首页 > 期刊论文知识库 > 高中数学概念教学的论文题目

高中数学概念教学的论文题目

发布时间:

高中数学概念教学的论文题目

参考1 邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)2 黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)3 胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)4 竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)5 杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,19931、《计算机教育应用与教育革新——’97全球华人计算机教育应用大会论 文集》李克东 何克抗 主编 北京师范大学出版社 1997 2、《教育中的计算机》 全国中小学计算机教育研究中心(北京部)1998 3、林建详编:《CAI的理论与实践——迎接21世纪的挑战》 全国CBE 学会第六次学术会议论文集 1993 北京 北京大学出版社。 [1] 参见D. A. Drennen, ed., A Modern Introduction to Metaphysics, New York: Free Press of Glencoe, 1962。 此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。 [2] 参见R. G. Collingwood, An Essay on Metaphysics, Oxford: Clarendon Press, 1940。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。” [3] 《形而上学》,982b14-28。 [4] 引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。 [5] 亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。 [6] 参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。 [7] 《古希腊哲学》,78页。 [8] 《毕达哥拉斯和毕达哥拉斯学派》,115页以下。 [9] 同上书,125页。译文稍有改动。 [10] 《希腊哲学史》第1卷,290页。 [11] 亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。 [12] 《毕达哥拉斯与毕达哥拉斯学派》,107页以下。 [13] 巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。 相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板 够不够 我在给你找

学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!

↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓

★ 数学应用数学毕业论文 ★

★ 大学生数学毕业论文  ★

★ 大学毕业论文评语大全 ★

★ 毕业论文答辩致谢词10篇 ★

中学数学论文题目

1、用面积思想 方法 解题

2、向量空间与矩阵

3、向量空间与等价关系

4、代数中美学思想新探

5、谈在数学中数学情景的创设

6、数学 创新思维 及其培养

7、用函数奇偶性解题

8、用方程思想方法解题

9、用数形结合思想方法解题

10、浅谈数学教学中的幽默风趣

11、中学数学教学与女中学生发展

12、论代数中同构思想在解题中的应用

13、论教师的人格魅力

14、论农村中小学数学 教育

15、论师范院校数学教育

16、数学在母校的发展

17、数学学习兴趣的激发和培养

18、谈新课程理念下的数学教师角色的转变

19、数学新课程教材教学探索

20、利用函数单调性解题

21、数学毕业论文题目汇总

22、浅谈中学数学教学中学生能力的培养

23、变异思维与学生的创新精神

24、试论数学中的美学

25、数学课堂中的提问艺术

26、不等式的证明方法

27、数列问题研究

28、复数方程的解法

29、函数最值方法研究

30、图象法在中学数学中的应用

31、近年来高考命题研究

32、边数最少的自然图的构造

33、向量线性相关性讨论

34、组合数学在中学数学中的应用

35、函数最值研究

36、中学数学符号浅谈

37、论数学交流能力培养(数学语言、图形、 符号等)

38、探影响解决数学问题的心理因素

39、数学后进学生的心理分析

40、生活中处处有数学

41、数学毕业论文题目汇总

42、生活中的数学

43、欧几里得第五公设产生背景及对数学发展影响

44、略谈我国古代的数学成就

45、论数学史的教育价值

46、课程改革与数学教师

47、数学差生非智力因素的分析及对策

48、高考应用问题研究

49、“数形结合”思想在竞赛中的应用

50、浅谈数学的 文化 价值

51、浅谈数学中的对称美

52、三阶幻方性质的探究

53、试谈数学竞赛中的对称性

54、学竞赛中的信息型问题探究

55、柯西不等式分析

56、中国剩余定理应用

57、不定方程的研究

58、一些数学思维方法的证明

59、分类讨论思想在中学数学中的应用

60、生活数学文化分析

数学研究生论文题目推荐

1、混杂随机时滞微分方程的稳定性与可控性

2、多目标单元构建技术在圆锯片生产企业的应用研究

3、基于区间直觉模糊集的多属性群决策研究

4、排队论在交通控制系统中的应用研究

5、若干类新形式的预条件迭代法的收敛性研究

6、高职微积分教学引入数学文化的实践研究

7、分数阶微分方程的Hyers-Ulam稳定性

8、三维面板数据模型的序列相关检验

9、半参数近似因子模型中的高维协方差矩阵估计

10、高职院校高等数学教学改革研究

11、若干模型的分位数变量选择

12、若干变点模型的 经验 似然推断

13、基于Navier-Stokes方程的图像处理与应用研究

14、基于ESMD方法的模态统计特征研究

15、基于复杂网络的影响力节点识别算法的研究

16、基于不确定信息一致性及相关问题研究

17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究

18、广义时变脉冲系统的时域控制

19、正六边形铺砌上H-三角形边界H-点数的研究

20、外来物种入侵的广义生物经济系统建模与控制

21、具有较少顶点个数的有限群元阶素图

22、基于支持向量机的混合时间序列模型的研究与应用

23、基于Copula函数的某些金融风险的研究

24、基于智能算法的时间序列预测方法研究

25、基于Copula函数的非寿险多元索赔准备金评估方法的研究

26、具有五个顶点的共轭类类长图

27、刚体系统的优化方法数值模拟

28、基于差分进化算法的多准则决策问题研究

29、广义切换系统的指数稳定与H_∞控制问题研究

30、基于神经网络的混沌时间序列研究与应用

31、具有较少顶点的共轭类长素图

32、两类共扰食饵-捕食者模型的动力学行为分析

33、复杂网络社团划分及城市公交网络研究

34、在线核极限学习机的改进与应用研究

35、共振微分方程边值问题正解存在性的研究

36、几类非线性离散系统的自适应控制算法设计

37、数据维数约简及分类算法研究

38、几类非线性不确定系统的自适应模糊控制研究

39、区间二型TSK模糊逻辑系统的混合学习算法的研究

40、基于节点调用关系的软件执行网络结构特征分析

41、基于复杂网络的软件网络关键节点挖掘算法研究

42、圈图谱半径问题研究

43、非线性状态约束系统的自适应控制方法研究

44、多维power-normal分布及其参数估计问题的研究

45、旋流式系统的混沌仿真及其控制与同步研究

46、具有可选服务的M/M/1排队系统驱动的流模型

47、动力系统的混沌反控制与同步研究

48、载流矩形薄板在磁场中的随机分岔

49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制

50、带有非线性功能响应函数的食饵-捕食系统的研究

51、基于观测器的饱和时滞广义系统的鲁棒控制

52、高职数学课程培养学生关键技能的研究

53、基于生存分析和似然理论的数控机床可靠性评估方法研究

54、面向不完全数据的疲劳可靠性分析方法研究

55、带平方根俘获率的可变生物种群模型的稳定性研究

56、一类非线性分数阶动力系统混沌同步控制研究

57、带有不耐烦顾客的M/M/m排队系统的顾客损失率

58、小波方法求解三类变分数阶微积分问题研究

59、乘积空间上拓扑度和不动点指数的计算及其应用

60、浓度对流扩散方程高精度并行格式的构造及其应用

专业微积分数学论文题目

1、一元微积分概念教学的设计研究

2、基于分数阶微积分的飞航式导弹控制系统设计方法研究

3、分数阶微积分运算数字滤波器设计与电路实现及其应用

4、分数阶微积分在现代信号分析与处理中应用的研究

5、广义分数阶微积分中若干问题的研究

6、分数阶微积分及其在粘弹性材料和控制理论中的应用

7、Riemann-Liouville分数阶微积分及其性质证明

8、中学微积分的教与学研究

9、高中数学教科书中微积分的变迁研究

10、HPM视域下的高中微积分教学研究

11、基于分数阶微积分理论的控制器设计及应用

12、微积分在高中数学教学中的作用

13、高中微积分的教学策略研究

14、高中微积分教学中数学史的渗透

15、关于高中微积分的教学研究

16、微积分与中学数学的关联

17、中学微积分课程的教学研究

18、高中微积分课程内容选择的探索

19、高中微积分教学研究

20、高中微积分教学现状的调查与分析

21、微分方程理论中的若干问题

22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程

23、基于偏微分方程图像分割技术的研究

24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性

25、几类分数阶微分方程的数值方法研究

26、几类随机延迟微分方程的数值分析

27、微分求积法和微分求积单元法--原理与应用

28、基于偏微分方程的图像平滑与分割研究

29、小波与偏微分方程在图像处理中的应用研究

30、基于粒子群和微分进化的优化算法研究

31、基于变分问题和偏微分方程的图像处理技术研究

32、基于偏微分方程的图像去噪和增强研究

33、分数阶微分方程的理论分析与数值计算

34、基于偏微分方程的数字图象处理的研究

35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程

36、反射倒向随机微分方程及其在混合零和微分对策

37、基于偏微分方程的图像降噪和图像恢复研究

38、基于偏微分方程理论的机械故障诊断技术研究

39、几类分数阶微分方程和随机延迟微分方程数值解的研究

40、非零和随机微分博弈及相关的高维倒向随机微分方程

41、高中微积分教学中数学史的渗透

42、关于高中微积分的教学研究

43、微积分与中学数学的关联

44、中学微积分课程的教学研究

45、大学一年级学生对微积分基本概念的理解

46、中学微积分课程教学研究

47、中美两国高中数学教材中微积分内容的比较研究

48、高中生微积分知识理解现状的调查研究

49、高中微积分教学研究

50、中美高校微积分教材比较研究

51、分数阶微积分方程的一种数值解法

52、HPM视域下的高中微积分教学研究

53、高中微积分课程内容选择的探索

54、新课程理念下高中微积分教学设计研究

55、基于分数阶微积分的线控转向系统控制策略研究

56、基于分数阶微积分的数字图像去噪与增强算法研究

57、高中微积分教学现状的调查与分析

58、高三学生微积分认知状况的思维层次研究

59、分数微积分理论在车辆底盘控制中的应用研究

60、新课程理念下高中微积分课程的教育价值及其教学研究

教育教学论文题目一: 1、试析提高高中数学教学质量的探讨 2、高等教育成本分担机制研究 3、基于提高大学生素质的审美教育研究 4、广西高等教育国际化及对策研究 5、中国石油管道局职业教育培训发展规划研究 6、国际教育与国际人才培养路径研究 7、深入发展时期教育技术理论演变的研究 8、大学生绿色教育若干问题研究 9、高校网络思想政治教育环境研究 10、法制教育的功能探究 11、运用教育技术实现有效教学 12、高职会计教育模式改革的研究 13、中小学心理健康教育评估的探索 14、关于分层作业在农村初中英语教学中的探索 15、中小学教师实践新课程的若干问题

在高中数学教学过程中,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。本文是我为大家整理的关于高中数学教学论文 范文 ,欢迎阅读! 高中数学教学论文范文篇一:高中数学教学 反思 一、与时俱进的更新教学理念 教师要积极的与时俱进,转变原有的教学观念。以往的高中数学教学过程中,大多侧重于对各种数学知识的讲授。在新课程大背景下,教师要积极的更新教学理念,将教学重点放在培养学生的学习能力上。因此,在具体的教学活动中,教师应该大胆的抛弃以往的“注入式”教学模式,积极开展“启发式”教学。引导学生分析各种数学问题,并启发学生思考问题,并运用学过的数学知识来解决实际问题。同时,教师还要注意对学生的学习过程进行反思,思考学生的学习效果以及存在的问题等,然后予以合理的 总结 和引导。 二、营造良好的教学氛围 在高中数学教学过程中,良好的教学气氛十分重要。因此,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。在高中阶段,学生需要学习的科目较多难度较大,整体学习压力较大。而且,很多学生都认为高中数学十分枯噪乏味,甚至晦涩难懂,学习积极性不高。加上数学本身具有较强的严谨性院,因此实际课堂气氛往往会流于便沉闷,无法调动起学生的学习积极性院。所以,在具体的教学实践中,教师便要注意准确的把握学生的实际情况,并结合教材内容,联系学生日常生活中较为熟悉的各种数学问题展开教学。尽可能的激发学生的兴趣,提高教学效率。 三、充分保证学生的主体地位 在教学过程中,学生是主体,所有教学活动的开展都要紧密围绕学生这个中心。但是,就目前的实际情况来看,在很多高中数学教学活动中,教师仍然占据着主体地位,主宰着整个课堂。处于这样的模式之下,学生只能十分被动的、机械的跟随教师的脚步,接受教师对各种数学知识的讲授。在这样的教学模式下,学生显然无法很好的开展学习活动。所以,教师要注意积极的转变自身的角色,充分保证学生的主体地位。时刻将自己放在服务者和引导者的位置上,并始终围绕学生为主体这个中心来开展各项教学活动。并积极的通过各种方式,为学生提供足够的发挥自身主体性院的空间。例如,在课堂上,教师要注意和学生进行互动,并鼓励学生随时举手发表自己的意见。 四、积极完善 教学 方法 俗话说,“教无定法”。对高中数学来讲,涉及到大量的数学知识,每节课的具体教学内容和教学任务以及教学目标等都各不相同。因此,教师要注意积极的完善教学方法,针对不同的教学内容和教学目标等,选用合适的教学方法,展开针对性较强的教学。例如,在讲解立体几何相关知识的时候,教师便可以应用演示法,向学生展示各种几何模型。并借助教学模型,更好的引导学生理解各种几何结论。而且,在一节课中,按照实际教学需要,教师还可以积极的将多种教学方法结合在一起使用。同时,教师还要注意全面把握学生的实际情况,尽可能的提高教学方法的针对性。总之,只要能够为教学活动服务,都是好的教学方法。 五、将现代化技术引课堂 随着时代的发展,越来越多的现代化技术开始被大量的应用到高中数学的教学过程中,因此,教师要注意熟练掌握一定的现代化教学技术,并将其合理的应用于教学活动中。高中数学涉及到大量的概念和公式等,单纯由教师进行口头讲授,学生大多会感到十分枯噪乏味。对于一些难度较大的知识点,还会出现难于理解的现象,影响教学效果。此时,教师便可以积极的将各种现代化技术利用引入课堂。课前,教师可以先对教学内容进行深入的分析,然后将教学内容制作成PPT,并从网络上收集一些有趣的教学素材和案例等,制作出内容丰富,趣味十足的课件。然后,在教学过程中,教师便可以适时的将PPT展示给学生们观看。并带领学生一起观察课件内容,分析各种数学问题。这样一来,不但有效的增加了课堂容量,还可以提高学生的兴趣,有效提高教学的效率。例如,在讲解立体几何中一些问题的时候,教师便可以利用多媒体技术,将题目和相关图形直观的展示在学生们的面前。在讲解棱锥体积公式推导过程的时候,也可以利用电脑进行演示。 高中数学教学论文范文篇二:高中数学信息技术的运用 一信息技术在高中数学教学中应用的必要性 信息技术在高中数学教学中的运用,能够形成动态的数学知识,帮助学生更好地理解有关知识,提高学生对问题的观察、分析和解决能力。高中数学的内容与图形有关的较多,高中生的各方面能力发展还不完善,教师要进行适当的引导,帮助其理解难度较大的图形问题,运用信息技术,能够使这些抽象的知识具体化,使原本静态的图形“动起来”,将复杂的问题简单化。如在教学立体图形三视图时,以长方体为例,教师借助多媒体教学设备向学生展示一些生活中的长方体,让学生对长方体的直观图有所了解,然后从这些生活物品中分离出的长方体直观图,让学生对长方体的高、长、宽有初步的认识,同时让学生找出屏幕上长方体的高、长、宽,并进行三视图的绘画。此外,还可以让学生找出生活中的长方体,培养学生的空间 想象力 。因此,在高中数学教学中运用信息技术有助于提高教学的质量,培养学生的综合能力,对教学有很大的促进作用。 二高中数学教学中运用信息技术的策略分析 1.对软件进行模拟,将抽象的数学知识具体化 高中数学的教学,其实质是学生在教师的正确引导下,探究解决问题的办法,并进行创新的过程。信息技术的应用,给高中数学教学提供了丰富的教学资源。如在教学空间四边形时,假如教师单纯地在黑板上为学生展示空间四边形的平面图,学生很容易形成空间四边形的对角线是相交的这一错误观念。教学时借助几何画板可为学生画出立体的空间四边形,并向学生展示旋转的空间四边形。通过这种方式,使学生对空间四边形有了形象具体的认识,使学生的空间感得到增强,提高了其想象力和观察力,对异面直线的知识有了更好的理解。 2.利用信息技术设置有效的教学情境,激发学生的学习兴趣 在传统的高中数学教学中,教师通常是通过对旧知识的复习引入本节知识的内容,有时直接提出本节课程要学习的知识,数学知识的抽象性较强,理解起来有一定的难度,这种方式使课堂变得枯燥乏味,很难调动学生学习的积极性,不能激发起学生的兴趣。学生只有对数学产生了兴趣,学习才会有动力,才能主动学习,教学中忽视对学生兴趣的培养将会降低教学的最终效果。利用信息技术,将声音、动画和视频进行有效的结合,为学生设置生动的教学情境,将学生吸引到课堂中,可激发学生的学习兴趣。如在“等比数列求和”的教学过程中,借助信息技术为学生讲述象棋发明的小 故事 。将学生的注意力吸引到教学中,从而引出本节要学习的等比数列求和知识,有效地激发学生对要学习知识的兴趣,让学生进行思考,国王是否有足够的能力满足发明者提出的要求,让学生自主研究等比数列的求和方法。 三总结 本文首先阐述了信息技术在高中数学教学中运用的必要性,再结合笔者的实际教学情况,说明了应用信息技术的具体策略,希望能够帮助广大的高中数学教师在教学中运用好信息技术,提高数学课的教学效果。 高中数学教学论文范文篇三:高中数学新课程实践 一、高中数学教学内容的转变 现在新课程高中数学教材分为选修和必修,有不同的版本,其中又分为不同的模块,不同的学生可以根据自己的发展和需要选学不同的模块和内容,满足个性化的发展,摒弃了以前的高中数学教材以往所有高中生一种教材的教学诟病。其特点突出学生是主体,教师为主导;突出双基,删除了过时的内容并且补充了适合学生发展和社会进步的新内容,注重对数学思维能力的提高;强调发展学生的数学应用意识;体现数学的 文化 价值;注重现代信息技术与课程的整合,较好的把握了新的课程标准对高中数学内容的要求。例如,必修3中新增了算法的内容。“算法”在当今数学和科学技术中的作用已经凸现出来,他是数学及其应用的重要组成部分,是计算机科学的重要基础。在社会发展中发挥着越来越大的作用,已融入社会生活的方方面面。此外,学习和体会算法的基本思想对于理解算理、提高 逻辑思维 能力、发展有条理的思考和表达也是十分重要和有效的。在教学中,我们要让学生结合具体实例,感受、学习和体会算法的基本思想;学习和体验算法的程序框图、基本算法语言;并将算法的思想方法渗透到高中数学的有关内容中,学习分析、解决问题的一种方法。 二、高中数学教学方式的转变 在传统的高中数学教学中,大多数教师教学观念陈旧,把教科书当成学生学习的惟一对象,照本宣科,不加分析的满堂灌,学生则听得很乏味,感觉有点看电影。改变教与学的方式,是高中新课程标准的基本理念,在高中数学教学中,教师应把学生当成学习的主人,充分挖掘学生的潜能,处处激发学生学习数学的兴趣。教师不能大包大揽,把结论或推理直接展现给学生,而是要让学生独立思考,在此基础上,让师生、生生进行充分的合作与交流,努力实现多边互动。积极倡导“自主、合作、探究”的教学模式。同时,由于学生认知方式、水平、思维策略和学习能力的不同,一定会有个体差异,所以教师要实施“差异教学”使人人参与,人人获得必需的数学,这样也体现了教学中的民主、平等关系。 三、高中数学教学结构的转变 传统的封闭式教学,所有问题皆在课堂内解决(尤其高中数学课),学生时时处在被动接受的地位。在新的课程理念要求下,高中数学课由封闭式转变为开放式,给学生广阔的学习时空。教师开放组织形式,如教学统计知识时,教师可以组织学生调查单位、厂矿里各种生产情况、入口年龄分布情况等把课堂延伸到课外。开放教学内容,新课程教材在一定程度上与生产生活实践相结合,如个人所得税的计算等。为此,教师应引导学生走向家庭、社会寻找鲜活的数学内容,开放教学形式,允许学生根据学习需要,课前自学、尝试练习、提出疑问、小组合作等不受限制。开放教学过程。教师应给学生充分的探究机会,时刻关注并捕捉教学过程中师生互动产生的新情况、新问题,及时调整教学进程。 四、高中数学教学手段的转变 随着新课程实验的深入,它呼唤课堂教学要走向现代化,取而代之的是现代信息技术手段的广泛应用:多媒体教学平台的使用、 网络技术 的应用等,一改以往只凭“一张嘴、一支粉笔、一本书”的传统的课堂教学模式。例如,教学必修3中“统计”中的“数据收集和整理”的习题时,教师利用电脑设计教学情境,把课本上的插图变成实景,屏幕上有声有色地出现一辆辆摩托车、小汽车、大客车、载重车通过一路口,学生在实景中搜集数据,解决了课本难以解决的问题,学生的注意力集中,学习兴趣高涨,充分体会到实地收集数据的快感,收到事半功倍的效果,还有如教学必修4中探究函数y=Asin(ωx+φ)的图象,利用多媒体展现图象的平移、变换实况,学生能直观的看到变化的过程情景,自然容易接受。教学实践证明,运用现代信息技术手段,对改变学生学习数学的方式,激发学生学习数学的兴趣,提高课堂高中数学教学效率将产生重大的影响。运用现代信息技术手段教学不仅可以帮助学生理解数学概念、探索数学结论,还应鼓励学生使用现代技术手段处理繁杂的计算、解决实际问题,以取得更多的时间和精力去探索和发现数学的规律,培养创新精神和实践能力。 五、高中数学教学评价的转变 如今新的课程标准下,充分发挥了评价的整体性、激励性、发展性功能,注重评价主体多元、评价内容多元、评价方法多元、评价标准多元。一改以往以分数论英雄的学生学习成果评价体系和教师教学效果评价体系。作为高中数学教学的评价,要求建立合理、科学的评价体系,既关注数学学习结果,也关注数学学习过程,既关注数学学习的水平,也关注数学学习活动中的情感态度变化,再者,客观上,由于所选模块的不同,班与班,学生与学生失去可比性,在新的评价体系中,还引入了模糊的等级评价以及评价内容的多元化,如选课时数、平时成绩、模块成绩等占不同比例,对评价发生了巨大变化。新课程下的高中数学教学评价更趋科学合理,对转变应试 教育 为素质教育有积极的推动作用,当然对未来高考的改革、人才的选拔方式也提出了更高的要求。总之,高中课程改革是一项复杂的系统工程,任重道远。就高中数学课程改革而言,目前遇到的困难只是暂时的,我们不能怨天尤人。高中数学课程必须改,但怎么改,不仅是专家的事,每一个高中数学教师都要自觉学习、贯彻课改新理念,反思、改进自己的教学行为,客观冷静地分析和对待高中课程改革中出现的新情况,争取尽快走出一条适合自己的改革之路。

高中数学概念课论文参考文献

参考1邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)2黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)3胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)4竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)5杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,19931、《计算机教育应用与教育革新——’97全球华人计算机教育应用大会论文集》李克东何克抗主编北京师范大学出版社19972、《教育中的计算机》全国中小学计算机教育研究中心(北京部)19983、林建详编:《CAI的理论与实践——迎接21世纪的挑战》全国CBE学会第六次学术会议论文集1993北京北京大学出版社。[1]参见。此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。[2]参见。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。”[3]《形而上学》,982b14-28。[4]引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。[5]亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。[6]参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。[7]《古希腊哲学》,78页。[8]《毕达哥拉斯和毕达哥拉斯学派》,115页以下。[9]同上书,125页。译文稍有改动。[10]《希腊哲学史》第1卷,290页。[11]亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。[12]《毕达哥拉斯与毕达哥拉斯学派》,107页以下。[13]巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板够不够我在给你找

数学教学论文参考文献

教学论文就是“讨论”和“研究”有关教学问题的文章,属于议论文,具有议论文的一般特点。下面是我收集整理的数学教学论文参考文献范文,希望对您有所帮助!

参考文献一

[1]杜威着,许崇清译:《哲学的改造》[M],商务印书馆.1958 年,P46

[2]阮忠英.初中几何教学策略浅谈[J].理科爱好者,2009(2)

[3]胡蓉.利用信息技术优化几何教学[J].信息技术与应用,2008(4).

[4]吕月霞.杜威的“从做中学”之我见[J] .教育新论,

[5]陈琦,刘儒德.当代教育心理学[M].北京师范大学出版社,2007,P185

[6]袁振国.当代教育学[M].教育科学出版社,2004,P184

[7]尚晓青.DGS 技术与初中几何教学整合研究[D].重庆:西南大学博士学位论文,2008.

[8]周军.教学策略[M].北京:教育科学出版社,2007,P11

[9]中华人民共和国教育部.义务教育数学课程标准 [S].北京:北京师范大学出版社,2011

[10]左晓明等.基于 GeoGebra 的数学教学全过程优化研究[J],2010,P101

[11]杨庆余.小学数学课程与教学[M].北京:高等教育出版社.2004,P102

[12]李伯黍,燕国材.教育心理学[M].上海:华东师范大学出版社.

参考文献二

[1]王汉澜.教育评价学 [M].开封:河南大学出版社,1995.

[2]吴钢.现代教育评价基础[M].上海:学林出版社,2004.

[3] 黎世法.异步教育学[M].北京:当代中国出版社,1994.

[4]虞应连.采用复合评分法 注重个体内差异评价[J].中小学管理,2001(1).

[5](美) Carol Ann Tomlinson,刘颂译.多元能力课堂中的差异教学[M].北京:中国轻工业出版社, 2003.

[6]茹建文.关于构建小学数学发展性评价体系的'思考[J].现代教育科学,2005(2).

[7]曾继耘.差异发展教学研究[M].北京:首都师范大学出版社,2006.

[8]顾泠沅等.寻找中间地带--国际数学教育改革的大趋势[M].上海:上海教育出版社, 2003.

[9]马艳云.评价应注意学生的心理需求[J].人民教育,2005(17).

[10]陈小菊.给自己一个支点超越自己-“个体内差异评价策略”探微[J].福建教育,2005(7).

[11](美)Diane Heacox ,杨希洁译.差异教学-帮助每个学生获得成功[M]. 北京:中国轻工业出版社,2004.

[12]陈泳超.差异评价“ 实施因材施教”[J].福建教育,2001(7、8).

[13]安艳.差异性学生评价研究--以济南市三所初中为例[D],济南.山东师范大学,2007.

[14]王俭.教育评价发展历史的哲学考察[J].教师教育研究,2008(3).

参考文献是毕业论文中的一个重要构成部分,它的引用是对论文进行引文统计和分析的重要信息来源。下文是我为大家搜集整理的关于数学论文参考文献的内容,欢迎大家阅读参考!数学论文参考文献(一) [1]李秉德,李定仁,《教学论》,人民教育出版社,1991。 [2]吴文侃,《比较教学论》,人民教育出版社,1999 [3]罗增儒,李文铭,《数学教学论》,陕西师范大学出版社,2003。 [4]张奠宙,李士 ,《数学教育学导论》高等教育出版社,2003。 [5]罗小伟,《中学数学教学论》,广西民族出版社,2000。 [6]徐斌艳,《数学教育展望》,华东师范大学出版社,2001。 [7]唐瑞芬,朱成杰,《数学教学理论选讲》,华东师范大学出版社,2001。 [8]李玉琪,《中学数学教学与实践研究》,高等教育出版社,2001。 [9]中华人民共和国教育部制订,《全日制义务教育数学课程标准(实验稿)》,北京:北京师范大出版社,2001. [10] 高中数学课程标准研制组编,《普通高中数学课程标准》,北京:北京师范大出版社,2003. [11]教育部基础教育司,数学课程标准研制组编,《全日制义务教育数学课程标准解读(实验稿)》,北京:北京师范大出版社,2002. [12]教育部基础教育司组织编写,《走进新课程——与课程实施者对话》,北京:北京师范大出版社,2002. [13]新课程实施过程中培训问题研究课题组编,《新课程与学生发展》,北京:北京师范大出版社,2001. 数学论文参考文献(二) [1]新课程实施过程中培训问题研究课题组编,《新课程理念与创新》,北京:北京师范大出版社,2001. [2][苏]AA斯托利亚尔,《数学教育学》,北京:人民教育出版社,1985年。 [3][苏]斯涅普坎,《数学教学心理学》,时勘译,重庆:重庆出版社,1987年。 [4]张奠宙,《数学教育研究导引》,南京:江苏教育出版社,1998年。 [5]丁尔升,《中学数学教材教法总论》,北京:高等教育出版社,1990年。 [6]马忠林,等,《数学教育史简编》,南宁:广西教育出版社,1991年。 [7]魏群,等,《中国中学数学教学课程教材演变史料》,北京:人民教育出版 社,1996年。 [8]张奠宙,等,《数学教育学》,南昌:江西教育出版社,1991年。 [9]严士健,《面向21世纪的中国数学教育》,南京:江苏教育出版社,1994年。 [10]傅海伦,《数学教育发展概论》,北京:科学出版社,2001年。 [11]李求来,等,《中学数学教学论》,长沙:湖南师范大学出版社,1992年。 [12]章士藻,《中学数学教育学》,南京:江苏教育出版社,1996年。 [13]十三院校协编组,《中学数学教材教法》,北京:高等教育出版社,1988年。 [14][美]美国国家研究委员会,方企勤等译,《人人关心数学教育的未来》,北 京:世界图书出版公司,1993年。 [15]潘菽,《教育心理学》,北京:人民教育出版社,1980年。 数学论文参考文献(三) [1]孙艳蕊,张祥德.利用极小割计算随机流网络可靠度的一种算法[J],系统工程学报,2010,25(2),284-288. [2]孔繁甲,王光兴.基于容斥原理与不交和公式的一个计算网络可靠性方法,电子学报,1998,26(11),117-119. [3]王芳,侯朝侦.一种计算随机流网络可靠性的新算法[J],通信学报,2004,25(1),70-77. [4][J],Networks,1987,17(2):227-240. [5]],(1):46-49. [6][J],(4):325-334. [7](3):389-395. [8]. [9]封国林,鸿兴,魏凤英.区域气候自忆预测模式的计算方案及其结果m.应ni气象学报,1999,10:470. [10]达朝究.一个可能提高GRAPES模式业务预报能力的方案[D].兰州:兰州人学,2011 [11]符综斌,干强.气候突变的定义和检测方法[j].大气科学,1992,16(4):482-492. [12]顾震潮.天数值预报屮过去资料的使用问题[J].气象学报,1958,29:176. [13]顾震潮.作为初但问题的天气形势数值预报由地而天气历史演变作预报的等值性[J].气象学报,1958,29:93. [14]黄建平,H纪范.海气锅合系统相似韵现象的研究[J].中NI科学(B),1989,9:1001. [15]黄建平,王绍武.相似-动力模式的季节预报试验[J].国科学(B)1991,21:216. 猜你喜欢: 1. 统计学论文参考文献 2. 关于数学文化的论文免费参考 3. 关于数学文化的论文优秀范文 4. 13年到15年参考文献论文格式 5. 浅谈大学数学论文范文

概率论中数学期望的概念毕业论文

在概率论 数学期望和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。也就是平均值。

数学期望是一种重要的数字特征,它反映随机变量平均取值的大小,是试验中每次可能结果的概率乘以其结果的总和。这里的“期望”一词来源于赌博,大概意思是当下注时,期望赢得多少钱。

数学期望按照定义,离散随机变量的一切可能取值与其对应的概率P的乘积之和称为数学期望,记为E.如果随机变量只取得有限个值:x,y,z,...则称该随机变量为离散型随机变量。

应用

假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元;若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润,并求出最大利润的期望值。

以上内容参考:百度百科-数学期望

数学期望是一种重要的数字特征,它反映随机变量平均取值的大小,是试验中每次可能结果的概率乘以其结果的总和。这里的“期望”一词来源于赌博,大概意思是当下注时,期望赢得多少钱。

以大数据眼光看问题体现了数学期望中的大量试验出规律,不能光看眼前或特例,对一种现象不能过早下结论,要多听、多看从而获得拿个隐藏在背后的规律;

以大概率眼看光问题对应数学期望中的概率加权,大概率对应的取值对最后之结果影响大,所以当有了一个目标,为了实现它,就要找一条实现起来概率最大的路径。

扩展资料

应用:

1)随机炒股

随机炒股也就是闭着眼睛在股市中挑一只股票,并且假设止损和止盈线都为10%,因为是随机选股,那么胜率=败率,由于印花税、佣金和手续费的存在,胜率=败率<50%,最后的数学期望一定为负,可见随机炒股,长期的后果,必输无疑。

2)趋势炒股

趋势炒股是建立在惯性理论上的,胜率跟经验有很大关系,基本上平均胜率可以假定为60%,则败率为40%,一般趋势投资者本着赚点就跑,亏了套死不卖的原则,如涨10%止盈,跌50%止损,数学期望为EP=60%*10%-40%*50%=,必输无疑。

只有止损线<15%时,趋势投资才有可能赢。但是止损线过低,就会形成频繁交易,一方面交易成本增加,另一方面交易者的判断力下降,也就是胜率必然下降,那么最终的下场好不到哪去。

3)价值投资

由于价值低估买,所以胜率比较高,且价值投资都预留安全边际,也就是向上的空间巨大,而下跌空间有限,所以数学期望值一定为正。

参考资料来源:百度百科-数学期望

高中数学课堂教学的论文题目

教育教学论文题目一: 1、试析提高高中数学教学质量的探讨 2、高等教育成本分担机制研究 3、基于提高大学生素质的审美教育研究 4、广西高等教育国际化及对策研究 5、中国石油管道局职业教育培训发展规划研究 6、国际教育与国际人才培养路径研究 7、深入发展时期教育技术理论演变的研究 8、大学生绿色教育若干问题研究 9、高校网络思想政治教育环境研究 10、法制教育的功能探究 11、运用教育技术实现有效教学 12、高职会计教育模式改革的研究 13、中小学心理健康教育评估的探索 14、关于分层作业在农村初中英语教学中的探索 15、中小学教师实践新课程的若干问题

在高中数学实际教学过程中,有些教师严重忽视了教师扮演的角色,出现过分重视学生独立学习的现象,这是高中数学 教育 工作者不容忽视的问题!下面是我为大家整理的高中数学教学问题探究论文,欢迎阅读! 高中数学教学问题探究论文篇一 1、关于存在的问题 学生接受不了容量较大、难度较强的高中教材。初中学习数学时,初中教材内容简单通俗,题型较少比较容易,学生很轻松的掌握数学知识的来龙去脉,教材对概念描述简单,一些数学定理根本没有论证,教材之间衔接较缓。高中教材内容极为抽象,注重于变量、字母的研究,注重计算、分析理论、注重逻辑性、抽象性的知识呈现。例如高一就出现集合、映射、函数等众多的抽象概念,符号极多,定义、定理教材叙述极为严格,具有高起点、难度很大,容量有多的特点。近几年教材的调整,初中教材降低的幅度较大,高中教材也降低了一些,但是由于受高考的制约,教师不能也不敢降低难度,直接造成了高中数学教学的难度根本没有降低,可以肯定说,调整后的高中教材不但没有降低难度,反而难度更大了。高中一年级时间紧,数学容量大,教学进度极快,学生不适应高中数学学习也就不足为怪了。 学生不适应初中与高中课标中部分知识点的衔接。初中数学课程标准对一些知识要求简单理解,高中教材也没有进行适当补充,一些初中学生应该掌握的知识,学生只知道肤浅的内容,或者只知道一个结论而已,结论是怎样来的,用结论解答什么问题,解答的途径 方法 等一概不知。出现了高一学生上课时常遇到没有学过的知识。例如:初中内容一元二次方程的判别式,根与系数的关系,二次函数的图像解二次不等式诸多问题,课程标准要不高,学生接触过简单知识点,高中学习感到特别难以接受。一些教师没有办法,只有进行补充,占据了大量时间,为完成教学任务,只有加快速度。导致了初中数学知识没掌握,高中数学知识被落下了的惨剧。 学生不能很快适应高中老师的教学方式。初中教材内容少多、难度不大、要求较低,教师教学进度不快,一些重点、难点,反复讲解,多次练习,逐一击破。一些教师为了学生中考取得好的成绩,不厌其烦的进行演练,有的问题达到了炉火纯青的地步。造成了有的学生学习数学积极性的丧失,出现了学生“重知识,轻能力”、“重试卷,轻书本”的错误。学生进入高中学习,教材的丰富容量、要求较高、进度很快、信息广泛、难度加深,知识的重点难点就更不用说了。新课程标准的高中教学通过设导、设问、设陷、设变,启发引导学生去思考、去解答,注重学生思想方法的渗透,思维品质能力的培养,提倡学生自主学习。刚刚入学的高中生很难适应这种教学形式,跟不上教师的讲课,严重影响了数学的学习。 学生没有及时调整自己的心理及 学习方法 。高中一年级学生面对一切都是新的:新环境、新教材、新同学、新教师、新集体……,学生一定有一个由陌生到熟悉的经历。紧张而残酷的中考,进入了理想的高中学习,一些学生有松口气的心理,入学后不紧张,优哉游哉。一些学生中考前就听到高中数学如何难学的信息,产生了敬而远之的心理。高中数学一些抽象的概念例如映射、集合、异面直线更让学生无所适从,影响了高一新生的学习质量。初中教师讲解得很细,训练的熟练,学生经过训练,概念、公式、题型了如指掌,只要对号入座即可取得好成绩。学生围着老师转,完全听命于老师,不注重自主思考、归纳 总结 。高中学习内容较多,学习时间较少,要求学生必须归纳总结,掌握数学思维方法,触类旁通。高一学生学习数学,仍然使用 初中学习方法 ,造成学习阻力很多,完成老师当天布置的作业都很艰难,预习、复习时间没有了,严重影响学习质量的提高。 新课程的辅导资料不尽完善。新课程改革进行几年了,书市上教辅资料繁多,这些教辅资料和老教材教辅资料一脉相承,有的只是对顺序做了调整而已。内容可谓涛声依旧,没有体现新课程标准理念,让师生对学好数学提出异议。 2、关于几项对策 措施 掌握学生学情,进行有效衔接。高一开学伊始,召开新生座谈会,调查学生入学成绩,进行相关测试,了解学生学习基础,什么学习习惯,初中数学教师讲课特点。研究初中高中教学大纲、教材,掌握初高中知识体系,找到初高中知识最佳衔接点,有的放矢对学生讲授,进行有效衔接。 激发学生学习的兴趣,实现心理衔接。教师必须发挥情感和心理的积极作用,兴趣是进行有效活动的必要条件,要让学生学好数学,一定要激发学习数学的兴趣,运用多媒体教学手段,调动学生学习数学的欲望,让学生树立学好的信心,注重良好的学习习惯培养,鼓励学生大胆质疑,标新立异,自主学习,提倡探究学习,让学生适应高中数学学习,学生的每一次成功。教师要及时肯定表扬鼓励,实现心理衔接。 关于教材内容的衔接。高一教学中把重点放在基础知识上,不能过分强调难题、偏题、高考题,让学生接受数学,喜欢数学,完成数学知识的学习,践行新课程理念,教师教学采用“低起点、小梯度、多训练、分层次”进行,温习初中旧知识,学习高中新知识,实现初高中教材内容的衔接。 关于教学方式的衔接。高中数学要求学生观察、类比、归纳、分析、综合建立严密的概念, 教学方法 上必须实现较好的衔接。发挥教师的主导作用,突出学生的主体主用,让学生自主探索、合作交流,真正理解和掌握数学知识和数学思想方法,直接获得数学活动 经验 。 关于学法指导、良好学习习惯的培养。必须体现学生为本的理念。彻底改变学习方式,倡导学生在教师的指导,互相交流、主动参与。激发学生想象思维,鼓励课堂上踊跃发言,培养学生养成良好的学习习惯,加强学习方法的指导,提高教学质量。 关于培养学生数学思维品质。教师一定注重加强学生的 思维训练 ,开展有效思维活动,摒弃思维惰性,把学生分析问题能力上的衔接好。 作者:张宇欣 工作单位:吉林省公主岭市怀德第一中学 高中数学教学问题探究论文篇二 一、高中数学教学现状 目前,在高中数学的教学实践中,学生主要采用题海战术以及死记硬背的方式,培养学生自主解决问题的能力,搜集各种的题目让学生去练习,并且对解题方法进行死记硬背,然后在碰到类似题型的时候就机械的模仿其解题套路,不自己寻找问题解决的办法。而教师则采用传统的满堂灌式的教学方法,将不同类型的数学习题与具体的解题思路全部告知学生,长此以往,学生失去了对数学学习的主动性与积极性,极大的影响到学生自主解题能力与 创新思维 能力的培养,一旦遇到以前没有接触过的题目类型,就变得束手无策。因此,在新课标的倡导下,教师与学生都需要积极的转变观念,注重对问题解决能力的培养,从而提高高中数学教学的有效性。 二、学生问题解决能力的培养 首先,巩固基础知识的教学,为学生自主解决问题提供必要的保障。通过对知识与能力两者的内在关系进行分析,发现学生“自主解决问题”的能力的培养与有效提高主要取决于两个因素:一,教师在实践教学中,对学生整个知识基础与技能状况的准确把握;二,在此基础之上,为学生“自主解决问题”能力的培养,提供必要的知识与技能的准备。因此,在高中数学的实践教学中,教师不仅需要通过各种途径全面的把握学生对知识的掌握程度,而且还需要采取有效的措施为学生在新旧知识间架出一座“桥梁”,注重对学生既基础知识与技能的教学,从而为学生学习新的数学知识并解决新的数学问题提供智力方面的支持。同时,在教学中,教师还需要注重对知识的积累,帮助学生进行知识的分类与整理,从而为其自主的分析问题与解决问题创造良好的条件。其次,创设问题情境,引导学生自主发现问题。积极培养学生的“自主解决问题”的首要任务就是让学生在学习中,自主的发现问题,并提出问题。问题是思维的起源,任何一个思维过程都指向了一个具体的问题,而且问题也是创造的基础,一切的创造也从问题开始[1]。在高中数学的教学实践中,创设一个“问题情境”,就是相当于建立一个良好的学习环境,它能够有效的激发广大学生学习的主动性与积极性,从儿进行自主的思考与探讨,积极的发现问题。因此,在数学课堂中,教师就需要对学生的“最近发展区”实施全面的把握,并在此基础之上创设出一些“问题情境”,使学生能够“跳一跳”就能自主的发现并提出问题。如在对“等比数列”这一知识开展教学的时候,教师就可以这样创设“问题情境”:有一天,兔子与乌龟赛跑,乌龟在兔子前方1公里处,而已知兔子的速度是乌龟的10倍,当兔子向前追1公里时,乌龟同样前景了1/10公里;而当兔子追到1/10公里处的时候,乌龟又向前走了1/100公里;当兔子赶到1/100公里处时候,乌龟又向前走了1/1000公里……问:在相同的时段内,兔子与乌龟各自的路程是多少?兔子能追上乌龟吗?通过这种形式的问题情境的创设,让学生观察到数列的特点,进而引出有关等比数列的概念,激发学生的学习兴趣,从而引导学生发现相应的问题并提出问题。最后,培养创新思维,挖掘新型的数学思维方法,为学生“自主解决问题”提供条件。在高中数学的学习过程中,创新思维是分析问题与解决问题的重要构成部分,对开发学生的智力有着重要的作用,因此,在高中数学的实践教学中,教师要积极培养学生的创新思维,鼓励学生进行大胆的猜想,从而提出问题[2]。同时,教师还需要积极鼓励学生挖掘新型的数学思维方法,并将其进行全面的把握与应用,从而真正体会到数学学习的本质,并将其运用到实际的数学问题的解决当中,使整个数学的解题的思维能力可以得到有效的培养的提高,进而发展学生的“自主解决问题”的能力。 三、结束语 数学作为一门基础的应用学科,要求学生具备较强 想象力 、 逻辑思维 能力与推理的能力。然而在实际的学习过程中,由于学生缺乏对问题的自主解决能力,导致学生一般都认为数学比较难学,不愿意学习数学,进而产生“厌学”心理。因此,在高中数学的教学实践中,教师要注意对学生的“自主解决问题”能力的充分培养,从而有效的提高学生对数学问题的解决能力,进而提高学习效果[3]。 作者:冯春瑞 工作单位:甘肃省华亭县教育局 高中数学教学问题探究论文篇三 1高中数学教学过程中存在的若干问题 过分重视学生的自主学习,忽略教师的引导作用 在高中数学教学过程中,丰富学生的学习风格以及方法,能够促使学生更加会学习,为之后他们一生的学习与发展打下良好的基础。除此之外,在高中数学实际教学过程中,严重忽视了教师扮演的角色、过分重视学生独立学习的现象。由于教师角色的缺失,学生的认知水平,只是在原地徘徊,导致课堂教学。教学过程是学生自主建构的统一和教师指导。当学生遇到困难,教师要引导学生认为,当学生的思维是窄的,教师应该开阔自己的思维。总之,教师的指导是确保学生学习的方向和有效性的重要前提。 教学课堂上缺乏对学生进行正面教育 高中数学新课程强尊重个性差异和学生的学习,鼓励学生积极参与。学习有困难,贫困学生给予及时的表扬和鼓励的自信,但这并不意味着学生盲目歌颂。赞美和批评的完整的识别和动机。一方面,我们要善于发现学生的闪光点,思想,及时,适当的表扬和鼓励,让学生得到发挥;另一方面,学生的错误意见,明确指出,要澄清模糊数学问题。 教学课堂上教师的角色缺乏平衡性 新数学课程要求提高学生主动观察,实践,猜测,推理,数学教学和学习活动的验证和交换。学生的学习风格,阅读,实践,自主探索,合作交流等。但老师指导,合作者和促进者,成为课堂教学的领导者。新课程倡导民主,开放性,科学课程,强调“教师即课程”。这就要求教师不仅要成为课程的实施,应该成为课程的建设者和开发者。新课程与旧课程之间的比较,它们之间的根本区别在于新课程要求培养学生的创新精神和促进教学过程中的学生的个性发展,强调学生在自己的感情,并引导他们进行自己的意见,让他们成为数学学习的主人,不仅是对传统的教学方法,在教学转移。然而,在实际的学习项目,因为学生的认知上的局限性和个体差异,不可避免地会出现各种意想不到的问题,就必须充分发挥教师的主导作用,教师应及时评价,正确处理学生的经验,多了解,理解和共识,多元 文化 的普世价值之间的关系。此外,在新课程把太多的重点放在对个性差异的尊重和学习的学生,鼓励学生积极参与,以夸张赞美的激励效果,忽略错误校正LED,培养学生的自信心理,影响了他们的身心健康。 2高中数学教学内容存在的若干问题 教学内容难度进一步加大 新课程理念下,我们使用的是人教版教材编写的一个,与旧教材相比似乎难度降低,但也增加了一些新的内容,而这些困难的部分新增加的不小。我觉得新课程教材是完全按照市重点高中学生的实际情况,制备,不考虑农村学生。如算法初步内容,涉及的知识在计算机语言,具有较高的逻辑相关的知识,抽象和专业。这些内容在农村的学生很难学,因为地区的差异,他们计算机知识的掌握是不够的,甚至可以说,这方面的知识是没有的。新的数学课程,所需的内容分为五个模块,高中完成所要求的5个模块和两个选修模块。教学内容的增加,教师为了完成教学任务,一味追求教学进度,有时一类的两个或三个小时的内容,没有实践,没有消化,没有巩固,使学生了解不全面,甚至能记住的知识不了解或不了解的深入,当然不会解决问题,这势必增加,学习的难度。 教学过程中没有充分发挥教师的引导作用 在实际教学中,重视学生的学习自主性,而忽视教师的积极引导,一些教师认为,新课程是要充分发挥学生的主动性,让学生自己学习,而忽视了教师的必要的,模糊的积极引导,数学知识的准备接受课程的学生,降低了课堂教学的有效性。 新课改背景下淡化了教学素材的实际作用 在新课程的要求,在高中数学教学中,充分利用各种资源,完成补充材料,以扩大,延伸,组合,并把它们放进学生的实际生活,但由于教师个体的差异和课程资源的认识程度,在教学实践中,教学资源教师片面发展未能完全控制的教学内容,教学内容的泛化,甚至出现模糊现象,面对这种情况,教师要合理利用现代化的教学手段,充分利用教学书的配套光盘制作高质量课件来丰富他们的教学。我们应该根据教学内容的特点,并充分发挥计算机辅助,精心制作多媒体课件的适用,以达到最佳的教学效果。 过分强调计算机与信息技术教学 随着信息网路技术的日益盛行,计算机辅助教学,信息技术是数学教育现代化的重要手段。例如,在几何中的高中数学教学过程中,进行适当的教学课件,利用多媒体辅助教学手段充分,从而能够达到更好的教学效果。由此可见,计算机教学在高中数学教学过程中,具有十分重要的教学辅助作用,从而、在当前高中数学教学课堂教学中,使用计算机信息技术教学成为教学的主要手段,安全忽略其使用是否过量。计算机技术教学纵使再好也不能什么事情都依赖于多媒体网络,如基本的算术,想象力,学生数学活动的逻辑推理,数学证明应该依靠自己来完整的,因此,我认为掌握好教学信息技术与传统教学之间的平衡,注重有效的整合,整合最好的。 3结语 综上所述,高中数学教学过程中仍旧存在部分不足,需要进一步加强对教学问题的解决,为广大师生进行教学和学习提供一个良好的学习环境,尽最大可能的去规避这些不足点的再次出现。 作者:王俊民 工作单位:甘肃省白银市平川中学

新颖的数学论文题目有:

1、数学模型在解决实际问题中的作用。

2、中学数学中不等式的证明。

3、组合数学与中学数学。

4、构造方法在数学解题中的应用。

5、高中新教材中数学教学方法探讨。

6、组合数学恒等式的证明方法。

7、浅谈中学数学教育。

8、浅谈中学不等式的几何证明方法。

9、数学教育中学生创造性思维能力的培养。

10、高等数学在初等数学中的应用。

11、向量在几何中的应用。

12、情境认识在数学教学中的应用。

13、高中数学应用题的编制和一些解题方法。

14、浅谈反证法在中学教学中的应用。

15、探索证明线段相等的方法。

16、几个带参数的二阶边界值问题的正解的存在性研究。

17、关于丢番图方程1+x+y=z的一类特殊情况的研究。

18、变限积分函数的性质及应用。

19、有限集上函数的迭代及其应用。

20、小学课堂环境改着的行动研究。

21、网络环境下小学数学主题教学模式应用研究。

22、培养小学生数学学习兴趣的教学策略研究。

23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。

24、小学生数学创新思维的培养。

25、促进小学生数学课堂参与的数学策略研究。

26、使学生真正成为学习的主人。

27、改革课堂教学的着力点。

28、谈素质教育在小学数学教学中的实施。

29、素质教育与小学数学教育改革。

30、浅谈学生数学思维能力的培养。

数学概念论文期刊

理论数学、应用数学进展都是rccse的核心刊

1.数学学报 2.数学年刊.A辑 3.应用数学学报 4.计算数学 5.数学进展 6.数学研究与评论 7.系统科学与数学 8.数学物理学报 9.应用概率统计 10.工程数学学报 11.应用数学 12.数学杂志 13.高校应用数学学报.A辑 14.模糊系统与数学 15.高等学校计算数学学报 16.数学季刊 17.工科数学(改名为:大学数学) 18.数学的实践与认识 19.纯粹数学与应用数学 20.运筹学学报 21.数学教育学报 都是忙着发论文的人。

在检索数学出来的结果当中,显示有数学的实践与认识、数学通报、应用数学和力学、数学学报、应用数学、数学杂志、数学教育学报、应用数学学报等等。。。

由于还没很好的归纳,只显示其中一部反。

现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。它们是大学数学专业的课程,非数学专业也要具备其中某些知识。变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。 18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。然而,这只是暴风雨前夕的宁静。19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。 19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。 大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。这是由罗巴契夫斯基和里耶首先提出的。非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。 后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。 1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。1899年,希尔伯特对此作了重大贡献。 在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。 另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代,阿贝尔和伽罗华开创了近世代数学的研究。近代代数是相对古典代数来说的,古典代数的内容是以讨论方程的解法为中心的。群论之后,多种代数系统(环、域、格、布尔代数、线性空间等)被建立。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。 上述两大事件和它们引起的发展,被称为几何学的解放和代数学的解放。 19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了一个引人注目的例子,要求人们对分析基础作更深刻的理解。他提出了被称为“分析的算术化”的著名设想,实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。他和后继者们使这个设想基本上得以实现,使今天的全部分析可以从表明实数系特征的一个公设集中逻辑地推导出来。 现代数学家们的研究,远远超出了把实数系作为分析基础的设想。欧几里得几何通过其分析的解释,也可以放在实数系中;如果欧氏几何是相容的,则几何的多数分支是相容的。实数系(或某部分)可以用来解群代数的众多分支;可使大量的代数相容性依赖于实数系的相容性。事实上,可以说:如果实数系是相容的,则现存的全部数学也是相容的。 19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。即他们证明了实数系(由此导出多种数学)能从确立自然数系的公设集中导出。20世纪初期,证明了自然数可用集合论概念来定义,因而各种数学能以集合论为基础来讲述。 拓扑学开始是几何学的一个分支,但是直到20世纪的第二个1/4世纪,它才得到了推广。拓扑学可以粗略地定义为对于连续性的数学研究。科学家们认识到:任何事物的集合,不管是点的集合、数的集合、代数实体的集合、函数的集合或非数学对象的集合,都能在某种意义上构成拓扑空间。拓扑学的概念和理论,已经成功地应用于电磁学和物理学的研究。 20世纪有许多数学著作曾致力于仔细考查数学的逻辑基础和结构,这反过来导致公理学的产生,即对于公设集合及其性质的研究。许多数学概念经受了重大的变革和推广,并且像集合论、近世代数学和拓扑学这样深奥的基础学科也得到广泛发展。一般(或抽象)集合论导致的一些意义深远而困扰人们的悖论,迫切需要得到处理。逻辑本身作为在数学上以承认的前提去得出结论的工具,被认真地检查,从而产生了数理逻辑。逻辑与哲学的多种关系,导致数学哲学的各种不同学派的出现。 20世纪40~50年代,世界科学史上发生了三件惊天动地的大事,即原子能的利用、电子计算机的发明和空间技术的兴起。此外还出现了许多新的情况,促使数学发生急剧的变化。这些情况是:现代科学技术研究的对象,日益超出人类的感官范围以外,向高温、高压、高速、高强度、远距离、自动化发展。以长度单位为例、小到1尘(毫微微米,即10^-15米),大到100万秒差距(万光年)。这些测量和研究都不能依赖于感官的直接经验,越来越多地要依靠理论计算的指导。其次是科学实验的规模空前扩大,一个大型的实验,要耗费大量的人力和物力。为了减少浪费和避免盲目性,迫切需要精确的理论分机和设计。再次是现代科学技术日益趋向定量化,各个科学技术领域,都需要使用数学工具。数学几乎渗透到所有的科学部门中去,从而形成了许多边缘数学学科,例如生物数学、生物统计学、数理生物学、数理语言学等等。 上述情况使得数学发展呈现出一些比较明显的特点,可以简单地归纳为三个方面:计算机科学的形成,应用数学出现众多的新分支、纯粹数学有若干重大的突破。 1945年,第一台电子计算机诞生以后,由于电子计算机应用广泛、影响巨大,围绕它很自然要形成一门庞大的科学。粗略地说,计算机科学是对计算机体系、软件和某些特殊应用进行探索和理论研究的一门科学。计算数学可以归入计算机科学之中,但它也可以算是一门应用数学。 计算机的设计与制造的大部分工作,通常是计算机工程或电子工程的事。软件是指解题的程序、程序语言、编制程序的方法等。研究软件需要使用数理逻辑、代数、数理语言学、组合理论、图论、计算方法等很多的数学工具。目前电子计算机的应用已达数千种,还有不断增加的趋势。但只有某些特殊应用才归入计算机科学之中,例如机器翻译、人工智能、机器证明、图形识别、图象处理等。 应用数学和纯粹数学(或基础理论)从来就没有严格的界限。大体上说,纯粹数学是数学的这一部分,它暂时不考虑对其它知识领域或生产实践上的直接应用,它间接地推动有关学科的发展或者在若干年后才发现其直接应用;而应用数学,可以说是纯粹数学与科学技术之间的桥梁。 20世纪40年代以后,涌现出了大量新的应用数学科目,内容的丰富、应用的广泛、名目的繁多都是史无前例的。例如对策论、规划论、排队论、最优化方法、运筹学、信息论、控制论、系统分析、可靠性理论等。这些分支所研究的范围和互相间的关系很难划清,也有的因为用了很多概率统计的工具,又可以看作概率统计的新应用或新分支,还有的可以归入计算机科学之中等等。 20世纪40年代以后,基础理论也有了飞速的发展,出现许多突破性的工作,解决了一些带根本性质的问题。在这过程中引入了新的概念、新的方法,推动了整个数学前进。例如,希尔伯特1990年在国际教学家大会上提出的尚待解决的23个问题中,有些问题得到了解决。60年代以来,还出现了如非标准分析、模糊数学、突变理论等新兴的数学分支。此外,近几十年来经典数学也获得了巨大进展,如概率论、数理统计、解析数论、微分几何、代数几何、微分方程、因数论、泛函分析、数理逻辑等等。 当代数学的研究成果,有了几乎爆炸性的增长。刊载数学论文的杂志,在17世纪末以前,只有17种(最初的出于1665年);18世纪有210种;19世纪有950种。20世纪的统计数字更为增长。在本世纪初,每年发表的数学论文不过1000篇;到1960年,美国《数学评论》发表的论文摘要是7824篇,到1973年为20410篇,1979年已达52812篇,文献呈指数式增长之势。数学的三大特点—高度抽象性、应用广泛性、体系严谨性,更加明显地表露出来。 今天,差不多每个国家都有自己的数学学会,而且许多国家还有致力于各种水平的数学教育的团体。它们已经成为推动数学发展的有力因素之一。目前数学还有加速发展的趋势,这是过去任何一个时期所不能比拟的。 现代数学虽然呈现出多姿多彩的局面,但是它的主要特点可以概括如下:(1)数学的对象、内容在深度和广度上都有了很大的发展,分析学、代数学、几何学的思想、理论和方法都发生了惊人的变化,数学的不断分化,不断综合的趋势都在加强。(2)电子计算机进入数学领域,产生巨大而深远的影响。(3)数学渗透到几乎所有的科学领域,并且起着越来越大的作用,纯粹数学不断向纵深发展,数理逻辑和数学基础已经成为整个数学大厦基础。 以上简要地介绍了数学在古代、近代、现代三个大的发展时期的情况。如果把数学研究比喻为研究“飞”,那么第一个时期主要研究飞鸟的几张相片(静止、常量);第二个时期主要研究飞鸟的几部电影(运动、变量);第三个时期主要研究飞鸟、飞机、飞船等等的所具有的一般性质(抽象、集合)。 这是一个由简单到复杂、由具体到抽象、由低级向高级、由特殊到一般的发展过程。如果从几何学的范畴来看,那么欧氏几何学、解析几何学和非欧几何学就可以作为数学三大发展时期的有代表性的成果;而欧几里得、笛卡儿和罗巴契夫斯基更是可以作为各时期的代表人物。

  • 索引序列
  • 高中数学概念教学的论文题目
  • 高中数学概念课论文参考文献
  • 概率论中数学期望的概念毕业论文
  • 高中数学课堂教学的论文题目
  • 数学概念论文期刊
  • 返回顶部