首页 > 期刊论文知识库 > 变压器常见故障论文文献综述

变压器常见故障论文文献综述

发布时间:

变压器常见故障论文文献综述

关于变压器的保护措施分析论文

摘要:文章分析了换流变压器的特点以及超高压直流输电的各种运行工况对换流变压器保护带来的影响。提出了换流变压器保护的总体设计思想。

关键词:换流变压器 保护 分析

0 引言

超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状态等。

1 换流变压器的特点

短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。

直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使地电位发生变化,造成直流电流流入变压器原边绕组,使换流变压器发生直流偏磁,工作点偏移。如果此直流电流过大,会导致换流变压器铁心饱和,同时损耗和温升也将增加。因此,要配置相应的保护防止这种情况下对换流变压器造成的损坏。

谐波 由于换流器的非线性,在交流和直流系统中将出现谐波电压和电流。对于换流变压器,主要会流过特征谐波电流,即p*n+1次谐波电流(p为脉波数,n为任意正整数)。在运行中,谐波电流会使换流变压器损耗和温升增加,产生局部过热,发出高频噪声,还会使交流电网中的发电机和电容器过热,对通讯设备产生干扰。这些谐波电流应加以考虑,以免对保护装置造成影响。

调压分接头 为了使直流系统运行在最优的工况,减少交流系统电压扰动对直流系统的影响,换流变压器都具有较大范围的利用分接头调整电压的功能。例如:三峡到常州工程三峡侧换流变压器档位范围+25/-5,每档调节范围。因此保护设计时要考虑分接头调整带来的影响,如正常运行时变比的变化等。

直流系统的特殊运行工况 由于直流控制系统的特殊调节作用,使换流变压器遇到的运行工况以及故障情况不同于普通变压器。这些不同主要包括以下几点:

直流系统的故障相当于换流变压器的区外故障,一般短路电流都不会太大。对于整流侧,穿越换流变的'电流会增大,但由于直流控制保护系统的快速作用,很快会减小。对于逆变侧,直流系统的故障会造成直流电流无法传变至交流侧,反而会使穿越电流减小。

对于换流变压器保护来说,直流系统造成的最严酷的区外故障为整流侧的阀短路故障,相当于换流变出口的两相或三相短路故障。但由于直流保护的干预,实际只会出现半个周波的两相短路。对于逆变侧,由于触发角很大,阀短路时流过换流变压器的电流较整流侧小很多。

换流变压器发生区内故障时,直流系统一般不会提供短路电流。这是由直流控制系统的作用造成的。在整流侧,功率由交流侧转换至直流侧,换流变压器的故障只会造成这种转换的停止,而不会使功率反向,因此直流侧不会提供短路电流;在逆变侧,当故障轻微换相可以正常进行时,由于直流系统的定电流控制特性,直流侧不会提供额外的短路电流。如果故障严重,必然造成换相无法进行(交流电压降低),直流侧更不会提供短路电流。

由于直流控制系统快速的调节作用,在需要的时候,可以快速的将功率传输由一个方向反至另一个方向,对于换流变压器来说,就会出现快速的潮流反向。

换流变压器保护区内发生接地故障时,实际造成了阀的短路。由于阀的单向导电性,故障电流半周电流大,半周电流小,导致差电流中含有较大的二次谐波。

对于逆变侧的换流变压器的区内故障,往往会导致换相失败的发生,从而在穿越电流电流中产生很大的谐波,但差电流(即提供给故障点的电流)仍主要为工频分量。

由于换流变压器的特殊运行方式以及较大的漏抗(作为换相电抗),二次侧故障一般不会造成各侧TA的饱和,即使饱和造成保护的“误动作”也是正确的(换流变的区外即阀的区内故障,都会造成直流的停运)。但对于一个半开关的接线方式,交流系统区外故障时高压侧TA存在饱和的可能。。这种情况下的误动作是不可接受的,必须防止。

在阀未解锁前,当阀侧交流连线存在接地故障时,并不产生接地电流,也不会对变压器造成损害。但如此时不发现故障,阀一解锁后,就会造成阀的短路。因此要设置保护检测这种情况下的接地故障。

2 换流变压器的保护措施

保护的配置原则 为了保证既可靠又安全,在既简单又经济的情况下,可以这样配置换流变压器保护:每台换流变压器保护装设两台保护装置,每台保护装置的电源、输入独立,每台装置的输出都可以到达断路器的两个跳闸线圈以及直流控制的两个系统。每台装置采取措施防止自身误动作,而靠两装置的或出口防止故障情况下的拒动作。 保护的配置及原理 为了避免换流站特有的谐波对保护的影响,保护装置应从硬件和软件上采取措施,使保护只针对工频分量。

主保护包括稳态比率差动、差动速断、工频变化量比率差动、零序比率差动、过激磁保护。后备保护包括过流、零序过流、过电压、零序过压、饱和保护。

稳态比率差动保护 由于变比和联接组的不同,电力变压器在运行时,各侧电流大小及相位也不同。在构成继电器前必须消除这些影响。换流变压器的TA一般装在各侧绕组上,因此原、副边绕组电流相位相同,因此只需要对变比的影响进行补偿。以下的叙述的前提均为已消除了变压器各侧幅值和相位的差异。

稳态比例差动保护用来区分感受到的差流是由于内部故障还是不平衡输出(特别是外部故障时)引起。装置采用初始带制动的变斜率比率制动特性,稳态比率差动元件由低值比率差动(灵敏)和高值比率差动(不灵敏)两个元件构成。为了保证区内故障的快速切除,只有低值比率差动元件(灵敏)设有TA饱和判据,高值比率差动元件(不灵敏)不设TA饱和判据。

对于换流变压器分接头调整造成的差动电流不平衡,可用三种方法来解决:一是通过整定值躲开;二是利用浮动门槛自适应调整;三是利用分接头位置来调整。方法一、二简单实用,三实现起来复杂。

工频变化量比率差动保护 装置中依次按相判别,当满足 一定条件时,工频变化量比率差动动作。工频变化量比率差动保护经过涌流判别元件、过激磁闭锁元件闭锁后出口。

由于工频变化量比率差动的制动系数可取较高的数值,其本身的特性抗区外故障时TA的暂态和稳态饱和能力较强。工频变化量比率差动元件提高了装置在变压器正常运行时内部发生轻微匝间故障的灵敏度。且工频变化量比率差动保护不会受换流变压器分接头调整造成的差动电流不平衡的影响。

后备保护 后备保护包括过流、零序过流、过电压、零序过压、饱和保护。

3 小结

分析换流变压器与交流系统的主变压器比较所具有特点,阐述了这些特点以及直流输电的各种特殊运行工况对换流变压器保护带来的影响,并提出了相应的保护方案。

变电运行中的隐患问题与解决方法探讨论文

论文摘要:对变电运行隐患及其预控的概念进行了阐述,针对变电运行作业危险点及隐患问题提出了强化危险点预防、加强人员安全教育培训和将红外热像仪等新技术融入变电运行等有效的解决方法和预防措施。

论文关键词:变电运行;隐患;解决方法

随着我国经济建设步伐的不断加快,作为电网安全前沿的变电运行安全管理工作越来越得到企业、社会和研究人员的关注。变电运行的一大特点是设备多、危险点或隐患出现的几率大,而且隐蔽性强,变电运行作业中任何不规范的工作程序都会影响电力的正常运行甚至整个电网的安全和重大人身事故的发生。所以,如何寻找设备运行状况的危险点、对潜在的安全隐患问题进行分析和探讨、制订严谨的、科学的安全防护措施已成为电力系统变电运行亟待研究和解决的热点问题。

一、变电运行隐患及其预控的概念

变电运行中潜在的可能发生安全事故的场所、元器件、作业工具和操作等均称为安全隐患。

安全隐患分为三个方面。

一是作业场所未按照环境与职业健康安全要求进行设置,高温、噪音、气味等危害的作业环境会直接或间接地对作业人员的身体健康造成危害而诱发职业病。

二是作业现场的机器设备防护不到位,如缺乏危险标识、机械链轮不设安全罩等,会对人体直接造成伤害。

三是安全管理不到位,操作人员安全意识淡漠,违反安全作业条例所形成的安全隐患。

危险点隐患的预控就是在作业前采用技术手段,找出作业危险点,对其进行科学的分析和评估,制订严谨的、切实可行的控制方案、采取积极有效的预防方法。它既是将事故隐患消除在萌芽状态或将安全隐患带来的风险和损失降至最低,也是确保电网正常运行的有效途径。

二、变电运行管理中的危险点与隐患分析

1.变压器

(1)操作危险点及隐患。变压器的操作是变电运行操作中最常见的、典型的操作之一,它的内容包括向变压器充电、带负荷、切断空载变压器等。通常情况下,操作变压器时,在切合空载变压器的过程中,存在操作过电压情况的出现而影响或危及变压器的绝缘的现象以及变压器的空载电压升高而导致变压器绝缘遭受损坏的危险和隐患。

(2)防范措施。变压器的操作应谨慎小心,避免因疏忽而产生难以挽回的后果。变压器采用中性点接地方式是为了避免产生操作过电压。

变压器中性点接地倒闸应遵循的`原则:

1)当数台变压器运行时并列于不同的母线,为防止由于母联开关跳开发生母线不接地现象,要求每一条母线应有1台以上变压器中性点直接接地。

2)当变压器低压侧配有电源时,要求变压器的中性点必须直接接地,以防止当高压侧开关跳闸时变压器成为中性点绝缘系统而产生安全隐患。

3)应采用投入电抗器、降低送端电压和改变有载调压变压器分接头等方法,避免变压器空载电压的升高。

2.母线倒闸

(1)操作的危险点。母线是变电运行设备的汇合场所,其特点是连接元件多、操作工作量大。在母线的送电、停电以及母线上的设备在两条母线之间的倒换过程会产生危险点和隐患,应严格按照操作要求进行操作。

母线操作潜在的危险点有以下几点:

1)带负荷拉刀闸事故。

2)对继电保护或自动装置切换不正确而引起的误动。

3)在向空载母线充电时,电感式电压互感器与开关断口电容之间所形成的串联谐振。

(2)防范措施。

1)当备用母线存在故障时,为防止事故扩大可由母联开关将其切除。

2)在母线倒闸过程中,应将母联开关的操作电源拉开,避免操作过程中母联开关误跳闸,造成带负荷拉刀闸安全事故的发生。

3)在进行将一条母线上的所有元器件全部倒换至另一母线上时,应根据操作机构的位置和操作人员的习惯,正确使用以下两种倒换次序:一种是将某一元件的刀闸合于一母线,而拉开另一母线刀闸;另一种是将全部元器件均合于一母线之后,再拉开另一母线的所有刀闸。

4)当设备倒换使得母线上的电压互感器停电,因注意不可使继电保护及自动装置因失去电压而发生误动作而向不带电母线反充电,从而引起电压回路熔断器熔断、继电保护误动等情况的出现。

5)由于设备倒换至另一母线或母线上的电压互感器停电,继电保护及自动装置的电压回路需要转换由另一电压互感器给电时,应注意勿使继电保护及自动装置因失去电压而误动作。避免电压回路接触不良以及通过电压互感器二次向不带电母线反充电的现象。

6)母线操作时应根据母差保护运行规程对母差进行保护。母差保护应贯穿于倒母线操作过程中,母线装有自动重合闸,操作中应根据需要对重合闸方式作相应改变。

3.直流回路操作时的危险点及防范

直流回路操作是变电运行操作人员常见的操作项目。直流回路操作方法不正确,致使某些保护及自动装置误动作等危险和隐患。

(1)取下直流控制熔断器时,为防止产生寄生回路,避免保护装置的误动作,应严格按照先取正极、后取负极的操作顺序;装上直流控制熔断器时,应严格执行先装负极,后装正极的操作。在进行装、取熔断器时,判断正确后应果断和迅速,避免反复地接通、断开的操作方式,在取下和再装上之间应有不小于5s的时间间隔。   (2)运行中需要停用直流电源时,应采取先停用保护出口连接片,再停用直流回路的正确顺序;恢复时采用相反的操作顺序。

(3)断路器停电操作中,应在确认拉开开关做好了安全措施之后取下。

(4)在断路器送电操作中,断路器的控制熔断器应在拆除安全措施之前装上。这是因为在装上控制熔断器后,可以检查保护装置和控制回路工作状态是否完好。

4.环形网络的并解列操作危险点及其防范

环形网络的并解列即合环、解环操作,是电力系统变电运行中由一种方式向另一种方式转变的常见操作。环网的并解列操作中,除应满足线路和变压器自身操作的一般要求,还应正确预计每一步骤的潮流分布、对各元件允许范围进行安全控制,确保环网并解列操作后电力系统的安全运行。

环网的并解列操作应满足以下条件:

(1)初次合环,或在可能引起线路相位变化的检修之后进行合环操作时,为保证相位一致,必须随时进行相位测定。

(2)应对电压差进行调整和控制,保证最大允许电压差不超过20%;特殊情况下,应将环网并列最大电压差控制在30%以内。

(3)合环后应保证线路各元件不过载、对各结点电压进行控制和监测,使之不超出规定值。

(4)继电保护系统应满足和适应环网的方式。

(5)解环操作时,应综合考虑解环对潮流电压、负荷转移以及自动装置继电保护的变化等。

以上这些潜在的危险点构成变电运行的隐患,若不能得到及时有效的预控,将会导致安全事故的发生。

三、变电运行作业危险点及隐患预防措施

变电运行日常工作中,应在建立规章制度执行危险点控制的同时,强化危险点预防工作。

1.提高危险点预防意识

变电运行作业中,应结合现场实际,强化安全理念,不断提高操作人员的安全意识,实现创新管理。将操作人员心理状态、变化因素等纳入危险点预防工作范围内。

2.实行人性化管理

“人性化”的安全管理是众望所归,它是企业实现长治久安的关键,是刚性约束与柔性管理的润滑剂。合理运用人性化管理,可增强操作人员工作的责任心和荣誉感,激发工作人员爱岗敬业精神。

3.强化员工执行标准化操作的力度

通过严格执行操作票、流程卡工作制度等标准化作业模式规避操作危险点和杜绝隐患的有力保证。

4.加强人员危险性教育和培训工作

要使员工切实感受现实存在的危险。开展实用性技术培训是提高人员整体素质、防止人员误操作、对危险点有效预防和控制的重要手段。此外,还应建立有效的激励机制,提高员工的学习力。

5.将红外热像仪等新技术融入变电运行

红外热像仪可对变电运行的高、低压电气设备实时进行远距离的、非接触式的诊断。与传统的停电预防性检测相比较,红外热像仪更能对设备的缺陷进行有效地、真实的检查。由于红外测温仅仅是对物体发出的红外线进行接收而不对设备外加任何红外源,所以对运行中的设备不会损害和影响正常的电力生产、运行的连续性。

四、结论

综上所述,安全生产是电力企业常抓不懈、永恒不变的主题,是电力系统工作的中心。明确隐患的概念和构成是实现危险点的预控、确保变电运行的首要环节。只有对安全隐患进行全员、全过程、全方位的控制和预防,才能保证变电运行工作的正常运行,在给社会带来稳定的同时为企业创造效益。

故障类型 主要气体组分 次要气体组分油过热 CH4,C2H4 H2,C2H6油和纸过热 CH4,C2H4,CO,CO2 H2,C2H6油纸绝缘中局部放电 H2,CH4,CO C2H6,CO2油中火花放电 H2,C2H2 油中电弧 H2,C2H2 CH4,C2H4,C2H6油和纸中电弧 H2,C2H2,CO,CO2 CH4,C2H4,C2H6进水受潮或油中气泡 H2 自然老化 CO,CO2 最近正在写变压器论文 这是变压器内部基本故障

变压器常见的故障有变压器内部故障包括相间短路、单相接地、匝间短路及变压器漏油;由于长期过载发热使油垫损坏造成漏油。瓦斯增大,造成瓦斯继电器动作,油面降低等。外部故障有变压器套管及引出线上的短路、接地。变压器故障多半是由于绝缘降低造成的。

毕业论文变压器故障诊断

变压器故障异常分析:1.异常声音变压器正常工作时,会发出连续的、甚至“咔哒”的声音。如果产生的声音不均匀或有其他特殊声音,应视为变压器运行异常,可根据声音发现故障并及时处理。故障主要有以下几个方面:电网中出现过电压。当电网发生单相接地或电磁谐振时,变压器声音比平时更尖锐。出现这种情况时,可以结合电压表的指示进行综合判断。变压器过载。负载变化很大,由于谐波作用,变压器内瞬间出现“哇”或“咯咯”的断断续续的声音,测量仪表的指针摆动,音高高,音量大。变压器夹子或螺丝松动。声音比平时大,而且有明显的噪音。但在电流电压无明显异常的情况下,内部的夹子或压芯的螺丝可能会松动,导致硅钢片的振动增大。变压器局部放电。如果变压器的跌落式熔断器或分接开关接触不良,有“哔”的放电声;如果变压器的变压器套脏了,表面搪瓷脱落或开裂,可以听到“咔嚓”的声音。如果变压器内部放电或电气连接不良,会发出“吱吱”或“噼啪”的声音,而且声音会随着离故障的距离而变化。此时,应立即停用变压器。变压器绕组发生短路。声音中夹杂着水,温度骤变。如果油位上升,则应判断变压器绕组有短路故障。严重时会发出巨大的轰鸣声,然后可能会着火。此时应立即停用变压器进行检查。变压器外壳闪络放电。当变压器绕组高压导致引出线相互闪动或闪到外壳时会出现这种声音。此时,应停用变压器。2.有异味,颜色异常防爆管防爆膜破裂:防爆管防爆膜破裂会导致水和湿气进入变压器,导致绝缘油乳化,变压器绝缘强度降低。套管闪络放电、套管闪络放电会产生热量导致老化、绝缘损坏甚至发生爆炸。引线(接线头)和线卡过热导致异常;套管端子紧固部位松动或引出线前端打滑等,接触面严重氧化,接触过热,颜色变暗失去光泽,表面涂层也损坏的。套管结垢引起异常;套管结垢产生电晕,闪蒸产生臭氧气味,冷却风扇、油泵燃烧产生炭化气味。此外,吸湿过多、垫片损坏、油室进水过多等都会造成吸湿剂变色。3.油温异常发现在正常情况下,油温比平时高10摄氏度或负载恒定而温度升高(冷却装置正常运行时),判断变压器内部出现异常。主要是:内部故障导致温度异常。内部故障,如绕组匝数或层间短路、线圈对屏放电、内部引线接头、铁芯多点接地、涡流增大过热、零序不平衡电流等通过铁槽漏磁形成回路及发热等因素导致变压器温度异常。当这些情况发生时,还会伴随气体或差动保护动作。如果发生严重故障,也可以从防爆管或泄压阀注入油。在这种情况下,应立即停用变压器。冷却器运行异常引起的温度异常。冷却器运行不正常或出现故障,如潜水泵停止工作、风扇损坏、散热器管道结垢、冷却效果不佳、散热器阀门未打开、温度计指示故障、许多其他因素导致温度升高。进行维护和冲洗以增加其冷却效果。4.油位异常变压器运行过程中,油位异常、漏油现象屡见不鲜。检查和检查应不定期进行。主要表现如下。1、假油位:油标管堵塞;油枕吸管堵塞;防爆管气孔堵塞。2、油面低:变压器油污严重;工作人员因需要排油而无法及时补充;温度太低,油量不足,或油枕容量太小,不能满足使用要求。 以上就是华意电力对变压器故障分析处理的介绍,如果您还有更多想要了解的,欢迎在线或来电咨询。

故障类型 主要气体组分 次要气体组分油过热 CH4,C2H4 H2,C2H6油和纸过热 CH4,C2H4,CO,CO2 H2,C2H6油纸绝缘中局部放电 H2,CH4,CO C2H6,CO2油中火花放电 H2,C2H2 油中电弧 H2,C2H2 CH4,C2H4,C2H6油和纸中电弧 H2,C2H2,CO,CO2 CH4,C2H4,C2H6进水受潮或油中气泡 H2 自然老化 CO,CO2 最近正在写变压器论文 这是变压器内部基本故障

电力变压器是电力系统中广泛使用的重要高压电气设备。一旦运行中发生故障,将影响电网的供电,并可能造成较大的直接经济损失。虽然变压器目前配备了多重保护,但由于其自身原因,故障率仍然很高。金润仪表通过对客户反馈的故障现场数据的分析,总结出变压器常见故障的原因及常用的诊断技术。在输配电过程中,电力变压器是能量转换和传输的核心。变压器发生严重事故,不仅会对自身造成损害,还会中断供电,造成巨大的经济损失。变压器故障种类繁多,故障发生的趋势也不同。只有充分了解变压器的实际运行状态,综合运用各种在线和历史数据,运用各种诊断技术,才能及时发现故障隐患,排除故障。处于萌芽状态,从而保证电力系统的稳定运行。1 电力变压器常见故障分析 导电电路及调压开关故障导电电路的故障主要是引线接触不良、线圈导线接头焊接不良和虚焊造成的。接头连接不良会导致发热甚至烧毁,严重影响变压器的正常运行和电网的安全供电;变压器的引出线端子全部用铜制成,铝导体不能在室外和潮湿的地方用螺栓固定。用铜端子连接。当含有溶解盐的水,即电解液渗入铜铝接触面之间时,在电耦合作用下,铝受到强烈电腐蚀,触点迅速被破坏,产生发热和甚至是重大事故。调压开关故障主要是调压开关主触头故障、调压开关分接引线松动、调压开关触头烧毁、接点压力不足调压开关;有载调压开关中的开关接触不良,开关触点烧毁。 绝缘失效大型电力变压器的内绝缘是由油、纸、纸板等绝缘材料组成的复合绝缘结构,在电、热、机械等应力作用下不断老化。尤其是接近设计寿命的变压器,其绝缘材料在大气和水的作用下会加速老化,对变压器运行的安全可靠性产生巨大影响。变压器进水潮湿(包括套管端子进水),油质差(介损过大,有微生物,含水量高),局部过热也会造成绝缘材料的绝缘损坏和热分解。 产气故障常见的产气故障包括放电和过热。根据放电的能量密度,变压器放电故障常分为局部放电、火花放电和高能放电三种。过热故障主要是导体故障、磁路故障、接触不良和连接不良。 局部放电主要是由于油中存在气泡或固体绝缘材料中存在空洞,很可能在气隙中先引起放电;外部环境条件的影响。如果油处理没有完全降低,油中会形成气泡等。制造质量差。如果某些零件有尖角,则会发生放电。金属部件或电导体接触不良引起的放电。局部放电的能量密度虽然不大,但如果进一步发展,就会形成放电的恶性循环,最终导致设备击穿或损坏,引发严重事故。 浮动电位引起的火花放电。处于地电位的元件,如硅钢片磁屏蔽和各种紧固金属螺栓等,与大地连接松动脱落,造成浮电位放电。变压器高压套管末端接触不良也会形成浮地电位,引起火花放电。变压器火花放电的主要原因是油中杂质的影响。火花放电可以在较低电压下发生。 电弧放电是一种高能放电,常由绕组匝间绝缘击穿引起,继之引线断线或地闪络和分接开关起弧。过热故障主要是由导体故障、磁路故障、接触不良和连接不良引起的。 绕组故障绕组故障主要有接头焊接、短路、相间短路、绕组接地、匝间短路等。主要原因是(1)变压器局部绝缘在维护和制造过程中损坏。②变压器运行过程中长期过载、散热不良,杂物落入绕组,造成绝缘老化;③压紧不严密,制造工艺差,变压器机械强度不能承受短路冲击,绝缘损坏,绕组变形;④绕组受潮损坏。会引起绝缘膨胀堵塞油路,造成变压器局部过热。 漏油故障变压器漏油不仅会给电力企业带来巨大的经济损失和环境污染,还会影响变压器的安全运行。漏油主要发生在油箱焊缝处漏油。平面接头处的渗油可直接进行焊接。对于角部和筋接缝处的渗油,往往很难准确找到渗漏点,或补焊后因内应力再次渗漏。对于这样的渗漏点,可以加一块铁板补焊,在两侧连接处将铁板剪成纺锤形补焊;铁板可根据三边连接的实际位置剪成三角形补焊。高压轴套凸起座或法兰渗油。这些部位主要是因为橡胶垫片安装不当,在运行过程中法兰可以胶合密封。低压侧套管漏水是母线拉长,低压侧引出线短,胶珠压在螺纹上造成的。防爆管漏油。防爆管是避免变压器内部故障导致变压器内部压力过大导致变压器油箱破裂的安全措施。但防爆管的玻璃膜在变压器运行过程中容易因振动而破裂,不能及时更换玻璃,所以水分进入油箱,使绝缘油受潮,绝缘水平降低,危及设备安全。为此,可拆除防爆管,改装泄压阀。 多点接地故障变压器铁芯只能单点接地,两点或多点接地为多点接地。变压器铁芯多点接地操作一方面会造成铁芯局部短路和过热。另一方面,由于铁芯正常接地线产生的环流,可能导致变压器局部过热,也可能出现放电故障,危及变压器安全运行,应及时处理。

一点看法:正常运行三年的变压器运行中突然烧毁,一般是有外因的,没有雷电没有操作,多半是发生了线路的短路故障。高压侧短路电流小,且是电源侧,能量多从外部供给,短路电流不应当全部感应到低压侧,造成低压绕组的变形,并且低压绕组直径小,线径粗,与高压比更不易变形。所以我认为此次故障是因为低压a、b相发生了线路短路,造成低压线圈变形,故障电流造成高压AB相严重变形,最终烧毁。我想问一下,变压器烧成这样是差动保护动作了,还是瓦斯保护动作了?这台变压器上有没有过流保护?

毕业论文变压器故障检修

变压器检修的主要内容(上)变压器检修的主要内容(上)A. 准备工作① 编制检修项目和验收制度。检修项目是按变压器运行发现的各种缺陷以及需要改进的课题进行编制的。验收制度包括分段验收、工序验收以及竣工验收等。目的是严格贯测检修工艺和质量标准。以及技术资料的收集和积累。② 制定技术质量标准,技术安全措施。组织措施以及施工进度表。③ 检修人员的组织及责任制度的编制。④ 检修场地、设备和工具的准备。⑤ 技术文件、责任制度及其他有关文件的学习和落实.。⑥ 清理场地、运输和安装设备及工具器材。⑦ 吊心(吊钟罩)前的电气试验。做好原始记录。⑧ 放油及准备滤油或换油。⑨ 拆除变压器附件及准备吊心检查。B. 变压器吊心或吊钟罩工作吊心前的准备① 现场应有所需的起重设备,能吊出器身或吊开中罩(重量见铭牌所示)② 准备好滤油设备。一般用真空滤油机。③ 准备好干燥方案和设备。④ 准备好试验设备以及各种仪表和操作工具等,变压器的周围用围栏围上。 ⑤ 对吊心前的变压器做绝缘电阻,直流电阻等测试目的是了解变压器检修前的绝缘状况和电器参数。变压器经修理后座试验时测试的数据可与吊心前比较另外要做油化验等工作。总之,要留有原始记录。⑥ 现场要有消防器材,并严禁吸烟。吊心拆卸步骤① 中小型变压器在现场停电后,可考虑运到修理厂去,吊心检修,为此要先将可可拆式的散热器拆下来后才运送变压器,拆散热器前要先做好临时的蝶形阀的固定板进行密封。因为原有的蝶阀渗油,拆散热器前要对散热器编号为了组装时“对号入座”然后关闭每个散热器的蝶形阀。使油箱内的油不在大量的进入散热器内。这时打开散热器的下边放油阀和上面的放气阀进行放油,放油后用起重机装置将散热器逐一掉下来单独运输,这是要用临时铁板和密封垫将油箱上下两个蝶形阀密封住,同时也要把拆下来的散热器两个蝶形阀处用铁板密封好。② 将油箱内变压器油适当放出,露出铁芯上的轭铁表面即可。为吊起油箱盖吊出器身。事先要拆除箱盖上的附件以及与箱盖联接的零件。即先后拆除储油柜及气体继电器,安全气道,温度计等,对于中型变压器打开箱盖上入口,进入变压器内,拆除变压器绕组与瓷套管的连接线及分接开关的超动杆与箱盖上面的操作手柄之间的轴销。③ 对于大型变压器是在现场就地检修,进入入孔拆瓷套管(充油绝缘瓷套管)要待油箱内温度降到一定程度,穿上雨衣、工作服。不可有金属物,操作者进入入孔后,先拧下瓷套管顶部的接线端头帽盖,然后拿出绕组引线接1/2头,拆除绕组引线头与套管之间的定位销钉,将绕组的端头拉出到套管外,用铅丝挂到绕组的端头,再去拆套管中部的安装法兰螺钉。最后吊出套管。 ④ 小容量的变压器是不可拆式的散热管,所以不存在拆热器的工序。对于小容量变压器一般不再现场修理,首先放部分油露出上轭铁即可,然后拆下储油柜,安全起到和气体继电器,最后拆除箱盖四周于箱体连接的螺栓后,就可以起重设备将油箱盖和器身一起吊出。⑤ 对于8000KVA及以上变压器为钟罩式变压器。只要吊出钟罩即可露出器身,所以不存在吊心问题。在吊钟罩前,也要拆去与器身连接的零件,所以也要先放出一部分有,使油面至上轭铁一下,然后入上述相继采取储油柜、安全气道、气体继电器、温度计以及套管40KV及以下的套管于绕组连接导线是从油箱侧面的受控进行拆开的,而60KV及以上的套管,分解开关操动竿等腰从油箱孔进行拆除,同样其他附件也一一拆除,这是再继续放油,一直使油低于钟罩箱沿下面的法兰口,这时可拆开上下箱沿法兰的连接螺栓,吊走钟罩,钟罩不要放在地面上,要用道木支柱,这是器身全部露出,可进行检修。山西变压器厂家:3、吊心注意事项① 起吊之前做好起吊准备工作,起吊设备吨位足够,所用钢丝绳应经严格检查°合格,否则不能使用,吊绳与铅垂线之间夹角不大于30;先试吊,合格后能正式吊心。② 吊心时要选择无风晴天相对湿度不大于75%,器身在空气中停留时间尽可能短,一方绕组绝缘受潮。环境温度应大于-15℃,器身低于环境温度时,应该使器身加热温度高于大气温度10℃以上,器身暴露在空气中的时间按下表的规定修时间等。器身在空气中暴露的时间,是从开始放油时器身于外界空气相对接触时算起,注油时间不包括在内,当空气相对温度大于75%时不允许吊心检查。 ③ 吊心时,要有专人负责,油箱四角要有人监视,防止器身与油箱相撞,钟罩吊起时不可以在空气中摆动,以防撞坏器身,钟罩吊起100mm时暂停,检查吊绳有无偏斜,放下找正后在吊起。④ 使用的工具要有专人保管,事先等级件数。

1 当测得低压线路电压异常时,首先检查变压器高压跌落保险,低压隔离开关以及变压器外部接线是否可靠牢固。2在断开低压输出后,合跌落保险,注意先合B相,而后再合A相,C相,如果这时还烧高压保险丝,或者在合开关的瞬间能听到变压器有很闷而且很大的嗡嗡声,应立即拉掉跌落保险。对变压器进行放电,而后打开变压器油箱盖用鼻子嗅嗅是否有刺鼻的臭味,如果有,就是变压器已经击穿烧坏,需大修。

故障类型 主要气体组分 次要气体组分油过热 CH4,C2H4 H2,C2H6油和纸过热 CH4,C2H4,CO,CO2 H2,C2H6油纸绝缘中局部放电 H2,CH4,CO C2H6,CO2油中火花放电 H2,C2H2 油中电弧 H2,C2H2 CH4,C2H4,C2H6油和纸中电弧 H2,C2H2,CO,CO2 CH4,C2H4,C2H6进水受潮或油中气泡 H2 自然老化 CO,CO2 最近正在写变压器论文 这是变压器内部基本故障

三比值法气体分析在变压器故障判断中的应用论文

摘要: 变压器故障条件下在绝缘油中产生大量气体,三比值法气体分析能根据各组分的含量、比值、产气速率判断变压器的故障原因及性质,在解决各类变压器故障中发挥了十分重要的作用。本文对三比值法气体分析在变压器故障判断中的应用做了介绍,供广大电力人员作参考。

关键词: 三比值法 气体分析变压器故障判断应用

电力变压器内部故障主要有过热性故障、放电性故障及绝缘受潮等多种类型。据有关资料介绍,对359台故障变压器统计表明:过热性故障占63%;高能量放电故障占%;过热兼高能量放电故障占10%;火花放电故障占7%;受潮或局部放电故障占%。电气测量不能发现以上很多隐性故障,如何找到一种能早期发现这些隐性故障的检测手段和方法以快速判断变压器故障的原因、性质和发展趋势是十分必要的。而三比值法气体分析就是在变压器故障分析中被大量采用的有效的化学测量方法。

一、绝缘油产气原理

1、 产品老化及故障条件下温度上升与放电导致绝缘油分解并产生气体

绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3、CH2和CH化学基团并由C-C键键合在一起。由于电或热故障的结果可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基如:CH3*、CH2*CH*,或C*(其中包括许多更复杂的形式),这些氢原子或自由基通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体,如甲烷、乙烷、乙烯、乙炔等,也可能生成碳的固体颗粒及碳氢聚合物(X-蜡)。

故障初期,所形成的气体溶解于油中;当故障能量较大时,也可能聚集成自由气体。碳的固体颗粒及碳氢聚合物可沉积在设备的内部。 低能量故障,如局部放电,通过离子反应促使最弱的键C-H键(338 kJ/mol)断裂,大部分氢离子将重新化合成氢气而积累。对C-C键的断裂需要较高的温度(较多的能量),然后迅速以C-C键(607 kJ/mol)、C=C键(720 kJ/mol)和C 三C(960 kJ/mol)键的.形式重新化合成烃类气体,依次需要越来越高的温度和越来越多的能量。 乙烯是在大约为500℃(高于甲烷和乙烷的生成温度)下生成的。乙炔的生成一般在800℃~1200℃的温度。因此,大量乙炔是在电弧的弧道中产生的(低于800℃也会有少量的乙炔生成)。油起氧化反应时伴随生成少量的CO和CO2。油碳化生成碳粒的温度在500℃~800℃。

2、 固体绝缘材料分解产生气体

纸、层压纸板或木块等固体绝缘材料分子内含有大量的无水右旋糖环和弱的C-O键及葡萄糖甙键,它们的热稳定性比油中的碳氢键要弱,并能在较低的温度下重新化合。聚合物裂解的有效温度高于105℃,完全裂解和碳化高于300℃,在生成水的同时生成大量的CO和CO2以及少量烃类气体和呋喃化合物,同时油被氧化。CO和CO2的形成不仅随温度而且随油中氧的含量和纸的湿度增加而增加。

二、产气与故障关系

故障气体的组成和含量与故障的类型及其严重程度有密切关系。在变压器里,当产气速率大于溶解速率时,会有一部分气体进入气体继电器或储油柜中。当变压器气体继电器内出现气体时,分析其中的气体,同样有助于对设备的状况做出判断。

不同的故障类型产生的主要特征气体和次要特征气体可归纳为表1。

变压器内部是否正常或存在故障,常用气相色谱分析结果的三项主要指标(总烃、已炔、氢)来判断。油中气体含量正常值和注意值见表2。

仅根据表3所列气体含量的绝对值很难对故障的严重程度作出正确判断,还必须考察故障的发展趋势,这与故障的产气速率密切相关。产气速率分为绝对产气速率和相对产气速率两种。规范规定对于密封式(隔膜式)变压器,总烃产气速率的注意值为;总烃的相对产气速率大于10%时应引起注意。

三、判断故障性质的三比值法

三比值法是利用气相色谱分析结果中五种特征气体含量的三个比值(C2H2 /C2H4、CH4/ H2 、C2H4 /C2H6)来判断变压器内部故障性质。实践表明,这一方法判断故障性质的准确率相当高。由于当采用不完全脱气方法脱气时,各组分的脱气速率可能相差很大;但三比值法中,每一对比值之两种气体脱气速率之比都接近于1。所以采用三比值法克服了因脱气速率的差异所带来的不利影响。

三比值法按照比值范围,把三个比值以不同的编码来表示,编码规则如表4。

四、故障判断的步骤

1、气相色谱分析结果的三项指标(总烃、乙炔、氢)与规程的注意值进行比较,并分析CO、CO2的含量。

2、当主要指标达到或超过注意值时,应进行追踪分析、查明原因,结合产气速率估计是否存在故障或故障严重程度及发展趋势。有一项或几项主要指标超过注意值时,说明设备存异常情况,要引起注意。但规程推荐注意值是指导性,它不是划分设备是否异常唯一判据,不应当作强制性标准执行;而应进行跟踪分析,加强监视,注意观察其产生速率变化。有设备特征气体低于注意值,但增长速度很高,也应追踪分析,查明原因;有设备因某种原因使气体含量超过注意值,能立即判定有故障,而应查阅原始资料,若无资料,则应考虑一定时间内进行追踪分析;当增长率低于产气速率注意值,仍可认为是正常。判断设备是否存故障时,不能只一次结果来判定,而应多次分析以后,将分析结果绝对值与导则注意值作比较,将产气速率与产气速率参考值作比较,当两者都超过时,才判定为故障。当确定设备存潜伏性故障时,就要对故障严重性作出正确判断。判断设备故障严重程度,除分析结果绝对值外,必须用产气速率来考虑故障发展趋势,计算故障产气速率可确定设备内部有无故障,又可估计故障严重程度。当有意识用产气速率考察设备故障程度时,必须考察期间变压器不要停运而尽量保持负荷稳定性,考察时间以1~3个月为宜。考察期间,对油进行脱气处理或较短运行期间及油中含气量很低时进行产气速率考察,会带来较大误差。

3、可能发生故障时,用特征气体法或三比值法对故障类型作初步判断,一般用三比值法更准确。但用三比值法应注意有关问题有:

(1)采用三比值法来判断故障性质时必须符合条件:

1)色谱分析气体成分浓度应不少于分析方法灵敏度极根值10倍。

2)应排除非故障原因引入数值干扰。

3)一定时间间隔内(1~3个月)产气速率超过10%/月。

(2)注意三比值表以外比值应用,如122、121、222等组合形式表中找不到相应比值组合,对这类情况要进行对应分析和分解处理。如有认为122组合可以分解为102+020,即说明故障是高能放电兼过热。另外,追踪监视中,要认真分析含气成分变化规律,找出故障类型变化、发展过程,例如三比值组合方式由102—122,则可判断故障是先过热,后发展为电弧放电兼过热。当然,分析比值组合方式时,还要结合设备历史状况、运行检修和电气试验等资料,最后作出正确结论。

(3)注意对低温过热涉及固体绝缘老化正确判断。绝缘纸150˙C以下热裂解时,主要产生CO2外,还会产生一定量CO、乙烯和甲烷,此时,成分三比值会出现001、002、021、022等组合,这样就可能造成误判断。这种情况下,必须首先考虑各气体成分产气速率,CO2始终占主要成分,产气速率一直比其他气体高,则对001--002及021--022等组合,应认为是固体绝缘老化或低温过热。

(4)注意设备结构与运行情况。三比值法引用色谱数据是针对典型故障设备,而不涉及故障设备各种具体情况,如设备保护方式、运行情况等。如开放式变压器,应考虑到气体逸散损失,特别是甲烷和氢气损失率,引用三比值时,应对甲烷、H2比值作些修正。另外,引用三比值是各成分气体超过注意值,特别是产气速率,有理由判断可能存故障时才应用三比值进一步判断其故障性质,用三比值监视设备故障性质应故障不断产气过程中进行。设备停运,故障产气停止,油中各成分能会逐渐散失,成分比值也会发生变化,,不宜应用三比值法。

(5)目前对尚没有列入三比值法某些组合判断正研究之中。例如121或122对应于某些过热与放电同时存情况,202或212装有载调压开关变压器应考虑开关油箱油可能渗漏到本体油中情况。

4、气体继电器内出现气体时,应将其中气体分析结果与油中气体分析结果作比较。比较时应将气、液两相气体进行换算。若故障气体含量均很少,说明设备是正常的。若溶解气体略高于气体继电器,说明设备存在产气较慢的潜伏性故障;若气体继电器明显超过油内气体含量,则说明设备存在产气较快的故障。

5、结合其他检查性试验(直流电阻、空载试验、绝缘试验、局部放电试验和测量微量水分、外部检查等)及设备结构、运行、检修等情况作综合性分析,可相应采取红外检测、超声波检测和其它带电检测等技术手段加以综合诊断判断故障的性质和部位,采取相应措施如缩短试验周期、加强监视、限制负荷、近期安排内部检查或立即停运检查等。综合分析诊断应注意问题:

1)变压器内部故障形式和发展是比较复杂,往往与多种因素有关,这就特别需要进行全面分析。首先要历史情况和设备特点以及环境等因素,确定所分析气体究竟是来自外部还是内部。所谓外部原因,包括冷却系统潜油泵故障、油箱带油补焊、油流继电器接点火花,注入油本身未脱净气等。排除外部可能,分析内部故障时,也要进行综合分析。例如,绝缘预防性试验结果和检修历史档案、设备当时运行情况,包括温升、过负荷、过励磁、过电压等,及设备结构特点,制造厂同类产品有无故障先例、设计和工艺有无缺陷等。

2)油中气体分析结果,对设备进行诊断时,还应从安全和经济两方面考虑。某些过热故障,一般不应盲目建议吊罩、吊心,进行内部检查修理,而应首先考虑这种故障是否可以采取其他措施,如改善冷却条件、限制负荷等来予以缓和或控制其发展,有些过热性故障吊罩、吊心也难以找到故障源。这一类设备,应采用临时对策来限制故障发展,油中溶解气体未达到饱和,不吊罩、吊心修理,仍有可能安全运行一段时间,观察其发展情况,再考虑进一步处理方案。这样处理方法,既能避免热性损坏,又能避免人力、物力浪费。

3)油脱气处理必要性,要分几种情况区别对待:当油中溶解气体接近饱和时,应进行油脱气处理,避免气体继电器动作或油中析出气泡发生局部放电;当油中含气量较高而不便于监视产气速率时,也可考虑脱气处理后,从起始值进行监测。但需要明确是,油脱气并非处理故障必须手段,少量可燃性气体油中并不危及安全运行,监视故障过程中,过分频繁脱气处理是不必要。

4)分析故障同时,应广泛采用新测试技术,例如电气或超声波法局部放电测量和定位、红外成像技术检测、油及固体绝缘材料中微量水分测定,以及油中金属微粒测定等,以利于寻找故障线索,分析故障原因,并进行准确诊断。

五、按国家规定的气体分析检测周期对变压器加强检测,保障变压器的正常稳定运行,减少故障的发生。

1、 出厂设备的检测

220KV变压器在出厂试验全部完成后要做一次色谱分析。制造过程中的色谱分析由用户和制造厂协商决定。

2、 投运前的检测

定期检测的新设备及大修后的设备,投运前应至少做一次检测。如果在现场进行感应耐压和局部放电试验,则应在试验后停放一段时间再做一次检测。

3、投运时的检测

新的或大修后的变压器至少应在投运后4天、10天、30天各做一次检测,若无异常,可转为定期检测。

4、运行中的定期检测

220 kV及以上定期检测 6个月一次。

5、特殊情况下的检测

当设备出现异常情况时(如气体继电器动作,受大电流冲击或过励磁等),或对测试结果有怀疑时,应立即取油样进行检测,并根据检测出的气体含量情况,适当缩短检测周期。

结语: 变压器油气体色谱分析是预防性试验和故障分析判断的重要方法,已得到广泛应用。在用气体特征值和注意值及产气速率估计已存在故障的条件下,三比值法分析能较准确地做出故障分析、判断故障类型、性质和严重程度,采用三比值法时要注意结合其他检测试验和新式先进在线监测工具及设备结构、运行、检修情况,经综合分析和判断后对故障准确定位并采取相应措施。变压器故障原因可能十分复杂,往往同时有多种故障存在,并在发展中。加强预防性试验和定期分析检测对保障变压器的正常运行十分必要。三比值法也在实践中被人们不断探索中,必将在电力应用中发挥更大作用。

变压器故障及分析毕业论文

故障类型 主要气体组分 次要气体组分油过热 CH4,C2H4 H2,C2H6油和纸过热 CH4,C2H4,CO,CO2 H2,C2H6油纸绝缘中局部放电 H2,CH4,CO C2H6,CO2油中火花放电 H2,C2H2 油中电弧 H2,C2H2 CH4,C2H4,C2H6油和纸中电弧 H2,C2H2,CO,CO2 CH4,C2H4,C2H6进水受潮或油中气泡 H2 自然老化 CO,CO2 最近正在写变压器论文 这是变压器内部基本故障

变压器常见的故障有变压器内部故障包括相间短路、单相接地、匝间短路及变压器漏油;由于长期过载发热使油垫损坏造成漏油。瓦斯增大,造成瓦斯继电器动作,油面降低等。外部故障有变压器套管及引出线上的短路、接地。变压器故障多半是由于绝缘降低造成的。

摘 要电力变压器是电力系统中不可缺少的重要设备,他的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。本文是笔者在阅读了大量专业资料、咨询了很多的专家和老师的前提下,按照指导老师所给的原始资料,通过系统的原理分析、精确的整定计算。做出的一套电力变压器保护方案。本文语言简练、逻辑严密、内容夯实。可作为从事电气工程技术人员的参考资料。关键词 电力系统故障,变压器,继电保护,整定计算目 录摘 要………………………ⅠABSTRACT………………Ⅱ1 绪论 课题背景…………………………设计题目………………………毕业设计原始资料…………… 待保护变压器的在系统中的连接情况……………………设计任务…………………继电保护的综述 ……电力系统的故障和不正常运行状态及引起的后果……… 继电保护的任务…………… 继电保护装置的组成……… 继电保护的基本要求……31.3 电力变压器故障概况…………61.4继电保护发展………………计算机化……………………71.4.2网络化…………………………保护、控制、测量、数据通信一体…………………………91.4.4智能化…………………………92 短路电流实用计算 ……………… 短路电流计算的规程和步骤 短路电流计算的一般规定… 计算步骤 ………………… 三相短路电流的计算………… 等值网络的绘制………… 化简等值网络…………… 三相短路电流周期分量任意时刻值的计算…………… 三相短路电流的冲击值…143 电力变压器保护原理分析… 瓦斯保护原理………… 变压器纵差动保护……… 构成变压器纵差动保护的基本原则…………………… 不平衡电流产生的原因和消除方法…………………… 电流速断保护原理…………电流速断保护的整定计算 躲过励磁涌流…………… 灵敏度的校验…………… 过电流保护的原理……………过电流保护………………… 复合电压起动的过电流保护……………………………负序电流和单相式低压过电流保护……………………零序过电流保护原理………24 中性点直接接地变压器的零序电流保护………………中性点可能接地或不接地变压器的保护……………… 过负荷保护原理 ……………28 过励磁保护原理……………293.8微机保护原理 …………………… 微机保护概况…………… 变压器的微机保护配置…304 保护配置与整定计算…电力变压器的保护配置…314.2 保护参数分析与方案确定……… 保护方案…… 保护设备配置选择…… 接线配置图…………………35 整定计算…………………… 带时限的过电流保护整定计算…………………………36 电流速断保护整定计算 单相低压侧装设低压侧接地保护………………………过负荷保护………………保护配置动作实现……………38结论…39参考文献……………………40附录A:接线配置图…………………41

1 当测得低压线路电压异常时,首先检查变压器高压跌落保险,低压隔离开关以及变压器外部接线是否可靠牢固。2在断开低压输出后,合跌落保险,注意先合B相,而后再合A相,C相,如果这时还烧高压保险丝,或者在合开关的瞬间能听到变压器有很闷而且很大的嗡嗡声,应立即拉掉跌落保险。对变压器进行放电,而后打开变压器油箱盖用鼻子嗅嗅是否有刺鼻的臭味,如果有,就是变压器已经击穿烧坏,需大修。

变压器的故障维修毕业论文

关于变压器的保护措施分析论文

摘要:文章分析了换流变压器的特点以及超高压直流输电的各种运行工况对换流变压器保护带来的影响。提出了换流变压器保护的总体设计思想。

关键词:换流变压器 保护 分析

0 引言

超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状态等。

1 换流变压器的特点

短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。

直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使地电位发生变化,造成直流电流流入变压器原边绕组,使换流变压器发生直流偏磁,工作点偏移。如果此直流电流过大,会导致换流变压器铁心饱和,同时损耗和温升也将增加。因此,要配置相应的保护防止这种情况下对换流变压器造成的损坏。

谐波 由于换流器的非线性,在交流和直流系统中将出现谐波电压和电流。对于换流变压器,主要会流过特征谐波电流,即p*n+1次谐波电流(p为脉波数,n为任意正整数)。在运行中,谐波电流会使换流变压器损耗和温升增加,产生局部过热,发出高频噪声,还会使交流电网中的发电机和电容器过热,对通讯设备产生干扰。这些谐波电流应加以考虑,以免对保护装置造成影响。

调压分接头 为了使直流系统运行在最优的工况,减少交流系统电压扰动对直流系统的影响,换流变压器都具有较大范围的利用分接头调整电压的功能。例如:三峡到常州工程三峡侧换流变压器档位范围+25/-5,每档调节范围。因此保护设计时要考虑分接头调整带来的影响,如正常运行时变比的变化等。

直流系统的特殊运行工况 由于直流控制系统的特殊调节作用,使换流变压器遇到的运行工况以及故障情况不同于普通变压器。这些不同主要包括以下几点:

直流系统的故障相当于换流变压器的区外故障,一般短路电流都不会太大。对于整流侧,穿越换流变的'电流会增大,但由于直流控制保护系统的快速作用,很快会减小。对于逆变侧,直流系统的故障会造成直流电流无法传变至交流侧,反而会使穿越电流减小。

对于换流变压器保护来说,直流系统造成的最严酷的区外故障为整流侧的阀短路故障,相当于换流变出口的两相或三相短路故障。但由于直流保护的干预,实际只会出现半个周波的两相短路。对于逆变侧,由于触发角很大,阀短路时流过换流变压器的电流较整流侧小很多。

换流变压器发生区内故障时,直流系统一般不会提供短路电流。这是由直流控制系统的作用造成的。在整流侧,功率由交流侧转换至直流侧,换流变压器的故障只会造成这种转换的停止,而不会使功率反向,因此直流侧不会提供短路电流;在逆变侧,当故障轻微换相可以正常进行时,由于直流系统的定电流控制特性,直流侧不会提供额外的短路电流。如果故障严重,必然造成换相无法进行(交流电压降低),直流侧更不会提供短路电流。

由于直流控制系统快速的调节作用,在需要的时候,可以快速的将功率传输由一个方向反至另一个方向,对于换流变压器来说,就会出现快速的潮流反向。

换流变压器保护区内发生接地故障时,实际造成了阀的短路。由于阀的单向导电性,故障电流半周电流大,半周电流小,导致差电流中含有较大的二次谐波。

对于逆变侧的换流变压器的区内故障,往往会导致换相失败的发生,从而在穿越电流电流中产生很大的谐波,但差电流(即提供给故障点的电流)仍主要为工频分量。

由于换流变压器的特殊运行方式以及较大的漏抗(作为换相电抗),二次侧故障一般不会造成各侧TA的饱和,即使饱和造成保护的“误动作”也是正确的(换流变的区外即阀的区内故障,都会造成直流的停运)。但对于一个半开关的接线方式,交流系统区外故障时高压侧TA存在饱和的可能。。这种情况下的误动作是不可接受的,必须防止。

在阀未解锁前,当阀侧交流连线存在接地故障时,并不产生接地电流,也不会对变压器造成损害。但如此时不发现故障,阀一解锁后,就会造成阀的短路。因此要设置保护检测这种情况下的接地故障。

2 换流变压器的保护措施

保护的配置原则 为了保证既可靠又安全,在既简单又经济的情况下,可以这样配置换流变压器保护:每台换流变压器保护装设两台保护装置,每台保护装置的电源、输入独立,每台装置的输出都可以到达断路器的两个跳闸线圈以及直流控制的两个系统。每台装置采取措施防止自身误动作,而靠两装置的或出口防止故障情况下的拒动作。 保护的配置及原理 为了避免换流站特有的谐波对保护的影响,保护装置应从硬件和软件上采取措施,使保护只针对工频分量。

主保护包括稳态比率差动、差动速断、工频变化量比率差动、零序比率差动、过激磁保护。后备保护包括过流、零序过流、过电压、零序过压、饱和保护。

稳态比率差动保护 由于变比和联接组的不同,电力变压器在运行时,各侧电流大小及相位也不同。在构成继电器前必须消除这些影响。换流变压器的TA一般装在各侧绕组上,因此原、副边绕组电流相位相同,因此只需要对变比的影响进行补偿。以下的叙述的前提均为已消除了变压器各侧幅值和相位的差异。

稳态比例差动保护用来区分感受到的差流是由于内部故障还是不平衡输出(特别是外部故障时)引起。装置采用初始带制动的变斜率比率制动特性,稳态比率差动元件由低值比率差动(灵敏)和高值比率差动(不灵敏)两个元件构成。为了保证区内故障的快速切除,只有低值比率差动元件(灵敏)设有TA饱和判据,高值比率差动元件(不灵敏)不设TA饱和判据。

对于换流变压器分接头调整造成的差动电流不平衡,可用三种方法来解决:一是通过整定值躲开;二是利用浮动门槛自适应调整;三是利用分接头位置来调整。方法一、二简单实用,三实现起来复杂。

工频变化量比率差动保护 装置中依次按相判别,当满足 一定条件时,工频变化量比率差动动作。工频变化量比率差动保护经过涌流判别元件、过激磁闭锁元件闭锁后出口。

由于工频变化量比率差动的制动系数可取较高的数值,其本身的特性抗区外故障时TA的暂态和稳态饱和能力较强。工频变化量比率差动元件提高了装置在变压器正常运行时内部发生轻微匝间故障的灵敏度。且工频变化量比率差动保护不会受换流变压器分接头调整造成的差动电流不平衡的影响。

后备保护 后备保护包括过流、零序过流、过电压、零序过压、饱和保护。

3 小结

分析换流变压器与交流系统的主变压器比较所具有特点,阐述了这些特点以及直流输电的各种特殊运行工况对换流变压器保护带来的影响,并提出了相应的保护方案。

变压器零序保护存在的问题分析论文

摘要:在分析变压器零序保护配置的基础上,对110 kV变压器中性点过电压问题、接地方式的控制以及电网110 kV变压器零序保护设计存在的安全隐患等进行了初步探讨,提出拆除部分中性点棒间隙,改善变压器零序保护配合的措施。

关键词:变压器 接地方式 分析

1 变压器的零序保护配置

变压器中性点零序过电流动作时先跳开中性点不接地变压器的保护方式,称为零序互跳。2台主变并列运行,1号主变中性点接地,当K2点发生接地故障时,1号主变中性点零序过流保护动作,第一时限跳2号主变高低压侧开关,K2故障点被隔离,1号主变恢复正常运行。如果故障点在K1处,当第一时限跳开2号主变后,零序过流保护第二时限跳本变压器,切除故障。零序互跳保护显而易见的缺点是:①有选择性切除故障的概率只有50%;②母线故障时没有选择性,会扩大停电范围;③零序过流保护时间整定必须和主变相间保护配合,对保护整定配合不利;④必须在2台变压器同时停运时才能进行互跳试验,条件苛刻,二次接线容易错误。

2 统接线与保护配置特点

110 kV系统接线特点是以放射状为主,以220 kV变电站为电源点,通过110 kV线路向各终端变电站辐射。110kV终端变电站则采用内桥接线或线路-变压器组接线方式,低压侧无电源。

内桥接线变电站,在正常运行方式下,100母分开关不作为103和104线路的联络元件。因此,内桥接线变电站通常只有两种运行方式:1条线路带2台主变运行或2条线路各带1台变压器运行。在1线带2变运行方式下,2台主变只要有1台中性点接地即可,但必须由靠110kV供电线路侧的变压器中性点接地运行,这一点很重要。内桥接线变电站目前的变压器零序保护配置为:中性点零序电流保护第一时限跳100和900母分;第二时限跳本变压器;同时,变压器中性点装设棒间隙,但没有配置间隙TA以及开三角电压保护。

为了节省投资、占地,节约110kV线路空中走廊等原因,新建设的110kV变电站较多采用线路-变压器组接线,而且1条线路可“T”接2台甚至3台变压器,变压器零序保护仅有中性点零序过电流保护,没有配置中性点间隙电流保护以及110kV TV开三角零序电压保护(主变110kV侧只有单相线路TV)。由于零序保护配置不够完整,在多台“T”接的线路-变压器组接线中,各变压器中性点仍全部接地运行。但是,变压器中性点全部接地运行对系统具有一定的.负面影响。

在部分线路或变压器检修、停运以及系统运行方式变化时,零序网络及零序阻抗值发生较大的变化,各支路零序电流大小及分布也会产生较大的变化。从保护整定配合出发,则要求保持变电站零序阻抗基本不变。

在变压器投入运行或线路重合闸过程中,有时会使在同一线路上运行的中性点接地变压器产生由励磁涌流引起的,幅值较大而且衰减较慢,并带有较大直流分量的零序电流。较容易造成送电不成功或重合闸不成功。

变压器中性点全部接地,使系统零序阻抗大幅度降低,由此造成不对称接地故障短路电流明显增大。因为雷击、不对称接地故障干扰二次设备,造成保护装置误动以及损坏通信设备的事故仍时有发生。因此,有效接地系统中应尽量采用部分变压器中性点接地方式,以限制单相接地短路电流,降低对通信系统的干扰。

3 变压器零序保护存在的问题

在有效接地系统中,变压器中性点对地偏移电压被限制在一定的水平,中性点间隙保护不会产生作用。配置间隙保护的目的,是为了防止非有效接地系统中零序电压升高对变压器绝缘造成的危害。只有当系统发生单相接地故障,有关的中性点直接接地变压器全部跳闸,而带电源的中性点不接地变压器仍保留在故障电网中时,放电间隙才放电,以降低对地电压,避免对变压器绝缘造成危害。间隙击穿会产生截波,对变压器匝间绝缘不利,因此,在单相接地故障引起零序电压升高时,我们更希望由零序过电压保护完成切除变压器的任务。相反,间隙电流保护则存在一定程度的偶然性,可能因种种原因使间隙电流保护失去作用,从这个意义讲,对于保护变压器中性点绝缘而言,零序过电压保护比间隙电流保护更重要,零序过电压保护通常和间隙电流保护一起共同构成变压器中性点绝缘保护。所以仅设置间隙电流保护而没有零序过电压保护是不够完善的,特别是当间歇性击穿时,放电电流无法持续,间隙电流保护将不起作用。

目前已经投运的110kV变电站,大多数只装设中性点棒间隙而没有相应的保护,这种配置有弊无利,当电网零序电压升高到接近额定相电压时,所有中性点不接地的变压器均同时感受到零序过电压。如果没有采用间隙过流保护的终端变压器中性点间隙抢先放电,当无法持续放电时,则带电源的中性点不接地变压器将无法脱离故障电网。因此,对于低压侧无电源的终端变压器,如果没有配置完整的间隙电流保护及零序过电压保护,应解除中性点棒间隙或人为增大间隙距离,避免间隙抢先放电。

对于内桥接线的变电站,中性点接地变压器零序电流第一时限跳900和100母分不是最佳的方案。由于在低压侧并列运行时,跳900开关后多损失一段母线,同时中性点不接地变压器低压侧开关仍运行,在目前没有零序过电压保护的情况下,若因10kV转电等原因存在临时低压电源,则不接地变压器就存在过电压的危险。因此,在110kV侧已装设。

首先是要确保110kV系统为有效接地系统。防止误操作是最根本的办法,保证电源端变压器110kV侧中性点有效接地。如果保护整定许可,可以将电源侧2台并列运行的变压器中性点同时接地。

带电源变压器失去接地中性点后可能成为非有效接地系统,因此,对于电源端变压器或者将来可能带电源的变压器,在设计阶段就应考虑配置完整的中性点间隙保护,包括中性点零序过电流保护,中性点间隙电流保护以及母线开三角零序电压保护。

在110kV馈出线路上,不论并接几台变压器,在电源侧中性点接地的情况下,各终端变压器中性点可以不接地运行。在实际运行中,为防止可能出现的不安全因素,可安排其中一台中性点接地,在选择接地中性点时,可按以下顺序考虑:首先选择低压侧临时带电源的变压器,其次考虑高压侧没有断路器的变压器,最后选择离电源端距离最短的变压器中性点接地即可。

已经投入运行的大部分110kV终端变电站,由于目前尚未配置母线TV开三角零序电压保护以及中性点间隙电流保护,为避免中性点间隙抢先放电,应将原先装设的中性点棒间隙拆除或人为增大间隙距离。

今后设计的110kV变电站,高压侧宜考虑采用三相电压互感器,设置零序过电压保护和变压器中性点间隙电流保护。这种配置可以提供灵活的运行方式,适应将来电网结构的变化。

对于内桥接线变电站,主变中性点零序电流保护第一时限应切除另一台不接地变压器,避免扩大停电范围或者可能出现的工频过电压。

摘 要电力变压器是电力系统中不可缺少的重要设备,他的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。本文是笔者在阅读了大量专业资料、咨询了很多的专家和老师的前提下,按照指导老师所给的原始资料,通过系统的原理分析、精确的整定计算。做出的一套电力变压器保护方案。本文语言简练、逻辑严密、内容夯实。可作为从事电气工程技术人员的参考资料。关键词 电力系统故障,变压器,继电保护,整定计算目 录摘 要………………………ⅠABSTRACT………………Ⅱ1 绪论 课题背景…………………………设计题目………………………毕业设计原始资料…………… 待保护变压器的在系统中的连接情况……………………设计任务…………………继电保护的综述 ……电力系统的故障和不正常运行状态及引起的后果……… 继电保护的任务…………… 继电保护装置的组成……… 继电保护的基本要求……31.3 电力变压器故障概况…………61.4继电保护发展………………计算机化……………………71.4.2网络化…………………………保护、控制、测量、数据通信一体…………………………91.4.4智能化…………………………92 短路电流实用计算 ……………… 短路电流计算的规程和步骤 短路电流计算的一般规定… 计算步骤 ………………… 三相短路电流的计算………… 等值网络的绘制………… 化简等值网络…………… 三相短路电流周期分量任意时刻值的计算…………… 三相短路电流的冲击值…143 电力变压器保护原理分析… 瓦斯保护原理………… 变压器纵差动保护……… 构成变压器纵差动保护的基本原则…………………… 不平衡电流产生的原因和消除方法…………………… 电流速断保护原理…………电流速断保护的整定计算 躲过励磁涌流…………… 灵敏度的校验…………… 过电流保护的原理……………过电流保护………………… 复合电压起动的过电流保护……………………………负序电流和单相式低压过电流保护……………………零序过电流保护原理………24 中性点直接接地变压器的零序电流保护………………中性点可能接地或不接地变压器的保护……………… 过负荷保护原理 ……………28 过励磁保护原理……………293.8微机保护原理 …………………… 微机保护概况…………… 变压器的微机保护配置…304 保护配置与整定计算…电力变压器的保护配置…314.2 保护参数分析与方案确定……… 保护方案…… 保护设备配置选择…… 接线配置图…………………35 整定计算…………………… 带时限的过电流保护整定计算…………………………36 电流速断保护整定计算 单相低压侧装设低压侧接地保护………………………过负荷保护………………保护配置动作实现……………38结论…39参考文献……………………40附录A:接线配置图…………………41

  • 索引序列
  • 变压器常见故障论文文献综述
  • 毕业论文变压器故障诊断
  • 毕业论文变压器故障检修
  • 变压器故障及分析毕业论文
  • 变压器的故障维修毕业论文
  • 返回顶部