首页 > 期刊论文知识库 > 汽车半主动悬架控制研究论文

汽车半主动悬架控制研究论文

发布时间:

汽车半主动悬架控制研究论文

摘要Abstract 近年来,随着人们生活水平的提高,对汽车乘坐舒适性的要求也越来越高。汽车行驶的平顺性和操纵的稳定性已经逐渐成为其在现代市场竞争中夺取优势的一项非常重要的性能指标。本文首先通过建立汽车悬架系统的七自由度整体模型图,运用结构动力学和振动知识推导出系统在正弦激励下的拉格朗日方程,并简化为振动微分方程形式,通过MATLAB编制优化程序,求出系统的复特征值和在特定参数下的响应变化图形。然后,简述现代汽车悬架系统的各种控制方法,模拟仿真出系统在不同的刚度和阻尼下输出响应的图形,通过比较分析,为半主动悬架系统的减振器的阻尼和弹性元件的刚度控制提供根据。最后,得出本文的结论。即,汽车悬架的动力响应和控制分析与刚度和阻尼的变化之间的紧密联系。 In recent years, with the improvement of people's living standard, it is higher and higher to take the requirement for comfortableness to the car. Whom car go getting smooth-going and stability that handle become their capture one important performance index very of advantage among modern market competition gradually already. This text, through setting up whole model picture of degree of freedom seven that the car hung a system at first, use structural dynamics and vibration knowledge to derive the system out to encourage Lagrangian equation under in the sine, simplify it for the vibration differential equation form, work out the procedure of optimizing through MATLAB, ask out systematic replying characteristic value and response under the particular parameter and changing the figure. Then sketch Hyundai Motor hang sets of various of system control method, simulation emulation produce system output the figure responded under different rigidity and damping, through comparative analysis,hang sets of damping and rigidity of components elastic of shock absorbers of system control offer to half voluntarily according to. Finally, draw the conclusion herein. ., the car power of hanging the shelf responds and controls the close connection between analysis and change of rigidity and damping.关键词:汽车悬架;响应;控制分析Keyword: The car hangs the shelf; Response; Control and analyze

这就是涉及到论文怎么写的问题了,先去数据库找相关论文研究研究,从中提取自己论文要的,列出提纲就可以了,不知道怎么找的话,就去我baidu空间看看,那里有网络找论文的步骤和去处

Abstract In recent years, with the improvement of people's living standards, the requirements of the car ride comfort is also getting higher and higher. Car travelling on the ride and handling stability has gradually become in the modern market competition to win a very important advantage of the performance indicators. In this paper, through the establishment of the seven car suspension system as a whole model of freedom, the use of structural dynamics and vibration knowledge derived sine incentive system in the Lagrange equation, and to simplify the form of differential equations for the vibration through the optimization of procedures for the preparation of MATLAB , Calculated the value of complex features and specific parameters in response to changes in the graphic. Then, briefly Hyundai Motor suspension system of control, simulation system in a different stiffness and damping of the graphics output response, through a comparative analysis of semi-active suspension system for the shock absorber damping, and elastic element Under the control of the stiffness. Finally, come to this conclusion. That is, vehicle suspension and control the dynamic response analysis and stiffness and damping of the close link between changes. Key words: automotive suspension; response; control of

要根据车的基本配置,选择合适的研究方法,一定要了解车子基本构造,一定要了解结构的稳定性,在开发研究的时候,要考虑实用性和成本。

半主动悬架研究现状论文

自己的事情自己干!!

半主动悬架的研究工作始于1973年,由D.A.克罗斯贝和D.C.卡诺普首先提出。半主动悬架由可变特性的弹簧和减振器组成。半主动悬架的基本工作原理是:用可调弹簧或可调整减振器组成悬架,并根据簧上质量的速度响应、加速度响应等反馈信号,按照一定的控制规律,调节可调弹簧的刚度或可调减振器的阻尼力。半主动悬架主要是通过电磁阀控制可调阻尼减振器。可调阻尼减振器由具有不同节流孔的转阀得到舒适(软)、正常(中)、运动(硬)三个等级的阻尼。起步、制动、急转弯和高速选择运动(硬)以保证良好的操纵稳定性,低速选择舒适(软)以获得良好的平顺性,中速选择正常(中)兼顾平顺性与操纵稳定性。通过改变弹簧刚度以减振的半主动悬架由哈伯德等人于1976年提出,弹簧刚度的改变是通过切换空气弹簧实现的。刚度可调的空气弹簧具有副气室的空气弹簧,由刚度控制阀改变主、副气室的通道面积,得到软、中、硬不同的刚度,其控制与可调阻尼半主动悬架有类似之处。

半主动悬架与主动悬架相比较,具有以下优点:结构简单(省去了油泵、蓄能器、油管、滤油器、油罐等);工作时几乎不消耗车辆的动力;制造可控阻尼器没有制造电液伺服的液力执行元件那么复杂,故制造成本低。因而半主动悬架有较好的应用前景。

主动悬架简单来说就是主动调节悬架的刚度强度还有车身的高度那些,使悬架处于最佳状态,半主动悬架只能对减震器调节,不需要专门的动力来源。

一种是通过调节减振器节流阀的面积而改变阻尼特性的孔径调节式,其孔径的改变一般可由电磁阀或其它类似的机电式驱动阀来实现。

另一种是电流变或磁流变可调阻尼器,其工作原理是通过改变电场或磁场强度来改变流变体的阻尼特性。两种结构中,前者技术上比较成熟,发表的文献和专利也较多;后者属于新兴技术,随着对这项技术的研究和突破,可能会成为较有前途的半主动悬架形式。

可切换阻尼式悬架:

常见的可切换阻尼式悬架一般设置2至3个级别,阻尼系数可在几档之间快速切换,切换的时间通常为10~20ms,控制方法通常根据车身的相对速度和绝对速度来改变系统阻尼的设置。

对于二级式悬架,阻尼设置为“硬”和“软”2个级别;对于三级式悬架,阻尼设置为“硬”、“中”和“软”3个级别。

连续可调阻尼式悬架连续可调减振器的阻尼系数在一定范围内可以连续变化,有两种基本实现方式。

汽车悬架设计论文研究方法

课程设计 轻型货车前悬架设计,共22页,10616字。目录第1章 绪论 概述 3第2章 悬架结构形式分析 非独立悬架和独立悬架 前后悬架悬架方案的选择 辅助元件 5第3章1042型汽车前悬架主要参数的选择 前后悬架静挠度和动挠度的选择 选择要求及方法 悬架静挠度 悬架动挠度 悬架的弹性特性 悬架侧倾角刚度及前后轴的分配 8第4章 弹性元件的计算 钢板弹簧的布置方案的选择 钢板弹簧主要参数的确定 满载弧高 钢板弹簧长度的确定 钢板断面尺寸及片数的确定 钢板弹簧总成在自由状态下的弧高及曲率半径计算 钢板弹簧的刚度验算 弹簧的最大应力点及最大应力 弹簧卷耳和弹簧销的强度核算 16第5章 减振器的设计计算 减振器的分类 主要性能参数的选择 相对阻尼系数 减振器阻尼系数的确定 最大卸荷力的确定 筒式减振器主要尺寸参数的确定 19摘要汽车悬架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。典型的悬架结构由弹性元件、导向机构以及减震器等组成,个别结构则还有缓冲块、横向稳定杆等。弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬架多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。汽车悬架性能是影响汽车行驶平顺性、操纵稳定性和行驶速度的重要因素。因此,研究汽车振动,设计新型悬架系统,将振动控制到最低水平是提高现代汽车质量的重要措施。关键词:弹性元件;钢板弹簧;缓冲块

汽车的底盘是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。 汽车底盘设计就是要在根据汽车的额定质量、最高时速等选定了发动机型号、变速器型号等之后,对这些零部件进行合理安放而设计的结构。

汽车的底盘是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。 汽车底盘设计就是要在根据汽车的额定质量、最高时速等选定了发动机型号、变速器型号等之后,对这些零部件进行合理安放而设计的结构。

国内外对麦弗逊悬架设计都很热衷。目前国内外只要还是用麦弗逊悬架设计,国内是专注用麦弗逊悬架设计,国外麦弗逊悬架设计已经很成熟了,在开发其他技术,但还是以麦弗逊悬架设计为主。麦弗逊悬架设计简单一句话说,就是以一个汽车设计师命名的前悬架方式,由麦弗逊发明创造出来,延续到今天,应用于很多车型上,麦弗逊在汽车前悬挂上的应用之广是其他悬挂无法比拟的。

汽车悬架系统发展研究论文

现代汽车制动系统的发展趋势从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。一.制动控制系统的历史最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的质量为2860kg的凯迪拉克V16车四轮采用直径的鼓式制动器,并有制动踏板控制的真空助力装置。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。Duesenberg Eight车率先使用了轿车液压制动器。克莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50年代,液压助力制动器才成为现实。20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装置一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规定的数值进行比较后,给压力调节器发出指令。1936年,博世公司申请一项电液控制的ABS装置专利促进了防抱制动系统在汽车上的应用。1969年的福特使用了真空助力的ABS制动器;1971年,克莱斯勒车采用了四轮电子控制的ABS装置。这些早期的ABS装置性能有限,可靠性不够理想,且成本高。1979年,默·本茨推出了一种性能可靠、带有独立液压助力器的全数字电子系统控制的ABS制动装置。1985年美国开发出带有数字显示微处理器、复合主缸、液压制动助力器、电磁阀及执行器“一体化”的ABS防抱装置。随着大规模集成电路和超大规模集成电路技术的出现,以及电子信息处理技术的高速发展,ABS以成为性能可靠、成本日趋下降的具有广泛应用前景的成熟产品。1992年ABS的世界年产量已超过1000万辆份,世界汽车ABS的装用率已超过20%。一些国家和地区(如欧洲、日本、美国等)已制定法规,使ABS成为汽车的标准设备。二.制动控制系统的现状当考虑基本的制动功能量,液压操纵仍然是最可靠、最经济的方法。即使增加了防抱制动(ABS)功能后,传统的“油液制动系统”仍然占有优势地位。但是就复杂性和经济性而言,增加的牵引力控制、车辆稳定性控制和一些正在考虑用于“智能汽车”的新技术使基本的制动器显得微不足道。传统的制动控制系统只做一样事情,即均匀分配油液压力。当制动踏板踏下时,主缸就将等量的油液送到通往每个制动器的管路,并通过一个比例阀使前后平衡。而ABS或其他一种制动干预系统则按照每个制动器的需要时对油液压力进行调节。目前,车辆防抱制动控制系统(ABS)已发展成为成熟的产品,并在各种车辆上得到了广泛的应用,但是这些产品基本都是基于车轮加、减速门限及参考滑移率方法设计的。方法虽然简单实用,但是其调试比较困难,不同的车辆需要不同的匹配技术,在许多不同的道路上加以验证;从理论上来说,整个控制过程车轮滑移率不是保持在最佳滑移率上,并未达到最佳的制动效果。另外,由于编制逻辑门限ABS有许多局限性,所以近年来在ABS的基础上发展了车辆动力学控制系统(VDC)。结合动力学控制的最佳ABS是以滑移率为控制目标的ABS,它是以连续量控制形式,使制动过程中保持最佳的、稳定的滑移率,理论上是一种理想的ABS控制系统滑移率控制的难点在于确定各种路况下的最佳滑移率,另一个难点是车辆速度的测量问题,它应是低成本可靠的技术,并最终能发展成为使用的产品。对以滑移率为目标的ABS而言,控制精度并不是十分突出的问题,并且达到高精度的控制也比较困难;因为路面及车辆运动状态的变化很大,多种干扰影响较大,所以重要的问题在于控制的稳定性,即系统鲁棒性,应保持在各种条件下不失控。防抱系统要求高可靠性,否则会导致人身伤亡及车辆损坏。因此,发展鲁棒性的ABS控制系统成为关键。现在,多种鲁棒控制系统应用到ABS的控制逻辑中来。除传统的逻辑门限方法是以比较为目的外,增益调度PID控制、变结构控制和模糊控制是常用的鲁棒控制系统,是目前所采用的以滑移率为目标的连续控制系统。模糊控制法是基于经验规则的控制,与系统的模型无关,具有很好的鲁棒性和控制规则的灵活性,但调整控制参数比较困难,无理论而言,基本上是靠试凑的方法。然而对大多数基于目标值的控制而言,控制规律有一定的规律。另外,也有采用其它的控制方法,如基于状态空门及线性反馈理论的方法,模糊神经网络控制系统等。各种控制方法并不是单独应用在汽车上,通常是几种控制方法组合起来实施。如可以将模糊控制和PID结合起来,兼顾模糊控制的鲁棒性和PID控制的高精度,能达到很好的控制效果。车轮的驱动打滑与制动抱死是很类似的问题。在汽车起动或加速时,因驱动力过大而使驱动轮高速旋转、超过摩擦极限而引起打滑。此时,车轮同样不具有足够的侧向力来保持车辆的稳定,车轮切向力也减少,影响加速性能。由此看出,防止车轮打滑与抱死都是要控制汽车的滑移率,所以在ABS的基础上发展了驱动防滑系统(ASR)。ASR是ABS的逻辑和功能扩展。ABS在增加了ASR功能后,主要的变化是在电子控制单元中增加了驱动防滑逻辑系统,来监测驱动轮的转速。ASR大多借用ABS的硬件,两者共存一体,发展成为ABS/ASR系统。目前,ABS/ASR已在欧洲新载货车中普遍使用,并且欧共体法规EEC/71/320已强制性规定在总质量大于的某些载货车上使用,重型车是首先装用的。然而ABS/ASR只是解决了紧急制动时附着系数的利用,并可获得较短的制动距离及制动方向稳定性,但是它不能解决制动系统中的所有缺陷。因此ABS/ASR功能,同时可进行制动强度的控制。ABS只有在极端情况下(车轮完全抱死)才会控制制动,在部分制动时,电子制动使可控制单个制动缸压力,因此反应时间缩短,确保在任一瞬间得到正确的制动压力。近几年电子技术及计算机控制技术的飞速发展为EBS的发展带来了机遇。德国自20世纪80年代以来率先发展了ABS/ASR系统并投入市场,在EBS的研究与发展过程中走到了世界的前列。德国博世公司在1993年与斯堪尼公司联合首次在Scania牵引车及挂车上装用了EBS。然而EBS是全新的系统,它有很大的潜力,必将给现在及将来的制动系统带来革命性的变革。三.制动控制系统的发展今天,ABS/ASR已经成为欧美和日本等发达国家汽车的标准设备。车辆制动控制系统的发展主要是控制技术的发展。一方面是扩大控制范围、增加控制功能;另一方面是采用优化控制理论,实施伺服控制和高精度控制。在第一方面,ABS功能的扩充除ASR外,同时把悬架和转向控制扩展进来,使ABS不仅仅是防抱死系统,而成为更综合的车辆控制系统。制动器开发厂商还提出了未来将ABS/TCS和VDC与智能化运输系统一体化运用的构想。随着电子控制传动、悬架系统及转向装置的发展,将产生电子控制系统之间的联系网络,从而产生一些新的功能,如:采用电子控制的离合器可大大提高汽车静止启动的效率;在制动过程中,通过输入一个驱动命令给电子悬架系统,能防止车辆的俯仰。在第二个方面,一些智能控制技术如神经网络控制技术是现在比较新的控制技术,已经有人将其应用在汽车的制动控制系统中。ABS/ASR并不能解决汽车制动中的所有问题。因此由ABS/ASR进一步发展演变成电子控制制动系统(EBS),这将是控制系统发展的一个重要的方向。但是EBS要想在实际中应用开来,并不是一个简单的问题。除技术外,系统的成本和相关的法规是其投入应用的关键。经过了一百多年的发展,汽车制动系统的形式已经基本固定下来。随着电子,特别是大规模、超大规模集成电路的发展,汽车制动系统的形式也将发生变化。如凯西-海斯(K-H)公司在一辆实验车上安装了一种电-液(EH)制动系统,该系统彻底改变了制动器的操作机理。通过采用4个比例阀和电力电子控制装置,K-H公司的EBM就能考虑到基本制动、ABS、牵引力控制、巡航控制制动干预等情况,而不需另外增加任何一种附加装置。EBM系统潜在的优点是比标准制动器能更加有效地分配基本制动力,从而使制动距离缩短5%。一种完全无油液、完全的电路制动BBW(Brake-By-Wire)的开发使传统的液压制动装置成为历史四.全电路制动(BBW)BBW是未来制动控制系统的L发展方向。全电制动不同于传统的制动系统,因为其传递的是电,而不是液压油或压缩空气,可以省略许多管路和传感器,缩短制动反应时间。全电制动的结构如图2所示。其主要包含以下部分:a)电制动器。其结构和液压制动器基本类似,有盘式和鼓式两种,作动器是电动机;b)电制动控制单元(ECU)。接收制动踏板发出的信号,控制制动器制动;接收驻车制动信号,控制驻车制动;接收车轮传感器信号,识别车轮是否抱死、打滑等,控制车轮制动力,实现防抱死和驱动防滑。由于各种控制系统如卫星定位、导航系统,自动变速系统,无级转向系统,悬架系统等的控制系统与制动控制系统高度集成,所以ECU还得兼顾这些系统的控制;c)轮速传感器。准确、可靠、及时地获得车轮的速度;d)线束。给系统传递能源和电控制信号;e)电源。为整个电制动系统提供能源。与其他系统共用。可以是各种电源,也包括再生能源。从结构上可以看出这种全电路制动系统具有其他传统制动控制系统无法比拟的优点:a)整个制动系统结构简单,省去了传统制动系统中的制动油箱、制动主缸、助力装置。液压阀、复杂的管路系统等部件,使整车质量降低;b)制动响应时间短,提高制动性能;c)无制动液,维护简单;d)系统总成制造、装配、测试简单快捷,制动分总成为模块化结构;e)采用电线连接,系统耐久性能良好;f)易于改进,稍加改进就可以增加各种电控制功能。全电制动控制系统是一个全新的系统,给制动控制系统带来了巨大的变革,为将来的车辆智能控制提供条件。但是,要想全面推广,还有不少问题需要解决:首先是驱动能源问题。采用全电路制动控制系统,需要较多的能源,一个盘式制动器大约需要1kW的驱动能量。目前车辆12V电力系统提供不了这么大的能量,因此,将来车辆动力系统采用高压电,加大能源供应,可以满足制动能量要求,同时需要解决高电压带来的安全问题。其次是控制系统失效处理。全电制动控制系统面临的一个难题是制动失效的处理。因为不存在独立的主动备用制动系统,因此需要一个备用系统保证制动安全,不论是ECU元件失效,传感器失效还是制动器本身、线束失效,都能保证制动的基本性能。实现全电制动控制的一个关键技术是系统失效时的信息交流协议,如TTP/C。系统一旦出现故障,立即发出信息,确保信息传递符合法规最适合的方法是多重通道分时区(TDMA),它可以保证不出现不可预测的信息滞后。TTP/C协议是根据TDMA制定的。第三是抗干扰处理。车辆在运行过程中会有各种干扰信号,如何消除这些干扰信号造成的影响,目前存在多种抗干扰控制系统,基本上分为两种:即对称式和非对称式抗干扰控制系统。对称式抗干扰控制系统是用两个相同的CPU和同样的计算程序处理制动信号。非对称式抗干扰控制系统是用两个不同的CPU和不一样的计算程序处理制动信号。两种方法各有优缺点。另外,电制动控制系统的软件和硬件如何实现模块化,以适应不同种类的车型需要;如何实现底盘的模块化,是一个重要的难题。只有将制动、转向、悬架、导航等系统综合考虑进来,从算法上模块化,建立数据总线系统,才能以最低的成本获得最好的控制系统。电制动控制系统首先用在混合动力制动系统车辆上,采用液压制动和电制动两种制动系统。这种混合制动系统是全电制动系统的过渡方案。由于两套制动系统共存,使结构复杂,成本偏高。随着技术的进步,上述的各种问题会逐步得到解决,全电制动控制系统会真正代替传统的以液压为主的制动控制系统。图3是这种全电制动控制系统的配置方案。五.结论综上所述,现代汽车制动控制技术正朝着电子制动控制方向发展。全电制动控制因其巨大的优越性,将取代传统的以液压为主的传统制动控制系统。同时,随着其他汽车电子技术特别是超大规模集成电路的发展,电子元件的成本及尺寸不断下降。汽车电子制动控制系统将与其他汽车电子系统如汽车电子悬架系统、汽车主动式方向摆动稳定系统、电子导航系统、无人驾驶系统等融合在一起成为综合的汽车电子控制系统,未来的汽车中就不存在孤立的制动控制系统,各种控制单元集中在一个ECU中,并将逐渐代替常规的控制系统,实现车辆控制的智能化。但是,汽车制动控制技术的发展受整个汽车工业发展的制约。有一个巨大的汽车现有及潜在的市场的吸引,各种先进的电子技术、生物技术、信息技术以及各种智能技术才不断应用到汽车制动控制系统中来。同时需要各种国际及国内的相关法规的健全,这样装备新的制动技术的汽车就会真正应用到汽车的批量生产中。汽车安全的发展历程如今,汽车安全已经成为各大汽车厂商必修的功课,从只说安全的VOLVO到“为了所有人安全”的本田汽车,汽车安全成为汽车厂商宣传的核心主题之一,那么,我们现在回头看看,到底谁才是真正开创汽车安全的鼻祖呢?在讲述ESP、安全带、安全气囊甚至G-CON车身之前,让我们再来看看汽车安全的发展历史,从历史来看,汽车安全在汽车发明之后的50年左右才被逐步重视起来,这次我们必须仍然要感谢汽车的鼻祖戴姆勒-奔驰汽车,我们还要记住被称为安全之父的一个人——巴恩伊(Béla Barényi)。安全车身1939年8月1日,巴恩伊第一次来到位于斯图加特市郊辛德芬根的戴姆勒-奔驰公司上班。这位年轻人由此开始了改写了汽车发展史的伟大历程,因为后来出现的许多安全设计理念和技术都与他的发明息息相关。而在此前,这位脾气急躁的天才设计师却总窝在一间木板房里进行着各种新技术的研发。早在40年代,他就开始注意到汽车的车身设计是决定汽车被动安全的关键,他创造性地提出特别设计转向系统、转向柱、方向盘、底盘以及车身,以确保车内驾乘人员的安全性。他说:“未来汽车上的转向系、转向柱、方向盘、底盘和车身一定会与目前的有所不同。”从1939年8月起,巴恩伊就在一个96平方米大小的木棚房里开始了他的设计研发工作。作为当今汽车安全车身技术的基础,巴恩伊在他的“Terracruiser”(1945)和“Concadoro”(1946)的新车方案中率先提出了他对被动安全的设想和未来车身的设计结合在一起思想。其中,六座的“Terracruiser”在车身中部设计了异常坚固的乘坐舱,并且前面和后面分别与塑性变形碰撞缓冲区弹性连接,它们在事故发生时能吸收碰撞所产生的动力能量。类似的安全特性在三座的“Concadoro”上也有所体现。“Concadoro”车身采用三厢结构设计,单排的座椅使得驾驶舱可以前后调整。此外,设计方案已经有了带挡板的方向盘和安全转向柱。而这个时候,汽车巨子丰田汽车尚未诞生,本田汽车仍然在专注于它的摩托车技术。安全带安全带的发明和使用是当今汽车安全的专家VOLVO,早在上世纪40年代,VOLVO汽车的安全设计也开始启程,20世纪40年代,VOLVO在PV444型车上配置了诸如胶合挡风玻璃和安全车厢的框架机构等创新配置,这种设计和奔驰的巴恩伊在轿厢安全设计理念如出一辙。1959年,VOLVO推出了由尼尔斯·波哈林发明的三点式安全带,从此改变了整个汽车世界。VOLVO于1962年荣获第一个安全奖,以后类似奖项就接踵而来。1970年,VOLVO开始在轿车上装备儿童安全座椅,1987年VOLVO又首先在轿车上装备了安全气囊。安全气囊随着汽车工业的发展,近年来安全气囊几乎成了各个汽车厂商轿车的标准配备了,保护汽车乘员的想法最先产生于美国。1952年美国汽车生产者联合会在理论上阐述了这样一种汽车安全系统的必要性。几乎同时,这种系统的原理图也绘制了出来。1953年8月,美国人约翰.赫特里特首次提出了“汽车用安全气囊防护装置”,并在美国获得了“汽车缓冲安全装置”专利。但是真正实现安全气囊的商用仍然是汽车安全的始祖戴姆勒奔驰,由于当时技术水平的限制,还不能把这种想法或专利付诸实现。到了1980年,奔驰公司开始实现这种设想,它在自己生产的部分汽车上安装了安全气囊。而从1985年起,在全部供应美国市场的汽车上都有安装了这种安全系统。随后,又出现了第一个保护驾驶员旁前排座乘员头部的气囊。ABS和ESPABS技术是英国人霍纳摩尔1920年研制发明并申请专利,早在20世纪30年代,ABS就已经在铁路机车的制动系统中应用,目的是防止车化在制动过程中抱死,导致车轮与钢轨局部急剧摩擦而过早损坏。1936年德国博世公司取得了ABS专利权。它是由装在车轮上的电磁式转速传感器和控制液压的电磁阀组成,使用开关方法对制动压力进行控制。20世纪40年代末期,为了缩短飞机着陆时的滑行距离、防止车轮在制动时跑偏、甩尾和轮胎剧烈磨耗,飞机制动系统开始采用ABS,并很快成为飞机的标准装备。20世纪50年代防抱制动系统开始应用于汽车工业。1951年Goodyear航空公司装于载重车上;1954年福特汽车公司在林肯车上装用法国航空公司的ABS装置。1978年ABS系统有了突破性发展。博世公司与奔驰公司合作研制出三通道四轮带有数字式控制器的ABS系统,并批量装于奔驰轿车上。由于微处理器的引入,使ABS系统开始具有了智能,从而奠定了ABS系统的基础和基本模式。90年代初期,在当今炙手可热的ESP开始被博世汽车发明出来,但是第一款安装了ESP的轿车仍然是奔驰的产品-A级车。所以,汽车安全几乎是来自各个工业领域的积累,无论是VOLVO还是奔驰,都是这个领域内实现商用化的先锋,特别是汽车鼻祖奔驰,综合来说,作为安全带的开山鼻祖,VOLVO的安全的确让人称道,还有一贯对安全电子系统专注不止的博世汽车零部件公司,但是值得注意的是,从汽车安全车身设计理念到ABS/ESP、安全气囊的大规模商用,奔驰汽车一直走在其它汽车公司之前。梅赛德斯-奔驰自1900年生产出世界上第一台现代汽车以来,一直引领着整个汽车行业的发展,特别在汽车安全领域,ABS、ESP、安全带、安全气囊、碰撞测试等现代汽车的安全基础要素几乎都是由梅赛德斯-奔驰首创或率先使用的。

本次搜索共找到约 10 条相关记录,文档搜索结果如下 1、 [车辆工程]车辆排气系统噪声仿真计算 2008-07-03 22:22 75,264 摘要.doc2008-07-03 22:21 107,520 目录.doc2008-07-03 22:2... 类别:毕业论文 大小: MB 日期:2008-07-22 2、 [车辆工程]基于OpenGL的汽车滚翻事故三维演示模块的开发 摘 要汽车碰撞事故常常伴随着滚翻的发生。汽车滚翻是一个复杂的三维过程,很难分析和再现。本研究室开发的道路交通事故再现分析系统(RTA-RAS)尚无法完成对含有汽车滚翻的事故的处理。论文工作在实际... 类别:毕业论文 大小: MB 日期:2007-08-24 3、 [车辆工程]汽车滚翻事故再现模型的建立 摘要 汽车滚翻事故是一种复杂的道路交通事故形式,往往造成较大的人员伤亡和财产损失。在道路交通事故再现分析系统RTA-RAS中,汽车滚翻事故的分析模块有待实现。本文借鉴国外对于滚翻事故的研究方法和实验数... 类别:毕业论文 大小: MB 日期:2007-08-24 4、 [车辆工程]交通事故引发汽车内的人体损伤及其致伤源研究 中文摘要基于交通创伤学、法医学、人机工程学和事故再现分析等相关理论,分别通过宏观数据统计和深入数据分析对交通事故引发汽车内的人体损伤及其致伤源进行分析和研究,探究接触方式、致伤机理、伤害来源等相关内容... 类别:毕业论文 大小: MB 日期:2007-08-24 5、 [车辆工程]基于数据库轮胎特性辨识分析仿真软件的开发 中文摘要本论文主要介绍了基于数据库技术,以UniTire模型为核心,开发一套用于轮胎试验数据管理,特性参数辨识,报告生成,试验分析及模型仿真应用的软件。着重介绍了其中报告生成和动态仿真两个模块的创建过... 类别:毕业论文 大小: MB 日期:2007-08-22 6、 [车辆工程]汽车悬架钢板弹簧的计算机辅助设计 摘 要悬架系统是汽车重要总成之一,它的主要任务是传递作用在车轮和车架之间的一切力和力矩,缓和路面传给车身的冲击载荷,衰减振动,保证行驶平顺性以及操纵的稳定性。钢板弹簧是悬架系统的一种,由于钢结构... 类别:毕业论文 大小:551 KB 日期:2007-08-18 7、 [车辆工程]汽车磁流变减振器的设计 摘要随着人们生活水平的提高,对汽车舒适性和操作稳定性提出了更高的要求,汽车悬架向着智能化发展。全主动悬架性能较好,可是能耗高,制造复杂。半主动悬架有着和全主动悬架相似的性能。磁流变减振器作为半主动悬架... 类别:毕业论文 大小: MB 日期:2007-08-18 8、 [车辆工程]电动代步车用轮毂电动机的改进设计(三维模型+工程图+开题报告+答辩ppt) 摘 要随着社会人口老龄化问题的迅速进展,老年人的数量正在不断增加,相应的老年人产品也快速成长。电动代步车作为一种创新产品,为老年人提供了舒适的代步工具,具有广阔的市场前景。因此,研究和开发电动代... 类别:毕业设计 大小: MB 日期:2007-08-18 9、 [车辆工程]3D9型往复泵曲轴瞬态响应与疲劳寿命分析 摘 要对3D9型往复泵曲轴系统进行了符合实际的三维建模。建立了曲轴的三维模型。并建立了连杆、轴承、柱塞的三维简化模型。在建立的三维模型上对曲轴系统进行了有限元网格划分。考虑到计算的精度,采用单元... 类别:毕业论文 大小: MB 日期:2007-08-18 10、 [车辆工程]汽车动力性仿真计算 摘 要汽车的动力性是其重要的使用性能之一,直接影响其商品性。计算机仿真方法为汽车动力性预测提供了快速、准确、有效的工具,消除了实车道路试验中司机、道路环境、气候等因素对汽车使用性能测定的影响。具有可... 类别:毕业论文 大小:860 KB 日期:2007-06-23

自己的事情自己干!!

半主动悬架系统设计毕业论文

半主动悬架的研究工作始于1973年,由D.A.克罗斯贝和D.C.卡诺普首先提出。半主动悬架由可变特性的弹簧和减振器组成。半主动悬架的基本工作原理是:用可调弹簧或可调整减振器组成悬架,并根据簧上质量的速度响应、加速度响应等反馈信号,按照一定的控制规律,调节可调弹簧的刚度或可调减振器的阻尼力。半主动悬架主要是通过电磁阀控制可调阻尼减振器。可调阻尼减振器由具有不同节流孔的转阀得到舒适(软)、正常(中)、运动(硬)三个等级的阻尼。起步、制动、急转弯和高速选择运动(硬)以保证良好的操纵稳定性,低速选择舒适(软)以获得良好的平顺性,中速选择正常(中)兼顾平顺性与操纵稳定性。通过改变弹簧刚度以减振的半主动悬架由哈伯德等人于1976年提出,弹簧刚度的改变是通过切换空气弹簧实现的。刚度可调的空气弹簧具有副气室的空气弹簧,由刚度控制阀改变主、副气室的通道面积,得到软、中、硬不同的刚度,其控制与可调阻尼半主动悬架有类似之处。

自己的事情自己干!!

摘要Abstract 近年来,随着人们生活水平的提高,对汽车乘坐舒适性的要求也越来越高。汽车行驶的平顺性和操纵的稳定性已经逐渐成为其在现代市场竞争中夺取优势的一项非常重要的性能指标。本文首先通过建立汽车悬架系统的七自由度整体模型图,运用结构动力学和振动知识推导出系统在正弦激励下的拉格朗日方程,并简化为振动微分方程形式,通过MATLAB编制优化程序,求出系统的复特征值和在特定参数下的响应变化图形。然后,简述现代汽车悬架系统的各种控制方法,模拟仿真出系统在不同的刚度和阻尼下输出响应的图形,通过比较分析,为半主动悬架系统的减振器的阻尼和弹性元件的刚度控制提供根据。最后,得出本文的结论。即,汽车悬架的动力响应和控制分析与刚度和阻尼的变化之间的紧密联系。 In recent years, with the improvement of people's living standard, it is higher and higher to take the requirement for comfortableness to the car. Whom car go getting smooth-going and stability that handle become their capture one important performance index very of advantage among modern market competition gradually already. This text, through setting up whole model picture of degree of freedom seven that the car hung a system at first, use structural dynamics and vibration knowledge to derive the system out to encourage Lagrangian equation under in the sine, simplify it for the vibration differential equation form, work out the procedure of optimizing through MATLAB, ask out systematic replying characteristic value and response under the particular parameter and changing the figure. Then sketch Hyundai Motor hang sets of various of system control method, simulation emulation produce system output the figure responded under different rigidity and damping, through comparative analysis,hang sets of damping and rigidity of components elastic of shock absorbers of system control offer to half voluntarily according to. Finally, draw the conclusion herein. ., the car power of hanging the shelf responds and controls the close connection between analysis and change of rigidity and damping.关键词:汽车悬架;响应;控制分析Keyword: The car hangs the shelf; Response; Control and analyze

  • 索引序列
  • 汽车半主动悬架控制研究论文
  • 半主动悬架研究现状论文
  • 汽车悬架设计论文研究方法
  • 汽车悬架系统发展研究论文
  • 半主动悬架系统设计毕业论文
  • 返回顶部