真研究。分析了光热膨胀的微观机制,建立了微膨胀臂热学模型。用有限元分析软件ANSYS对所建模型进行了仿真研究,分析了导热系数、激光功率、光斑照射位置等因素对微膨胀臂温度场及形变量的影响。 在对微膨胀臂光热膨胀机制理论及仿真研究的基础上,设计了多种光热微驱动机构。重点对开关型和V型光热微驱动器的驱动机制开展了理论及仿真研究,并利用纯镍与黑镍等金属材料及LIGA技术加工制备了开关型、V型光热微驱动器及其他一些光热微驱动机构。 建立了光热微驱动机构的驱动控制及显微观测系统。根据需要设计了整个实验系统,包括激光光源的选择、驱动控制光路的构建、显微成像光路及CCD成像模块的设计。编制和优化了用于光热微驱动测量与分析的软件系统。 开展了光热微驱动机构的一系列实验研究。重点对开关型光热微驱动器和V型光热微驱动器进行了实验研究,包括不同激光光斑照射位置、不同激光功率对微驱动器驱动量的影响,不同激光频率下微驱动器的驱动量及响应速度。同时还开展了一些光热微驱动器的探索性应用研究。 最后,本文对课题的研究内容和研究成果作了总结,阐述了研究的特色和创新之处,同时也指出了工作中的不足和有待完善的地方,并对今后的工作给出了方向性的建议。文1:太阳能光热发电技术现状及其关键设备存在问题分析 2 1光热发电技术原理 2 2国内太阳能光热发电产业发展概况 2 3太阳能光热发电产业发展趋势 3 全球太阳能光热发电产业前景展望 3 光热发电技术发展趋势 4 国内太阳能光热发电产业前景展望 4 结束语 5 文2:河南上市公司存在问题分析 5 一、河南上市公司存在着结构性缺陷问题 6 二、存在公司运作不规范现象 6 三、上市公司后备资源不足 7 四、数量少,上市公司资本证券化率比较低 7 五、观念滞后,利用证券市场的意识不强 8 六、促进河南上市公司可持续发展的思路与建议 8 1转变思想,加快省内经济发展 8 3进一步完善公司治理结构,加强对高管人员的监管 9 4着力拓宽融资渠道,加快企业上市步伐 10 参考文摘引言: 10 原创性声明(模板) 11正文太阳能光热发电技术现状及其关键设备存在问题分析(电力系统及自动化论文资料)文1:太阳能光热发电技术现状及其关键设备存在问题分析引言太阳能光热发电是一种优良的利用太阳能发电的方式,但是其严重受制于天气状况。为保证太阳能光热发电厂能够持续不间断地发电,需要储存多余的太阳能。因此储能技术是太阳能光热发电中关键的一环。现在太阳能光热发电厂中所使用的储能材料有3种:显热储能材料、潜热储能材料及化学储能材料。储能材料需要具备良好的导热性、可操作性、可逆性及较高的导热系数与储能密度。本文主要研究此3种储能材料的研究进展,为太阳能光热发电的储能技术提供参考。
压空属于物理储能方式的一种,它与抽水蓄能齐名,无论是存储时间、放电功率、还是运行寿命,都有着卓越的表现,但它同样有着自身的缺点,比如系统复杂,比如受地域影响等。 一 压缩空气原理 压缩空气的基本原理很简单,在电网负荷低谷期将电能用于压缩空气,将空气高压密封在报废矿井、储气罐、山洞、过期油气井或新建储气井中,在电网负荷高峰期释放压缩空气推动汽轮机发电的储能方式,原理如下图所示。若需要更近一步解释,你只需锁定储气罐内的空气即可,两个动作,充气时储存能量,膨胀时释放能量。 然而,如果你在此处宣布已经掌握了压空技术,为时过早。要知道,原理不能解决任何问题,需要在原理的基础上舔砖加瓦,优化利用,才能达到合理的应用标准。于是,压空的各种变异横空出世,为了便于理解,我温度、压力、容积等方面着手,一步步深入介绍。 温度 我先强调一点:温度是一种能量。对于压缩机而言,压缩过程温度越低,耗费电能越少;与之相反,对于膨胀机而言,膨胀起始点温度越高,膨胀过程中得到的有用功越多。所以,降低压缩温度,或者提高膨胀进气温度,是提高系统效率的一种重要而有效的手段。请看下图变异1,在压缩机的出口增加了冷却器,以回收压缩热,在膨胀机(或涡轮机)的入口增加回热器,以提高进气温度。回热器的热量可由冷却器供给,如果必要,涡轮机的出口废弃也可以进一步回收,这取决于废弃的温度品味。该系统叫称为回热式系统。 相较于原理型系统,回热系统储电效率有所增加,然而它的不足在于,冷却器和回热器分开设置,在热量回收过程中存在较大热损失。为解决这一问题,有人提出绝热压缩空气系统,变异2,参照下图。将压缩过程中产生的热量存储起来,然后在发电过程中用这部分热量预热压缩空气,冷却器和回热器合为一体,对外进行绝热处理,业内称作先进绝热压缩空气储能系统(AA-CAES),该系统面临的最大挑战是如何经济、有效地设计和制造出压力工作范围大的压缩机、涡轮机和除热器。 一切比较完美,但还忽略一点,即使100%回收利用,压缩过程中产生的热量不足以使涡轮机持续长时间稳定运行,换句话说,只靠自身的热回收很难保持系统抵抗外部负荷波动。热量不够怎么办?引进额外热源,天然气,将天然气与来自储气罐的高压空气混合燃烧,推进涡轮机旋转发电。请看下图,变异3。对比以上系统,它的可靠性最高,稳定性最强,灵活性最优,所以在德国1978年建造首套压空储能电站时,果断采用这种方案。然而,变异3的引发的问题在于:消耗化石能源,增加温室气体排放。于是在国内做压空系统的高校研究所想方设法消除对外在热源的利用,比如清华大学的卢强院士,推非补燃压空系统。此处必须加句评论,难度都很大,不用补燃,系统复杂程度会提高,可靠性也会有波动,平衡各个功能单元,是一件技术含量很高的工作。 2 压力 谈到这里,如果你站起来宣布掌握了压空技术,我会告诉你又早了。除了温度之外,还有一个参数没有讲,压力!与温度相比,压力的影响更加多元。压缩阶段,压力越高,同等温度下空气密度越大,同等体积的储罐储存的空气量更多,储能密度更高;膨胀阶段,初始入口压力越高,出口压力越低,有用功输出越高。 现在的问题来了,能不能只使用一台压缩机,比如从1个大气压直接压缩到100个atm?膨胀过程从40个atm膨胀到1atm?我可以负责任的告诉你,理论上可以,但如果你真敢这么做,保证系统电-电转换效率会低的让你下不来台!如何解决这一问题?热力学给出的指引是多级压缩,中间冷却,可显著降低压缩过程中的电力消耗;多级膨胀,中间加热,可显著增加膨胀过程中的发电量,综合起来,储电效率必然显著提高。 下图为非补燃多级压缩系统图,可以看出,在每台压缩机后加装热回收器,通过回热系统将热量传递到各级膨胀机的入口处。 当系统采用绝热压缩时,综合多级压缩和多级膨胀,组成的系统如下图所示。 采用燃气补热的系统,多级压缩阶段与非补燃一致,不同的是在各级膨胀机入口加装燃烧室,详见下图。 容积 压空系统的技术痛点在于气体的密度太低,常压下空气密度为,即使在10Mpa高压下密度也只有100kg/m3左右,相比水的1000kg/m3,差了足足十倍,这意味在相同储存质量下,空气的罐子要比水大十倍。要解决大规模空气存储的方法至少有3个,方法一,就地取材,寻找废弃的矿井,进行密封承压方面的改造,然后将空气压入其中,这种方法既经济又可靠,而且储量惊人,比如德国的Huntorf压空电站可储存30万立方的空气,但是,这种方式受制于地形限制,灵活性差,比如我想在南京建一座压空电站,即使金坛的溶洞再优越,我也用不上。方法二,高压储气罐,该方式操作灵活,完全不受地域地形限制,比如中科院在廊坊的示范项目,采用2个直径,长10m的储罐,每个储存45m3的高压空气,储罐压力10Mpa,储罐设备属于特种设备范畴,无论从制造,安装还是运行,都要经过严格的检查,成本相对较高。方法三,空气液化。为了进一步减小储罐体积,有专家想到了变态,将气体液化,密度将增加上百倍,于是体积减少上百倍,通过设计,使膨胀机出口的空气温度低于(℃)时,空气被液化,系统流程见下图,这种系统的特点是体积小,管路复杂,效率低。我在一次讲座上跟东大热能所的肖睿教授聊天时得知,他测算过液化压空储能的理论效率60%,实际效率能打七折就已经很不错了。 冷热电三联供 在储能领域,压空算是个另类,不能用传统的评价标准衡量它,比如只追求电-电存储效率,压空肯定毫无优势,非补燃机组能达到40%已算很不错了。但它在发电的同时,还能兼顾供冷和供热,俗称冷热电三联供,其实原理没有任何改变,只是将压缩过程产生的热量用于供热,膨胀机出口的低温空气用于制冷,膨胀产生的有用功用于发电,详见下图。冷热电三联供的特点是能源利用效率高,若以热能利用为基础测算,系统效率可达70-85%。 二 系统特点 在储能家族中,压空和抽水蓄能属于一个阵营,即是一种可以大功率,长时运行的物理储能技术,各种技术对比见下图(CAES),技术特点如下: (1)输出功率大(MW级),持续时间长(数小时); (2)单位建设成本低于抽水蓄能,具有较好的经济性; (3)运行寿命长,可循环上万次,寿命可达40年; (4)环境友好,零排放。 三 系统结构 一套完整的压空系统五大关键设备组成:由压缩机、储气罐、回热器、膨胀机以及发电机,结构详图如下。 压缩机 压缩机是一种提升气体压力的设备,见下图。压缩机的种类和压缩方式各不相同,但设计者会更关心它的进出口压力参数,表征为四个参数,一是工作压力区间,二是压缩比,即进出口压力比值,三是进出口温度或绝热效率,四是压缩功率与流量。清华大学卢强院士的500kw压空系统中所用其中一台压缩机参数为:进气压力1atm,25℃,排气压力,143℃,压缩比,轴功率。 储气罐 储气罐是高压空气的出厂场所,说白了就是一个岩洞或者一个罐子。这里还是要强调,温度是一种能量,60℃和20℃条件下,空气的能量大不一样,所以有必要对储罐进行保温处理,尽量维持罐内温度一致,减小对流损失。尺寸与耐压等级等制造问题,交给工厂。 回热器 回热器是热交换器的统称,包括预热器,冷却器,换热器等等,回热器的功能是通过温差传热回收热量,达到节能效果。 膨胀机 膨胀机的英文名字叫“turbine”,又叫透平,也有叫涡轮机的,它的功能是通过膨胀,将空气的内能转化为动能,推动与之相连的发电机,又将动能转化为电能,见下图。标定膨胀机的参数有进出口压力与温度,膨胀系数等。 发电机 发电机是一种发电设备,将各种形式的能量转化成电能,此处略过。 四 压空系统应用领域 (1)调峰与调频。大规模压空系统最重要的应用就是调峰和调频,调峰的压空电站分为两类,独立电站以及与电站匹配的压空系统。 (2)可再生能源消纳。压空系统可将间断的可再生能源储存起来,在用电高峰期释放,可显著提高可再生能源的利用率。 (3)分布式能源。大电网和分布式能源系统结合是未来高效、低碳、安全利用能源的必然趋势。由于压空具备冷热电联供的优点,在分布式系统中将会有很好的应用。 五 性能评价指标 为了更清楚表达工作过程的能量传递,我借用了哈佛大学Azziz教授论文中的一张图,见上图。其中W为电功,Q为热量,箭头向内代表进入系统,向外表示系统输出,流程箭头代表空气流向。一目了然,比如压缩机工作消耗的电能来自于电网,膨胀时向电网输出电能,都能直观看到,并且判断:系统用电越小越好,回收的热量越多越好,向外输出的电能越大越好。 在我看来,表征系统性能的参数主要有两个,一个是电能存储效率,另一个是系统能量效率。电能存储效率是电能输出与输入的比值,这对电网运营至关重要;系统能量效率是输出的电能+热能与输入之比,表征整个系统的总效率,这对压空系统至关重要。 六 国内外压空项目 德国Huntorf Huntorf是德国1978年投入商业运行的电站,目前仍在运行中,是世界上最大容量的压缩空气储能电站。机组的压缩机功率60MW,释能输出功率为290MW。系统将压缩空气存储在地下600m的废弃矿洞中,矿洞总容积达×105m,压缩空气的压力最高可达10MPa。机组可连续充气8h,连续发电2h。该电站在1979年至1991年期间共启动并网5000多次,平均启动可靠性。电站采用天然气补燃方案,实际运行效率约为42%,扣除补燃后的实际效率为19%。 美国McIntosh 美国Alabama州的McIntosh压缩空气储能电站1991年投入商业运行。储能电站压缩机组功率为50MW,发电功率为110MW。储气洞穴在地下450m,总容积为×105m,压缩空气储气压力为。可以实现连续41h空气压缩和26h发电,机组从启动到满负荷约需9min。该电站由Alabama州电力公司的能源控制中心进行远距离自动控制。与Huntorf类似的是,仍然采用天然气补燃,实际运行效率约为54%,扣除补燃后的实际效率20%。 日本上砂川盯 日本于2001年投入运行的上砂川盯压缩空气储能示范项目,位于北海道空知郡,输出功率为2MW,是日本开发400MW机组的工业试验用中间机组。它利用废弃的煤矿坑(约在地下450m处)作为储气洞穴,最大压力为8MPa。 中国 我国对压缩空气储能系统的研究开发开始比较晚,大多集中在理论和小型实验层面,目前还没有投入商业运行的压缩空气储能电站。中科院工程热物理研究所正在建设先进压缩空气储能示范系统,该系统为非补燃方案,理论效率41%,实际运行效率33%。 在建的项目有江苏金坛压缩空气储能电站,利用盐穴储气,占地平方公里,最大容腔体积32万㎡。 七 国内企业和机构 中科院热物理所 中科院工程热物理所在10MW先进压缩空气储能系统研发与示范方面,已完成10MW先进压缩空气储能系统和关键部件的设计,基本完成宽负荷压缩机、高负荷透平膨胀机、蓄热(冷)换热器等关键部件的委托加工,正在开展关键部件的集成与性能测试;全面展开示范系统的集成建设,于2016年6月完成。 清华大学电机系 清华大学电极控制理论与数字化研究室,由卢强,梅生伟等带头,该团队主要研究智能微电网,压缩空气储能等,压空方面的主要路线为非补燃型压缩空气储能技术。 澳能(毕节) 澳能集团有限公司简称澳能工业,成立于2011年,是在与中国科学院工程热物理所合作开发超临界压缩空气储能技术,利用电网负荷低谷期的余电或可再生资源发电不能并网的废电将空气压缩到超临界状态并存储压缩热,利用系统过程存储的冷能将超临界空气冷却液化存储(储能);在发电过程中,液态空气加压吸热至超临界状态(同时液态空气中的冷能被回收存储),并进一步吸收压缩热后通过涡轮膨胀机驱动发电机发电(释能)。通过系统热能和冷能的存储、回收,实现系统效率的提高。超临界压缩空气储能利用空气的超临界特性,同时解决了传统压缩空气储能依赖大型储气室和化石燃料的两个技术瓶颈。关于微控新能源 深圳微控新能源技术有限公司(简称微控或微控新能源)是全球物理储能技术领航者。公司全球总部位于深圳,业务覆盖北美、欧洲、亚洲、拉美等地区,凭借“安全、可靠、高效”的全球领先的磁悬浮能源技术,产品与服务广泛受到华为、GE、ABB、西门子、爱默生等众多世界500强企业的信赖。 面向未来能源“更清洁、高密度、数字化”的三大趋势,公司持续致力于为战略性新兴产业提供能源运输、储存、回收、数据化管理提供系统解决方案。
可靠性工作比较复杂,需要长期积累经验教训,企业应该遵循分步实施的原则,结合企业的实际情况,找到切入点。以下四个方面是企业在产品可靠性方面可以开展的工作。
(1)按照“先人后事”的原则,优先设立相应的组织机构或安排相关专业人员,逐步打造一支可靠性专业团队。
(2)从元器件入手。数据显示,整机的故障中有70%左右是由外购件、外协件、配套件这些外购外协件引起的,每个企业具体情况会有所不同。而且产品一旦选用了一个厂家的某物料,其质量、成本、可采购性基本上60%都已固化,后期的一系列改进、保障策略所达到的效果只能占到40%,所以物料选型影响重大。
物料选型与认证是一项产品工程,如何确定物料的规格,如何识别不同厂家的物料优劣,如何对物料厂家进行认证,如何监控物料厂家的质量波动,这些专项技术,在国际领先公司都有专业的团队进行研究,并有系统化的流程保障物料选用,而目前国内企业在这方面普遍比较薄弱,因此从物料选用开始,产品质量及可靠性就和业界领先公司拉开了差距,可以说是输在了起跑线上。
外国有些企业将零部件分为致命件、重要件、一般件3个等级,重点关注致命件的可靠性。这种分类法值得国内企业借鉴,抓元器件的可靠性可以先从致命件开始。
(3)从可靠性测试入手。对于国内很多企业来说,还不具备开展可靠性设计的能力,那么可以先开展可靠性测试方面的工作,了解产品可靠性的状况,暴露可靠性问题,尽量将故障消灭在产品出厂前。
可靠性测试需要注意实验室试验与现场测试并重,要以现场测试为主。现场是真实使用的场所,影响可靠性的因素更复杂,温度、湿度、振动等与实验室的情况完全不同,现场是暴露可靠性问题最重要的场所。现场测试要制定随机抽样规则,与用户配合好,要反映真实使用质量的情况,特别是失效分析,有些要带到实验室外进行跟踪试验,不仅测试自己的产品,也要测试同类国内、外竞争对手的产品,以查找原因,找到如何提高产品可靠性的办法。
(4)从失效分析入手。通过对研发、测试、小批量试产、量产阶段、用户现场的器件失效分析,找到失效的根本原因和改进措施,及时纠正和预防失效的发生。发现问题越早,解决问题的成本也就越低,因此即使是研发调试过程中出现的个别器件失效,也要进行彻底的失效分析,明确失效机理,进而采取对应的解决措施。一家电子设备企业深受产品可靠性问题的困扰,通过失效分析,找到了很多产品故障的原因,经过设计改进和过程控制措施,使产品故障率大幅降低。
副标题# 供电技术论文篇二 供电可靠性技术研究 摘要: 供电可靠性是衡量电力系统技术水平的一项重要内容,实现供电可靠性才能科学的发挥供电设备的最大潜力,以达到为用户提供优质的电力服务,实现供电系统的安全。由此可见加大对供电可靠性的研究,不断提高电力系统的供电技术水平就成为电力企业必须要认真对待的问题。本文对企业如何实现供电的可靠性做了详细的论述,并提出了针对性的措施。 关键词:电力系统;供电可靠性;技术措施 中图分类号:文献标识码:A 文章编号: 在电力系统中,供电可靠性一般用供电可靠率来进行考核,供电可靠率是指在统计时间内,对用户有效供电时间总小时数与统计期间小时数的比值,由此可见,要提高供电可靠率就要尽量缩短用户的平均停电时间,以下笔者对电力系统如何提高供电可靠性提出了一些技术措施。 一、实现供电可靠性的重要意义 随着我国经济和社会科学技术的不断发展,使得变电运行系统的可靠性越来越重要,供电可靠性用户直接相连,由于变电运行系统多采用辐射式的网状结构,因此对独立的故障非常敏感,对用电客户的电力供应可靠性的影响也是最大的,直接关系着国民经济的发展。对变电运行供电系统的可靠性进行研究是供用电质量的保证,同时也是实现电力工业现代化发展的有力抓手,对完善和改进我国电力工业技术与管理,提高其经济效益与社会效益以及进行电力运行网络建设和改造意义重大而深远。在当前市场经济环境下,供电的可靠性是电力生产企业保证自身经济发展的基础,也是电力企业必须实现的技术指标,它已经成为电力企业管理的一项重要内容。 二、实现供电可靠性的有效措施 (一)提高供电可靠性的技术措施 1、加大检修力度 加快实现现代化的电网改造是提高供电可靠性的关键,这就要求我们在电网改造方面加大改进力度。电网改造离不开科技的运用,为了提高供电可靠性,要推广状态检修,通过在线监测及红外测温等科学手段按实际需要进行停电检修。在保证安全的情况下大力开展带电作业的研究,减少设备停电时间。还要采用免维护或少维护设备,延长设备检修周期,并根据实际情况改变设备到期必修的惯例。 2、实现配电网络保护自动化 开展配电网络保护自动化工作,实现故障区段隔离、诊断及恢复、网络的过负荷监测、实时调整和变更电网运行方式和负荷的转移等来减少停电频率。加快对旧站进行综合自动化改造,积极开展配电线路自动化的研究工作,通过研究配电网结线主要模式,根据实际情况制定符合且满足配电自动化要求的改造方案并逐步实施。 3、加强配电线路的绝缘性 安排供电主要设备的停电时对供电可靠率的影响中架空线路占很大的比例,所以提高线路的绝缘性对供电可靠性的提高有明显的作用。可以利用电力电缆供电容量大、占路径小及故障率低的特点,不断加大铺设的电缆条数,对新建的线路也尽可能使用电缆。对因地理因素而条件不足的线路,建议将裸导线更换为绝缘导线,以提高抵御自然灾害的能力。 4、加大检修的灵活性 在配电检修中,应尝试将每年单一性的配电设备检修计划改为根据设备的具体技术状况及实际运行存在的缺陷的多少及其严重性进行状态检修,对是否进行配电网施工作业进行灵活处理。可以通过改良接线,保证线路以灵活方式和适当负荷水平运行,特别是多用户的线路。 5、完善低压网及台区的改造 低压网的改造应逐步用低压电缆取代原来的接户线,以解决因用户负荷增加而进线容量不足引起的故障。另外还要完善台区的改造,升高台架避免由用户引起的事故性停电。在台区改造时要严格按照设计标准实行规划改造并分步实施,并且要加强与城建规划和市政建设的协调配合做好宣传工作,以解决实际工作中存在的问题,加大低压台区改造的力度。 6、加大巡查力度 加强配网维护与巡查工作,特别是在多用户和常发故障的线路,发现缺陷要及时处理,不断提高设备完好水平。另外,还要做好预防事故及事后的抢修工作。 (二) 提高供电可靠性的组织措施 1、分解指标超前预测 在组织措施上要实行指标的分解,找出影响供电可靠率的直接原因,还要编制具体的可靠性指标滚动计划,对可靠性指标进行超前控制。 2、加强计划停电的管理 要加强计划和临时停电的管理,尽量缩短停电时间,加强协调配合及进行其他改革。统筹安排计划停电,使输、变、配电施工一条龙同时进行。还要利用事故处理的机会进行预接开关或其他设备的检修工作,达到一次停电多方维护。 3、制定管理考核方法 制定具体的供电可靠性管理考核方法,完善事故处理等相关制度,使供电可靠性管理工作日趋完善,尽量减少停电时间,提高供电可靠性。 4、加强基础资料的管理 对基础资料的收集和整理及对基础资料的完善有助于准确统计出供电可靠率,从而找出影响供电可靠性的主要原因而及时进行改善。 (三)提高供电设备使用质量的措施 1、采用新产品不断提高设备的运行可靠性 采用高质量免维护的六氟化硫和真空断路器、微机保护等优良产品来提高设备运行的可靠性。近几年来线路继电保护装置全部更换为微机保护装置,电出线也更换为微机保护装置。采用优质的设备能大大减少停电机会,减少因设备原因而造成的停电次数,能够有效地提高运行可靠性。 2、做好运行维护工作提高设备健康水平 电力系统的各种电气设备和输配电线路以及保护装置都有可能会因发生故障而影响系统的正常运行,对用户的正常供电产生很大影响。在提高设备的健康运行水平方面,做好预防工作和事故预想是保证设备安全运行减少设备故障的有效方法,运行人员加强巡视维护质量可以及时发现或消除设备隐患,提高供电可靠性。 (四)缩短停电时间提前做好设备停送电准备工作 供电可靠性承包方案规定停电期间的工作票准备和停送电操作所占用的时间,为变电所值班人员的承包时间。对计划内或非计划内的停送电工作,运行人员积极与施工部门配合提前做好准备工作。 1、加强两票准备工作 为缩短填写操作票时间和保证在操作完成后办理许可工作手续,变电所在停电工作前一天接到调度下达停电工作计划命令后,所长或当值值班长要与施工单位调度联系,由签发人签发好第二天的工作票,前一天晚上当班运行人员必须准备好第二天停、送电全部操作票及许可工作票。每一次操作前当班都要将安全工具、标示牌等放置在准备使用的地点以备待用。当调度下令后即可立刻执行操作任务,这样既加快了速度,也缩短了许可工作时间。 2、 及时了解现场工作进度 值班人员应随时了解现场工作进度,提前做好送电准备工作。一旦现场工作提前结束应做到随时能恢复送电操作。工作票、操作票处理工作除交接班时间以外,能在本班完成的尽量完成,不能无故推延到下一班。接班人员接班后根据接班情况,应及时安排本班的工作任务,发现问题要以现场工作为主,及时解决不得推逶。 3、实行双重监护制安全按时完成工作任务 为了在规定时间内按时完成工作任务又能保证供电安全,对各变电所可以实行所长或值长与监护人双重监护制。操作时所长或值长与操作监护人共同监督其操作,操作结束后站长或值长与监护人分工布置现场安全措施和调度报告,采用这种管理办法后,有效地压缩了操作时间,也缩短了工作票许可时间。 结 语 供电系统的可靠性是衡量供电系统对用户持续供电能力的有效量度。电力可靠性管理是电力系统和设备的全面质量管理和全过程的安全管理,是适合现代化电力行业特点的科学管理方法之一,也是电力工业现代化管理的一个重要组成部分,所以在具体实践中要对供电可靠性进行系统的研究和高度的重视。 参考文献 [1] 范明天,刘思革,张祖平,周孝信.城市供电应急管理研究与展望[J]. 电网技术. 2007(10) [2] 邱丽萍,范明天.城市电网最大供电能力评价算法[J]. 电网技术. 2006(09) 看了“供电技术论文”的人还看: 1. 电力方面专业技术论文 2. 电力技术论文范文 3. 浅谈电力技术论文 4. 电力专业技术论文 5. 有关电力行业技术论文
计算机通信网络可靠性设计技术论文
在当今信息网络高速发展的时期,计算机通信网络技术的发展直接关乎着人们的生活和工作方式,也影响着我国经济的发展。目前,我国计算机通信网络系统的建设水平仍较低,尤其是计算机通信网络可靠性的设计,阻碍计算机通信网络技术的整体发展。这需要加大对计算机通信网络可靠性的研究,提高计算机通信网络的可靠性。本文基于可靠性理论从以下几个方面对计算机通信网络优化设计技术进行了深入探讨。
一、计算机通信网络可靠性理论。
计算机通信网络的可靠性是信息网络系统安全的基础,是反映计算机网络系统在一定时间及范围内能完成指定功能的概率和能力。计算机通信网络可靠性理论包括两方面,分别是计算机通信网络的可靠性和可靠度。可靠性是计算机通信网络保持连通并满足通信要求的能力,是计算机通信网络设计和运行的重要参数。可靠度是指计算机通信网络在一定条件下完成某种功能的概率,分为二终端可靠度、λ终端可靠度以及全终端可靠度三种类型。 计算机通信系统可靠性主要包括计算机网络安全对外来攻击的抵抗能力,计算机网络安全的生存性及计算机在各种环境下工作的有效性和稳定性。因此,在对计算机进行相关网络通信设备的维护时,要考虑各方面对其的影响,保证用户网络进行维护时能够提供有效的使用链条,确保计算机在安全的条件下运行。
二、影响计算机网络通信可靠性的因素。
1、网络安全管理对网络可靠性的影响。
计算机通信网络的设计不同于一般的网络产品和设备的设计方式,具有设计规模大、复杂性强的特点。因此,为了计算机网络的可靠性,需在设计中避免计算机发生故障、通讯信息丢失,尽可能保证网络数据的完整性,保证计算机网络足够的可靠性。在设计时,需要采取先进的计算机网络信息管理方式,分析网络运行的参数,使计算机通讯网络保持良好的状态,避免安全隐患的发生。
2、传输交换设备对网络可靠性的影响。
计算机通讯网络在建设过程中,应在方案制定时,认真考虑方案的各项细节,避免错误的发生,并且需考虑通信网络的容错能力和今后经济发展的需要。因此,在对线路进行安装时,应采取双线的形式,合理对线路布置,避免在计算机网络出现问题时,造成巨大的损失。对于网络集成器需将所有计算机用户的终端进行集中处理,通过对线进行拆分与集中,使计算机通讯设备和其他设备接入网络进行处理,这构成了计算机网络信息的第一道防线,但由于计算机网络集成器是单点失效设备,如发生一定的故障,则导致与其连接的用户无法到场。因此,网络集成器对于网络安全是十分重要的。
3、用户设备对网络可靠性的影响。
计算机用户在使用计算机时,用户在终端上的设置影响了所有面向用户的.程序设备,这充分体现了计算机通信设备整体的网络通信安全可靠性,保证计算机良好的使用状态,也保证了计算机在对终端后期维护的高效性。
4、网络拓扑结构对网络可靠性的影响。
在计算机网络规划和设计过程中,网络拓扑结构在计算机网络通信中起到非常关键的作用,网络拓扑结构在不同的环节和领域起到的功能和作用都不同,对于计算网络可靠性方面来说影响极为突出。在网络通信刚建立完成时,由于固有的有效性及容错性,限制了网络通信的发展,但网络拓扑的出现,使计算机网络通信的可靠性提供了理论依据及解决方式,具有十分重要的意义。
三、计算机网络通信可靠性设计原则。
1、制定合理的网络通信管理条例。
在保证设计上合理性的前提下,制定合适的网络通信管理条例,加强网络维护人员对网络的维修,提供良好的运行环境。维护人员还应保持一定的工作能力和职业素质,为网络通信系统提供技术支持。
2、设计符合国家相关的规定。
计算机网络通信在设计时,应严格遵循国家的相关规定和标准,采取开放式的设计结构,支持异构设备和系统的连接,并加强计算机的扩展功能,保证计算机的先进性、实用性和稳定性。
3、设计应确保互联能力。
计算机网络通信系统在保证互联能力后,将可以支持更多的网络通信协议,保证计算机在使用时,有足够的安全和稳定性,提升计算机的容错能力,并提高计算机主干网的网速,加强整个网络的反应速率。
污水处理厂曝气池运行管理问题及对策论文
摘要:当前社会背景下,我国工业生产中不断倡导绿色、低碳以及环保的生产方式,因此环境污染问题受到相关部门的高度重视。本文将对污水处理厂曝气池运行管理常见问题及处理对策进行分析。
关键词:污水处理厂;曝气池管理;问题;对策
曝气池通常由曝气系统、池体、进出水口三个部分组成,是一种利用活性污泥法进行污水处理的构筑物,常见的曝气方法分为机械曝气和鼓风曝气。以下从污水处理厂曝气池相关研究、污水处理厂曝气池运行管理中常见的问题、污水处理厂曝气池运行管理问题的处理对策三个部分进行阐述。
1、污水处理厂曝气池相关研究
鼓风曝气
鼓风曝气又被称为压缩空气曝气,通常由专用曝气器与曝气风机构成。鼓风曝气方法的运用必须建立在长方形混凝土池基础上,将池内划分为多个单独的进水隔间,当污水入池后,自另一端排出。在排水过程中,空气会通过空气压缩机输送到池底空气扩散装置中,以气泡形式排出。
机械曝气
机械曝气也是一种曝气方法,这种曝气方法主要是利用池内的机械叶轮的转动,搅动池内废水,致使空气中的氧溶入水中。叶轮装在池内废水表面进行曝气可称为表面曝气,利用该装置来使废水充分流动,从而增大吸氧量。总的来说,机械曝气通常包括:标准型加速曝气池、圆形表面加速曝气池、方形加速曝气池,通过机械曝气池提高充氧能力。
新型工艺
随着科技的发展,近年来,有一些新型曝气方法呈现在污水处理工作当中,例如:纯氧曝气、深井曝气、富氧曝气。纯氧曝气主要是利用鼓风曝气方法,将纯氧或富氧鼓入水池中,此后再将密封盖盖上,以此提高水池充氧效率;深井曝气通常应用在深达50m~150m的曝气池中,并通过水压来去除BOD(生化需氧量),这种曝气方式在日本、美国、加拿大等地都得到了有效应用。
2、污水处理厂曝气池运行管理分析
在污水处理厂中,曝气池的运行对污水处理效率有着直接联系,同时也是污水处理的关键环节。曝气池在运行中,主要利用完全混合式设备来对进水闸阀进行调节,从而实现进水量平衡。活性污泥法体系,则根据对出水质量的要求,在进行控制时必须将污泥的负荷程度、污泥的浓度等考虑其中。另外在对污泥进行脱氧处理时,必须对硝化菌加以注意,力求达到一个高效的处理质量。当曝气池正常运行时,活性污泥通常会呈现出棕黄色的絮状,并且具有很强的吸附沉降性能。污泥指数是对活性污泥中松散程度的反应,换言之,当污泥指数过低的时候,充分表明污泥颗粒过于细小,且所含的无机物质相对较多,如果污泥指数过高,便表面污泥颗粒过于粗大,且难以实现分离及沉降。管理问题如下。
缺乏高素质人才
目前,一些大型的污水处理厂发展时间不长,监管制度不健全,缺乏专业素质较高的管理人员,由于这种现象的出现,必然导致曝气池在运行管理中存在着问题。
监控技术不到位
监管制度存在着漏洞,这是曝气池运行管理普遍存在的问题,也是导致监管不严的原因之一。监管制度的不严格,致使其在运行管理中没有制度依据,致使管理工作不到位。
3、污水处理厂曝气池运行管理问题的处理对策
综上,笔者对污水处理厂曝气池的运行进行了分析,为了促进污水处理厂曝气池运行效率的提升,我们必须采取一系列行之有效的策略,笔者将从以下方面进行阐述。
加强对人才的管理与培养
目前,大多数污水处理厂中,对管理人员的专业素养要求过,人才的流动性也较慢,这样能在一定程度上适应污水处理厂的`发展,而大型污水处理厂要想保证稳定和可持续性发展,就要加强对人才的培养与管理,主要可以从以下几个方面入手:
(1)在人才的选拨中,首先要制定符合自身发展的人才培养管理制度。
(2)严格要求新员工的素养要求,加强对员工的培训力度,定期对员工进行培训,在工作中不断提高员工的专业素养,拓宽员工的晋升机制,给优秀员工创造更多机会。
规范运行管理机制
运行管理机制的规范在极大程度上促进了污水处理厂的发展,除此之外,还要不断规范与员工之间的合同,经济效益达到目标时应提高员工的福利制度,在实际的工作中,对员工实行奖罚分明制度,对有贡献的员工要进行褒奖,而对于有错误的员工要进行批评,强化岗位责任制,加强绩效考核等等。由于曝气池在运行过程中,由于长时间运行,部分死角会出现许多积泥,为了促进曝气池的有效运行,相关人员应对死角的积泥进行清理,以免发生曝气设备被淤泥堵塞的情况,另外,相关人员还应对曝气头定期检查,以免导致曝气池运行不畅。其次,还应对曝气叶轮的运行加以注意,并对其浸没深度进行查看,确保电流的流畅。据调查,曝气池在运行中,还会出现很多白色气泡,当出现这种现象,便充分表面曝气池中混合液的污泥浓度相对过低,据此,相关人员应充分提高污泥的浓度,缓解不良现状。除此之外,相关人员还应注意到曝气池内的空气与外界温度的差异,以免导致空气流通不错的情况发生。
4、结语
综上,对目前污水处理厂曝气池运行管理现状进行了分析,从中发现一些问题,为了促进污水处理厂的有效发展,相关人员必须加强对曝气池的管理,提高污水处理效率。
参考文献:
[1]刘春杰.关于小型污水处理厂运行管理的若干问题探讨[J].北方环境,2011,05:113+120.
[2]陈明,安康,宋海涛,王金洲,范举红.小城镇污水处理厂运行管理问题探讨[J].给水排水,2011,S1:93-96.
已发送 注意查收可以请采纳
管式和盘式。盘式是使用得较早,较成熟的曝气器。一开始的曝气器就是盘式的,而且是刚玉和陶瓷材质的。盘式曝气器的缺点主要如下。1、存在曝气死区(简单分析,整个盘底都是),搅拌性能不如管式。2、相对浪费管道,整个工程造价要高于管式。3、不曝气的时候,泥就直接沉积在盘的表面,再次启动直到要把泥重新搅拌起来,比起管式要多耗费30~40%的能量。4、布置密度不如管式,如果你池子比较小,曝气量又十分大,这样就只能用管式了,因为在这平面内无法布再多的盘了。优点:从国标上规定,盘式压头损失要比管式小一点,大概1000pa;传氧效率比起某些管式,要略高一点点。与盘式曝气器相比,管式的优势很明显:1、搅拌性能好。整个管式曝气器,是360度打孔的,不存在曝气死角区。2、节省了部分管道的费用,工程造价要明显低于盘式。3、不曝气的时候,泥只能沉积在管面最中间很小的范围,稍稍往边一点弧度就增大,泥就无法沉在上面。再次启动的时候,一振就把泥振起来并且迅速搅拌。所以在SBR、CASS这类工艺中,管式优势十分大。4、在曝气量要求