首页 > 期刊论文知识库 > 概率与统计毕业论文

概率与统计毕业论文

发布时间:

概率与统计毕业论文

学术堂最新整理了二十条好写的统计学毕业论文题目:排队模型在收费站排队系统中的应用2.财政收入影响因素的研究3.城市发展对二氧化碳排放的影响4.高技术产业产值影响因素的研究5.关于和谐社会统计指标的初步研究研究我国产业结构的区域差异对经济的影响7.基于单因素序列相关面板数据的实证分析8.基于空间面板数据的中国FDI统计分析9.基于排队论在杭州公交站点停车位的优化及实证分析10.基于统计方法的股票投资价值分析11.某某市2019年工业发展状况的统计分析12.近30年31省市城镇居民恩格尔系数的统计分析13.近30年31省市农村居民恩格尔系数的统计分析14.近三十年中国经济发展趋势的实证分析15.林业科技对经济的贡献率美联储量化16.宽松政策对中国经济影响的统计17.分析排队论简介及其应用18.我国财政收入总额影响因素分析19.我国城市竞争力的综合评价与实证分析20.我国城乡居民收入差距统计分析一以某某省为例

概率论与数理统计硕士毕业论文新课改背景下的师专“概率论与数理统计”教学研究 基于概率论及数理统计对间歇式能源功率平滑输出的研究 信息技术与本科概率统计课程整合的实验研究 本科概率论试验课程设计初探基于随机模拟试验的稳健优化设计方法研究 随机变量序列部分和乘积的几乎处处中心极限定理 AQSI序列的强极限定理几类相依混合随机变量列的大数律和L~r收敛性 现代经济计量学建立简史 任意随机变量序列的相关定理新建电气化铁路电能质量影响预测研究 鞅差与相依随机变量序列部分和精确渐近性 ND序列若干收敛性质的研究证券组合投资决策的均匀试验设计优化研究 相依随机变量序列部分和收敛速度行为两两NQD随机变量阵列加权和的收敛性 数值计算的统计确认研究与初步应用 基于证据理论的足球比赛结果预测方法 城市工业用地集约利用评价与潜力挖掘 节理化岩体边坡稳定性研究 随机变分不等式及其应用基于模糊综合评价的靶场实时光测数据质量评估基于路径的加权地域通信网可靠性研究 LNQD样本近邻估计的大样本性质 20CrMoH齿轮弯曲疲劳强度研究我国股票市场与宏观经济之间的协整分析 一类Copula函数及其相关问题研究 乐透型彩票N选M中奖号码的概率分析 协整理论在汽车发动机系统故障诊断中的应用 2010年上海世博会会展中断风险分析和保险建议 贝儿康有限公司激励设计研究 云模型在系统可靠性中的应用研究离散更新模型破产概率及赤字的上下界估计 输电线微风振动与疲劳寿命电器产品模糊可靠性分析中模糊可靠度的研究 变分不等式及变分包含解的存在性与算法 隧道测量误差控制方案的研究 塔式起重机臂架可靠性分析软件开发分布式认证跳表及其在P2P分布式存储系统中的应用 房地产行业企业所得税纳税评估实证研究 具有预测能力的呼叫中心系统的设计与实现 PVAR模型在研究经济增长与能源消费关系中的应用 基于有限元的深基坑组合型围护结构可靠度分析 一些带有偏序结构的完全码

数学期望是随机变量最重要的特征数之一,它是消除随机性的主要手段.本文通过对数学期望的概念、性质以及应用性的举例,下面是我为你整理的数学期望应用毕业论文,一起来看看吧。

摘要:数学期望是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述了概率论与数理统计中的教学期望在生活中的应用,文章列举了一些现实生活实例,阐述了数学期望在经济和实际问题中颇有价值的应用。

关键词:随机变量,数学期望,概率,统计

数学期望(mathematical expectation)简称期望,又称均值,是概率论中一项重要的数字特征,在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。

1.决策方案问题

决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。

投资方案

假设某人用10万元进行为期一年的投资,有两种投资方案:一是购买股票;二是存入银行获取利息。买股票的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。如果存入银行,假设利率为8%,可得利息8000元,又设经济形势好、中、差的概率分别为30%、50%、20%。试问应选择哪一种方案可使投资的效益较大?

[摘 要] 离散型随机变量数学期望是概率论和数理统计的重要概念之一,是用概率论和数理统计来反映随机变量取值分布的特征数。通过探讨数学期望在经济和实际问题中的一些简单应用,以期让学生了解数学期望的理论知识与人类实践紧密联系,它们是不可分割、紧密联系的。

[关键词] 数学期望;离散型随机变量

一、离散型随机变量数学期望的内涵

在概率论和统计学中,离散型随机变量的一切可能的取值xi与对应的概率P(=xi)之积的和称为数学期望(设级数绝对收敛),记为E(x)。数学期望又称期望或均值,其含义实际上是随机变量的平均值,是随机变量最基本的数学特征之一。但期望的严格定义是∑xi*pi绝对收敛,注意是绝对,也就是说这和平常理解的平均值是有区别的。一个随机变量可以有平均值或中位数,但其期望不一定存在。

二、离散型随机变量数学期望的作用

期望表示随机变量在随机试验中取值的平均值,它是概率意义下的平均值,不同于相应数值的算术平均数。是简单算术平均的一种推广,类似加权平均。在解决实际问题时,作为一个重要的参数,对市场预测,经济统计,风险与决策,体育比赛等领域有着重要的指导作用,为今后学习高等数学、数学分析及相关学科产生深远的影响,打下良好的基础。作为数学基础理论中统计学上的数字特征,广泛应用于工程技术、经济社会领域。其意义是解决实践中抽象出来的数学模型进行分析的方法,从而达到认识客观世界规律的目的,为进一步的决策分析提供准确的理论依据。

三、离散型随机变量的数学期望的求法

离散型随机变量数学期望的求法常常分四个步骤:

1.确定离散型随机变量可能取值;

2.计算离散型随机变量每一个可能值相应的概率;

3.写出分布列,并检查分布列的正确与否;

4.求出期望。

四、数学期望应用

(一)数学期望在经济方面的应用

例1: 假设小刘用20万元进行投资,有两种投资方案,方案一:是用于购买房子进行投资;方案二:存入银行获取利息。买房子的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。如果存入银行,假设利率为,可得利息11000元,又设经济形势好、中、差的概率分别为40%、40%、20%。试问应选择哪一种方案可使投资的效益较大?

第一种投资方案:

购买房子的获利期望是:E(X)=4××(--2)×(万元)

第二种投资方案:

银行的获利期望是E(X)=(万元),

由于:E(X)>E(X),

从上面两种投资方案可以得出:购买房子的期望收益比存入银行的期望收益大,应采用购买房子的方案。在这里,投资方案有两种,但经济形势是一个不确定因素,做出选择的依据是数学期望的高低。

(二)数学期望在公司需求方面的应用

例2:某小公司预计市场的需求将会增长。公司的员工目前都满负荷地工作。为满足市场需求提高产量,公司考虑两种方案 :第一种方案:让员工超时工作;第二种方案:添置设备。

假设公司预测市场需求量增加的概率为P,当然可能市场需求会下降的概率是1―P,若将已知的相关数据列于下表:

市场需求减(1-p) 市场需求增加(p)

维持现状(X)

20万 24万

员工加班(X)

19万 32万

耀加设备(X)

15万 34万

由条件可知,在市场需求增加的情况下,使员工超时工作或添加设备都是合算的。然而现实是不知道哪种情况会出现,因此要比较几种方案获利的期望大小。用期望值判断:

E(X)=20(1-p)+24p,E(X)=19(1-p)+32p,E(X)=15(1-p)+34p

分两种情况来考察:

(1)当p=,则E(X)=(万),E(X)=(万),E(X)=(万),于是公司可以决定更新设备,扩大生产;

(2)当p=,则E(X)=22(万),E(X)=(万),E(X)=(万),此时公司可决定采取员工超时工作的应急措施扩大生产。

由此可见,从上面两种情况可以得出:如果p=时,公司可以决定更新设备,扩大生产。如果p=时,公司可决定采取员工超时工作的应急措施。因此,只要市场需求增长可能性在50%以上,公司就应采取一定的措施,以期利润的增长。

(三)数学期望在体育比赛的应用

乒乓球是我们得国球,全国人民特别爱好,我们在这项运动中具有绝对的优势。现就乒乓球比赛的赛制安排提出两种方案:

第一种方案是双方各出3人,三局两胜制,第二种方案是双方各出5人,五局三胜制。对于这两种方案, 哪一种方案对中国队更有利?不妨我们来看一个实例:

假设中国队每一位队员对美国队的每一位队员的胜率都为55%。根据前面的分析,下面我们只需比较两队的数学期望值的大小即可。

在五局三胜制中,中国队若要取得胜利,获胜的场数有3、4、5三种结果。我们应用二项式定律、概率方面的知识,计算出三种结果所对应的概率,恰好获得三场对应的概率:;恰好获得四场对应的概率:;五场全胜得概率:.

设随机变量X为该赛制下中国队在比赛中获胜的场数,则可建立X的分布律: X 3 4 5

P

计算随机变量X的数学期望:

E(X)=3×××

在三局两胜制中,中国队取得胜利,获胜的场数有2、3两种结果。对应的概率为=;三场全胜的概率为=。

设随机变量Y为该赛制下中国队在比赛中获胜的场数,则可建立Y的分布律:

X 2 3

Y

计算随机变量Y的数学期望:

E(Y)=2××

比较两个期望值的大小,即有E(X)>E(Y),因此我们可以得出结论,五局三胜制中国队更有利。

因此,我们在这样的比赛中,五局三胜制对中国队更有利。在体育比赛中,要看具体的细节,具体情形,把握好比赛赛制,用我们所学习的知识来实现期望值的最大化,做到知己知彼,百战百胜。

(四)数学期望对企业利润的评估

在市场经济活动中,厂家的生产或是商家的销售.总是追求最大的利润。在生产过程中供大于求或供不应求都不利于获得最大利润来扩大再生产。但在市场经济中,总是瞬息万变,往往供应量和需求量无法确定。而厂家或商家在一般情况下根据过去的数据,再结合现在的具体情况,具体对象,常常用数学期望的方法结合微积分的有关知识,制定最佳的生产活动或销售策略。

假定某公司计划开发一种新产品市场,并试图确定其产量。估计出售一件产品,公司可获利A元,而积压一件产品,可导致损失B元。另外,该公司预测产品的销售量x为一个随机变量,其分布为P(x),那么,产品的产量该如何制定,才能获得最大利润。

假设该公司每年生产该产品x件,尽管x是确定的.但由于需求量(销售量)是一个随机变量,所以收益Y是一个随机变量,它是x的函数:

当xy时,y=Ax;

当xy时,y=Ay--B(x-y)。

于是期望收益为问题转化为:

当x为何值时,期望收益可以达到最大值。运用微积分的知识,不难求得。

这个问题的解决,就是求目标函数期望的最大最小值。

(五)数学期望在保险中问题

一个家庭在一年中五万元或五万元以上的贵重物品被盗的概率是,保险公司开办一年期五万元或五万元以上家庭财产保险,参加者需缴保险费200元,若在一年之内, 五万元或五万元以上财产被盗,保险公司赔偿a元(a>200),试问a如何确定,才能使保险公司期望获利?

设X表示保险公司对任一参保家庭的收益,则X的取值为 200或 200�a,其分布列为:

X 200 200-a

p

E(x)=200×(200-a)×>0,解得a<40000,又a>100,所以a∈(200,40000)时,保险公司才能期望获得利润。

从上面的日常生活中,我们不难发现:利用所学的离散型随机变量数学期望方面的知识解决了生活中的一些具有的,实实在在的问题有大大的帮助。

因此我们在实际生活中,利用所学的离散型随机变量数学期望方面的知识,面对当今信息时代的要求,我们应当思维活跃,敢于创新,既要学习数学理认方面知识,更应该重视对所学知识的实践应用,做到理认联系实际,学以致用。当然只是实际生活中遇到的数学期望应用中的一部分而已,还有更多的应用等待我们去思考,去发现,去探索,为我们伟大的时代创造出更多的有价值的东西和财富。

时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个相对独立的研究对象, 因此, 选取省区经济数据进行区域经济的研究, 无疑将是未来几年的研究趋势。而省区经济对我国国民经济的影响, 已从背后走到了台前, 发展较快的省区对我国国民经济的快速增长起到了很大的作用, 而发展相对较慢的省区, 其原因与解决方法也值得我们研究。本文选取华中大省湖北省进行研究, 具有一定的指导和现实意义。湖北省 2006 年 GDP 为 7497 亿元, 人均 GDP13130 元, 达到中等发达国家水平。从省域经济来说, 湖北省是一个较发达的经济实体。另一方面, 湖北省优势的地理位置和众多的人口使之对于我国整体经济的运行起到不可忽视的作用, 对于湖北省 GDP的研究和预测也就从一个侧面反映我国国民经济的走势和未来。尽管湖北省以其重要位置和经济实力在我国国民经济中占据一席之地, 但仍不可避免的面临着建国以来一再的经济波动,从最初的强大势力到如今的挣扎期, 湖北省的经济面临着发展困境。近年来, 湖北省的经济状况一再呈现再次快速发展的趋势, 但是这个趋势能够保持多久却是我们需要考虑的问题。本文选择了时间序列分析的方法进行湖北省区域经济发展的预测。时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律, 将这种规律延伸到未来, 从而对该现象的未来作出预测。二、 基本模型、 数据选择以及实证方法( 一) 基本模型ARMA 模型是一种常用的随机时序模型, 由博克斯, 詹金斯创立, 是一种精度较高的时序短期预测方法, 其基本思想是: 某些时间序列是依赖于时间 t 的一组随机变量, 构成该时序的单个序列值虽然具有不确定性, 但整个序列的变化却具有一定的规律性, 可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构与特征, 达到最小方差意义下的最优预测。现实社会中, 我们常常运用 ARMA模型对经济体进行预测和研究, 得到较为满意的效果。但 ARMA模型只适用于平稳的时间序列, 对于如 GDP 等非平稳的时间序列而言, ARMA模型存在一定的缺陷, 因此我们引入一般情况下的 ARMA模型 ( ARIMA模型) 进行实证研究。事实上, ARIMA模型的实质就是差分运算与 ARMA模型的组合。 本文讨论的求和自回归移动平均模型, 简记为 ARIMA ( p, d, q) 模型,是美国统计学家 和 enkins 于 1970 年首次提出, 广泛应用于各类时间序列数据分析, 是一种预测精度相当高的短期预测方法。建立 ARIMA ( p, d, q) 模型计算复杂, 须借助计算机完成。本文介绍 ARIMA ( p, d, q) 模型的建立方法, 并利用Eviews 软件建立湖北省 GDP 变化的 ARIMA ( p, d, q) 预测模型。( 二) 数据选择1.本文所有 GDP 数据来自于由中华人民共和国统计局汇编,中国统计出版社出版的 《新中国五十五年统计数据汇编》 。2.本文的所有数据处理均使用 软件进行。( 三) 实证方法ARMA模型及 ARIMA模型都是在平稳时间序列基础上建立的, 因此时间序列的平稳性是建模的重要前提。任何非平稳时间序列只要通过适当阶数的差分运算或者是对数差分运算就可以实现平稳, 因此可以对差分后或对数差分后的序列进行 ARMA( p, q) 拟合。ARIMA ( p, d, q) 模型的具体建模步骤如下:1.平稳性检验。一般通过时间序列的散点图或折线图对序列进行初步的平稳性判断, 并采用 ADF 单位根检验来精确判断该序列的平稳性。对非平稳的时间序列, 如果存在一定的增长或下降趋势等,则需要对数据取对数或进行差分处理, 然后判断经处理后序列的平稳性。重复以上过程, 直至成为平稳序列。此时差分的次数即为ARIMA ( p, d, q) 模型中的阶数 d。为了保证信息的准确, 应注意避免过度差分。对平稳序列还需要进行纯随机性检验 ( 白噪声检验) 。白噪声序列没有分析的必要, 对于平稳的非白噪声序列则可以进行ARMA ( p, q) 模型的拟合。白噪声检验通常使用 Q 统计量对序列进行卡方检验, 可以以直观的方法直接观测得到结论。拟合。首先计算时间序列样本的自相关系数和偏自相关系的值, 根据自相关系数和偏自相关系数的性质估计自相关阶数 p 和移动平均阶数 q 的值。一般而言, 由于样本的随机性, 样本的相关系数不会呈现出理论截尾的完美情况, 本应截尾的相关系数仍会呈现出小值振荡的情况。又由于平稳时间序列通常都具有短期相性, 随着延迟阶数的增大, 相关系数都会衰减至零值附近作小值波动。根据 Barlett 和 Quenouille 的证明, 样本相关系数近似服从正态分布。一个正态分布的随机变量在任意方向上超出 2σ 的概率约为 。因此可通过自相关和偏自相关估计值序列的直方图来大致判断在 5%的显著水平下模型的自相关系数和偏自相关系数不为零的个数, 进而大致判断序列应选择的具体模型形式。同时对模型中的 p 和 q 两个参数进行多种组合选择, 从 ARMA ( p,q) 模型中选择一个拟和最好的曲线作为最后的方程结果。一般利用 AIC 准则和 SC 准则评判拟合模型的相对优劣。3.模型检验。模型检验主要是检验模型对原时间序列的拟和效果, 检验整个模型对信息的提取是否充分, 即检验残差序列是否为白噪声序列。如果拟合模型通不过检验, 即残差序列不是为白噪声序列, 那么要重新选择模型进行拟合。如残差序列是白噪声序列, 就认为拟合模型是有效的。模型的有效性检验仍然是使谭诗璟ARIMA 模型在湖北省GDP 预测中的应用—— —时间序列分析在中国区域经济增长中的实证分析本文介绍求和自回归移动平均模型 ARIMA ( p, d, q) 的建模方法及 Eviews 实现。广泛求证和搜集从 1952 年到 2006 年以来湖北省 GDP 的相关数据, 运用统计学和计量经济学原理, 从时间序列的定义出发, 结合统计软件 EVIEWS 运用 ARMA建模方法, 将 ARIMA模型应用于湖北省历年 GDP 数据的分析与预测, 得到较为满意的结果。湖北省 区域经济学 ARIMA 时间序列 GDP 预测理论探讨262008/01 总第 360 期图四 取对数后自相关与偏自相关图图三 二阶差分后自相关与偏自相关图用上述 Q 统计量对残差序列进行卡方检验。4.模型预测。根据检验和比较的结果, 使用 Eviews 软件中的forecas t 功能对模型进行预测, 得到原时间序列的将来走势。 对比预测值与实际值, 同样可以以直观的方式得到模型的准确性。三、 实证结果分析GDP 受经济基础、 人口增长、 资源、 科技、 环境等诸多因素的影响, 这些因素之间又有着错综复杂的关系, 运用结构性的因果模型分析和预测 GDP 往往比较困难。我们将历年的 GDP 作为时间序列, 得出其变化规律, 建立预测模型。本文对 1952 至 2006 年的 55 个年度国内生产总值数据进行了分析, 为了对模型的正确性进行一定程度的检验, 现用前 50 个数据参与建模, 并用后五年的数据检验拟合效果。最后进行 2007年与 2008 年的预测。( 一) 数据的平稳化分析与处理1.差分。利用 EViews 软件对原 GDP 序列进行一阶差分得到图二:对该序列采用包含常数项和趋势项的模型进行 ADF 单位根检验。结果如下:由于该序列依然非平稳性, 因此需要再次进行差分, 得到如图三所式的折线图。根据一阶差分时所得 AIC 最小值, 确定滞后阶数为 1。然后对二阶差分进行 ADF 检验:结果表明二阶差分后的序列具有平稳性, 因此 ARIMA ( p, d,q) 的差分阶数 d=2。二阶差分后的自相关与偏自相关图如下:2.对数。利用 EViews 软件, 对原数据取对数:对已经形成的对数序列进行一阶差分, 然后进行 ADF 检验:由上表可见, 现在的对数一阶差分序列是平稳的, 由 AIC 和SC 的最小值可以确定此时的滞后阶数为 2。 因为是进行了一阶差分, 因此认为 ARIMA ( p, d, q) 中 d=1。( 二) ARMA ( p, q) 模型的建立ARMA ( p, q) 模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得。图一 1952- 2001 湖北省 GDP 序列图表 1 一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC 备注0 - - - - 非平稳1 - - - - - - - - - - - - - - - - 表 2 二阶差分的 ADF 检验Lag Length t- Statistic 1% level 5% level 10% level1 (Fixed) - - - - 表 3 对数一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC SC 备注0 - - - - - - 平稳 1 - - - - - - - - - - - - - - - - - - 图五 对数后一阶差分自相关与偏自相关图理论探讨27时代金融摘 要:关键词:使用 EViews 软件对 AR, MA的取值进行实现, 比较三种情况下方程的 AIC 值和 SC 值:表 4ARMA模型的比较由表 4 可知, 最优情况本应该在 AR ( 1) , MA ( 1) 时取得, 但AR, MA都取 1 时无法实现平稳, 舍去。对于后面两种情况进行比较, 而 P=1 时 AIC 与 SC 值都比较小, 在该种情况下方程如下:综上所述选用 ARIMA ( 1, 1, 0) 模型。( 三) 模型的检验对模型的 Q 统计量进行白噪声检验, 得出残差序列相互独立的概率很大, 故不能拒绝序列相互独立的原假设, 检验通过。模型均值及自相关系数的估计都通过显著性检验, 模型通过残差自相关检验, 可以用来预测。( 四) 模型的预测我们使用时间序列分析的方法对湖北省地方生产总值的年度数据序列建立自回归预测模型, 并利用模型对 2002 到 2006 年的数值进行预测和对照:表 5 ARIMA ( 1, 1, 0) 预测值与实际值的比较由上表可见, 该模型在短期内预测比较准确, 平均绝对误差为 , 但随着预测期的延长, 预测误差可能会出现逐渐增大的情况。下面, 我们对湖北省 2007 年与 2008 年的地方总产值进行预测:在 ARIMA模型的预测中, 湖北省的地方生产将保持增长的势头, 但 2008 年的增长率不如 2007 年, 这一点值得注意。GDP毕竟与很多因素有关, 虽然我们一致认为, 作为我国首次主办奥运的一年, 2008 将是中国经济的高涨期, 但是是否所有的地方产值都将受到奥运的好的影响呢? 也许在 2008 年全国的 GDP 也许确实将有大幅度的提高, 但这有很大一部分是奥运赛场所在地带来的经济效应, 而不是所有地方都能够享有的。正如 GDP 数据显示, 1998 年尽管全国经济依然保持了一个比较好的态势, 但湖北省的经济却因洪水遭受不小的损失。作为一个大省, 湖北省理应对自身的发展承担起更多的责任。总的来说, ARIMA模型从定量的角度反映了一定的问题, 做出了较为精确的预测, 尽管不能完全代表现实, 我们仍能以ARIMA模型为基础, 对将来的发展作出预先解决方案, 进一步提高经济发展, 减少不必要的损失。四、结语时间序列预测法是一种重要的预测方法, 其模型比较简单,对资料的要求比较单一, 在实际中有着广泛的适用性。在应用中,应根据所要解决的问题及问题的特点等方面来综合考虑并选择相对最优的模型。在实际运用中, 由于 GDP 的特殊性, ARIMA模型以自身的特点成为了 GDP 预测上佳选择, 但是预测只是估计量, 真正精确的还是真实值, 当然, ARIMA 模型作为一般情况下的 ARMA 模型, 运用了差分、取对数等等计算方法, 最终得到进行预测的时间序列, 无论是在预测上, 还是在数量经济上, 都是不小的进步, 也为将来的发展做出了很大的贡献。我们通过对湖北省地方总产值的实证分析, 拟合 ARIMA( 1, 1, 0) 模型, 并运用该模型对湖北省的经济进行了小规模的预测,得到了较为满意的拟和结果, 但湖北省 2007 年与 2008 年经济预测中出现的增长率下降的问题值得思考, 究竟是什么原因造成了这样的结果, 同时我们也需要到 2008 年再次进行比较, 以此来再次确定 ARIMA ( 1, 1, 0) 模型在湖北省地方总产值预测中所起到的作用。参考文献:【1】易丹辉 数据分析与 EViews应用 中国统计出版社【2】 Philip Hans Frances 商业和经济预测中的时间序列模型 中国人民大学出版社【3】新中国五十五年统计资料汇编 中国统计出版社【4】赵蕾 陈美英 ARIMA 模型在福建省 GDP 预测中的应用 科技和产业( 2007) 01- 0045- 04【5】 张卫国 以 ARIMA 模型估计 2003 年山东 GDP 增长速度 东岳论丛( 2004) 01- 0079- 03【6】刘盛佳 湖北省区域经济发展分析 华中师范大学学报 ( 2003) 03-0405- 06【7】王丽娜 肖冬荣 基于 ARMA 模型的经济非平稳时间序列的预测分析武汉理工大学学报 2004 年 2 月【8】陈昀 贺远琼 外商直接投资对武汉区域经济的影响分析 科技进步与对策 ( 2006) 03- 0092- 02( 作者单位: 武汉大学经济与管理学院金融工程)AR(1)MA(1) AR(1) MA(1) 备注AIC - - - 最优为 AR(1)MA(1)SC - - - Coefficient Std. Error t- Statistic (1) squared - Mean dependent var R- squared - . dependent var . of regression Akaike info criterion - resid Schwarz criterion - likelihood Durbin-Watson stat AR Roots .59年份 实际值 预测值 相对误差(%) 平均误差(%)2002 - - - - - 年度 GDP 值 增长率(%) — 表 6 ARIMA ( 1, 1, 0) 对湖北省经济的预测一、模糊数学分析方法对企业经营 ( 偿债) 能力评价的适用性影响企业经营 ( 偿债) 和盈利能力的因素或指标很多; 在分析判断时, 对事物的评价 ( 或评估) 常常会涉及多个因素或多个指标。这时就要求根据多丛因素对事物作出综合评价, 而不能只从朱晓琳 曹 娜用应用模糊数学中的隶属度评价企业经营(偿债)能力问题影响企业经营能力的许多因素都具有模糊性, 难以对其确定一个精确量值; 为了使企业经营 ( 偿债) 能力评价能够得到客观合理的结果, 有必要根据一些模糊因素来改进其评价方法, 本文根据模糊数学中隶属度的方法尝试对企业经营 ( 偿债) 能力做出一种有效的评价。隶属度及函数 选取指标构建模型 经营能力评价应用理论探讨28

统计与概率论文

概率论与数理统计硕士毕业论文新课改背景下的师专“概率论与数理统计”教学研究 基于概率论及数理统计对间歇式能源功率平滑输出的研究 信息技术与本科概率统计课程整合的实验研究 本科概率论试验课程设计初探基于随机模拟试验的稳健优化设计方法研究 随机变量序列部分和乘积的几乎处处中心极限定理 AQSI序列的强极限定理几类相依混合随机变量列的大数律和L~r收敛性 现代经济计量学建立简史 任意随机变量序列的相关定理新建电气化铁路电能质量影响预测研究 鞅差与相依随机变量序列部分和精确渐近性 ND序列若干收敛性质的研究证券组合投资决策的均匀试验设计优化研究 相依随机变量序列部分和收敛速度行为两两NQD随机变量阵列加权和的收敛性 数值计算的统计确认研究与初步应用 基于证据理论的足球比赛结果预测方法 城市工业用地集约利用评价与潜力挖掘 节理化岩体边坡稳定性研究 随机变分不等式及其应用基于模糊综合评价的靶场实时光测数据质量评估基于路径的加权地域通信网可靠性研究 LNQD样本近邻估计的大样本性质 20CrMoH齿轮弯曲疲劳强度研究我国股票市场与宏观经济之间的协整分析 一类Copula函数及其相关问题研究 乐透型彩票N选M中奖号码的概率分析 协整理论在汽车发动机系统故障诊断中的应用 2010年上海世博会会展中断风险分析和保险建议 贝儿康有限公司激励设计研究 云模型在系统可靠性中的应用研究离散更新模型破产概率及赤字的上下界估计 输电线微风振动与疲劳寿命电器产品模糊可靠性分析中模糊可靠度的研究 变分不等式及变分包含解的存在性与算法 隧道测量误差控制方案的研究 塔式起重机臂架可靠性分析软件开发分布式认证跳表及其在P2P分布式存储系统中的应用 房地产行业企业所得税纳税评估实证研究 具有预测能力的呼叫中心系统的设计与实现 PVAR模型在研究经济增长与能源消费关系中的应用 基于有限元的深基坑组合型围护结构可靠度分析 一些带有偏序结构的完全码

社会科学发展的进程中,统计学起了很大的推动作用。没有统计学,就没有现代的社会科学。下面是我为大家整理的统计学 教育 分析论文,供大家参考。

摘要:统计学是一门通用的 方法 论的科学,统计思想方法具有极其广泛的应用性。随着国家创新体系的建立,统计学的教育创新已经成为一个重要的议题。本文对统计学普及教育的创新问题进行一些探讨。

关键词:统计学;普及教育;创新

一、大规模的统计学普及教育势在必行

从世界发达国家的情况来看,都比较重视统计学和统计学教育。2006年6月,中国人民大学举办了“2006统计学国际论坛”,笔者参加了这一论坛,并专门就统计学普及教育问题向美国依利诺依大学何旭明教授了解了美国统计学教育的有关情况。何教授讲:“美国的高等院校几乎都开设《统计方法》选修课,而且学生中选《统计方法》课程的人数要多于选修《微积分》课程的人数,因为他们觉得统计更有用。”另外,从最近的英国、美国、日本以及港、台地区的中学教材来看,统计学与概率都是教学内容的重要组成部分,多数教材每个年级都有统计内容。

在国内,统计学也越来越受到重视。1993年12月,贺铿、袁卫两位教授提出的“大统计”的理念,在统计学界从认识上正趋于统一。1998年9月,教育部在将504个本科专业调整为249个的情况下,统计学从原来的二级学科反而被调整为理学类一级学科。这些都为统计学的发展和统计教育的大规模普及奠定了重要基础。

尽管如此,我国统计学教育与发达国家相比还是存在着很大的差距。我国所有的普通高等学校中,具有统计学专业或开设统计学课程的只有100多所,这与美国有成百上千所学校在提供统计教育的状况相比比例是较低的。从我国中学教材来看,统计的内容约占4%。相对上述国家的教科书来说比例也是较低的。

一个国家应用统计学知识的多少,反映一个国家的发达程度。随着我国社会主义市场经济和各项社会事业的快速发展,随着建设创新型国家战略目标的实施,随着高等教育的大众化进程,统计学提高教育和大规模的普及教育无疑都会得到长足发展。统计学教育也会在普及基础上进一步提高,在提高指导下进一步普及。因此笔者认为,较大规模的统计学普及教育已经势在必行。

二、高等院校是统计学普及教育的突破口

实际上,近年来我国的统计学教育已经开始突破统计学专业教育的界限,在一些理工农医以及社会学等大部分学科和专业中,开设了统计课程;统计知识还列入了中小学教学内容。这是可喜的,但笔者认为统计学普及教育还仅仅是初露端倪,大规模的统计学普及教育还未开始,还有许多工作要做。

目前,我国在一些 财经 类院校开设的基本是社会统计学,在理工类院校开设的基本是数理统计学,都还与“大统计”的理念和作为理学类一级学科的统计学存在着很大距离。中小学虽然在数学教材中加入了一些统计学的基本内容,但一方面比例较少,另一方面,据笔者了解,由于受应试教育和基层学校师资条件的制约,教育质量也还存在不少的问题。很多理科教师在大学仅学过数理统计课程,对抽样和描述统计的内容较生疏,因而感觉新教材内容体系较乱,内容不如老教材讲起来“顺溜”。于是知识可以传授给学生,也可以指导学生完成很多的练习题,但蕴涵在知识背后的统计思想能否也讲出来可能就要打很大的折扣了。

另外,国民的统计意识还不强,对统计学的认识也还不够,据笔者了解,一谈到统计,很多人就联想到统计局,联想到大量的统计数据和统计报表等。这些都说明,统计学的普及教育还任重道远。

大规模普及统计教育是一项浩大的系统工程,需要以强大的人力、物力、财力资源为基础。以人力资源为例,尽管我国有一支素质较高的统计学专家队伍,但由于他们承担着国家政府部门或科学研究机构的重要工作,因此显然不可能有过多的时间和精力从事大规模的普及教育工作。同样,国家目前也还不可能投入大量的物力和财力资源开展统计学的普及教育工作。那么,怎样解决人力、物力、财力的问题,开展大规模的统计学普及教育呢?

笔者认为,要进行全社会的统计学普及教育,首先应该在各类高等院校中普及统计学教育,即把高等院校作为统计学普及教育的突破口,而后推向全社会。各类高校现有专业教师可以承担统计学普及教育的教学工作,在学校教务部门的统一安排下,着力通过开设跨专业选修课的形式开展统计学普及教育。各类高等院校接受过统计学基础教育的成千上万名大学生会走向社会的众多工作岗位,他们会带着统计学的基本思想方法在各个岗位开花结果,同时也为他们进一步提高和继续进行全社会的统计学普及教育打下了基础。因此,把高等院校作为统计学普及教育的突破口是解决人力、物力、财力资源问题的最好方略和最佳途径。

当然,由中国统计教育学会、重点大学和一流专家牵头,以讲座班的形式开展对一般高等院校的师资培训工作,以研讨会的形式定期沟通和交流各高校统计学普及教育的情况和 经验 也是非常必要和重要的。

高等院校作为统计学普及教育的这个突破口一旦打开,全社会普及统计学教育的蓬勃局面也就很快到来了。笔者甚至认为,高等院校统计学普及教育的局面可能会很壮观,会受到学生的欢迎。

三、在高等院校进行统计学普及教育的一些思考

在各类高等院校中进行统计学普及教育实际上是相对现有教育体制来说的一项教育教学改革,是高等院校教学内容创新的一种尝试,需要领导的重视,教务部门的协调等基本条件作为保证。在这里,就有关教学指导思想和实施方法粗略地谈一下基本想法,以求抛砖引玉。

1、基本思想:将抽样技术、描述统计、概率初步、推断统计、非参数统计、 Excel 在统计分析中的应用结合在一起,并溶入案例教学,向学生较系统地介绍入门阶段最基本的统计思想和方法。

2、基本途径:通过在普通高等院校各专业开设《应用统计方法》选修课,解决统计意识的培养和统计方法普及教育问题,选修课一般为54~72学时为宜。

3、基本目标:各专业的学生通过《应用统计方法》的学习,初步树立统计意识,能够用基本的统计方法,借助于最普及的Excel统计分析软件解决工作中和生活中的实际问题。

4、教材选用:可以选用中国人民大学统计学院贾俊平等编著的《统计学》作为教材,也可以根据教学时间和 其它 具体情况,自编教材。

5、师资问题:各高等院校讲授统计学或者概率统计的教师承担统计学普及教育的教学工作,教务部门承担相关的教学管理工作都是没有太大问题的。当然教师很可能需要进行一些再学习,更新知识结构。例如,讲授概率统计的教师很可能需要学习实际的抽样技术和Excel统计分析软件的应用方法等。

6、学习评价:注重理论联系实际,将“学统计”转化为“做统计”,改革传统考试方法,通过撰写统计 报告 进行考核,从而使学生掌握从数据的收集、整理、分析、写出统计报告的全过程,提高教学效果。

在2004年8月教育部颁布的《普通高等院校本科教学工作水平评估方案(试行)》中,实践教学被视为专业建设与教学改革的重要方面,单独列为一项二级指标,强化了实践教学的地位。各类高等院校率先进行统计学教育的普及工作,不但增强了实践教学的环节,而且也为统计学的社会普及教育打开了突破口,是义不容辞的时代使命。同时,通过大规模地进行统计学普及教育,也会提高统计学在国民心目中的地位,提高统计工作者的社会地位,更重要的是可以提高适应社会主义市场经济的与世界发达国家接轨的国民基本科学素质。

参考文献:

[1]胡学锋.美国统计教育之考察[J].统计与决策.

[2]张国荣.在中国统计教育学会第四次会员代表大会开幕式上的讲话[J].统计教育,

[3]马赞军.大学统计学教学模式探讨[J].统计教育.[4]杨大成.统计 教学方法 当改[J].中国统计.

摘要:以上探讨了在建构主义理论指导下统计学课堂教学方法,统计教学是一门艺术,艺无止境。相信当建构主义理论真正走进统计课堂教学时,统计教学会取得更好的教学效果。

关键词:统计学;教育

一、建构主义理论学生“学”的特点

建构主义对学生学习活动的本质进行了科学的分析,认为学生学习有如下特点:

1、学生学习不是从零开始的,而是基于原有知识经验背景的建构。即学生在学习统计课程之前,头脑里并非一片空白。学生通过日常生活的各种 渠道 和自身的实践,对客观世界中各种自然现象已经形成了自己的看法,建构了大量的朴素概念或前学科概念。这些前概念形形色色,共同构成了影响学生学习统计学概念的系统。学生的前概念是极为重要的,它是影响统计学学习的一个决定性的因素。前概念指导或决定着学生的感知过程,还会对学生解决问题的行为和学习过程产生影响。

2、学生学习知识是一个主体建构的过程,要突出学习者的主体作用。学习不仅仅是知识由外到内的转移和传递,而是学习者主动地建构自己的知识经验的过程,即通过新经验与原有知识经验的反复的、双向的相互作用,充实、丰富和改造学习者原有的知识经验。在这种建构过程中,学生一方面对当前信息的理解要以原有的知识经验为基础,超越外部信息本身;另一方面,对原有知识经验的运用又不只是简单地提取和套用,个体同时需要依据新经验对原有经验本身也做出某种调整和改造,即同化和顺应两方面的统一。学生不是被动信息的吸收者,而是主动地建构信息,这种建构不可能由其他人代替。因此,教师不能直接将知识传递给学生,而是要组织、引导,使学生参与到整个学习过程中去。

3、学生学习既是个体建构过程,也是社会建构过程。虽然知识是在个体与环境的相互作用中建构起来的,但社会性的相互作用也很重要,甚至更重要。因为人的高级心理机能的发展是社会性相互作用内化的结果(正如统计的特点具有社会性)。此外,每个学习者都有自己的经验世界,不同的学习者对某种问题可以有不同的假设和推论,学习者可以通过相互沟通和交流,相互争辩和讨论,合作完成一定的任务,共同解决问题,从而形成更丰富、更灵活的理解。同时,学生可以与教师、统计专家等展开充分沟通。这种社会性相互作用可以为知识建构创设一个广泛的学习共同体,从而为知识建构提供丰富的资源和积极的支持。因此,课堂上师生交互和生生交互活动起到了很重要的作用,“学习共同体”的形成以及对课堂社会环境和情境的营建是学生获得学习成效的重要途径。

二、建构主义理论教师“教”的特点

建构主义理论认为教师在课堂中的作用,可以概括为教师是课堂教学的组织者、发现者和中介者。

1、教师是课堂教学的组织者,起主导作用和导向作用。教师应当发挥“导向”的作用和教学组织者的作用,努力调动学生的积极性,帮助他们发现问题,进而去“解决问题”。

2、教师是课堂教学的发现者。教师要高度重视对学生错误的诊断与纠正,并用科学的原理和原则,给予正确的引导与指引。

3、教师是课堂教学的中介者。教师是学生与教育方针及知识的桥梁。教师既要把最新的知识和分析方法提供给学生,也要注意提高学生的综合素质。

从辩证法的角度看,教学是一个不断发展的动态过程,教与学是对立统一的矛盾运动,随着教学活动的变化,矛盾的主要方面,或在教师,或在学生。分开来看,“教”的主体是教师,客体是学生,教师发挥主导作用,学生发挥能动作用;“学”的主体是学生,客体是教师,学生进行认识活动和实践活动,教师则对这些活动施加影响。合起来看,在教学活动这一不断发展、循环往复的全过程中,教师与学生的主体客体地位是相互依存、相互规定,又在一定条件下相互转化的。因此,“基于教师在课堂中组织者、发现者和中介者”的角色作用,教师可以实行“提出问题──探索问题──解决问题”的模式组织课堂教学。

“基于学生为主体,教师为主导”的教学思想,在教学过程中,“学”与“导”的活动、学生与教师之间的关系应该是互动的、融合的,在和谐中不断向前发展。因此,按照“学与导和谐发展”的教学要求,教师在课堂教学中按照“提出问题──探索问题──解决问题”的模式组织课堂教学时,可以采取“诱导试学——引导探学——开导活学”方法组织课堂教学。

(1)设置情境,提出问题,激发学生学习的兴趣和热情

教师引导学生学习首先要从现实的、有兴趣的、富有挑战性的真实问题情境开始。让学生一开始进入学习探索就真切地感受到统计就在自己身边,体验到学习统计的价值,从而激发起学习统计的兴趣,萌发积极主动探索统计理论和方法的求知欲望。教师要通过对课堂的组织,让学生对学习统计产生学习兴趣,“热爱是最好的老师”,兴趣盎然地进入了对统计学知识的探索,学生才能学有所长。(2)探索问题,增强学生主角意识,激励学生积极参与

“基于教师在课堂中组织者、发现者和中介者”的角色作用,课堂教学方式应从根本上改变原有的教师讲、学生听,教师指挥、学生操作的教学现象。学生要在自己生活经验的基础上不断地提出问题,分析问题,对各种信息进行加工转换,对新经验和旧经验进行综合概括,解释有关现象。在教学过程中,教师可以提供一定的支持和引导,设计有思考价值、有意义的问题。学生可以进行小组合作研究探索,教师允许学生从不同的角度去观察分析,允许学生用自己喜欢的方法学习,通过各自想法的交流、碰撞,发现学生有价值的建设性建议及方法 措施 ,及时制止学生运用统计方法计算分析问题时可能出现的偏差,使问题得到正确的解决。

(3)解决问题,培养学生创新能力,提高学生综合素质

在以往统计学教学中,我们关注比较多的是学生能否记住计算公式、方法、意义、应用条件,能否利用这些知识完成所设问题的正确计算。而“基于教师在课堂中组织者、发现者和中介者”的角色作用,教师在课堂中,就应该更加关注学生能否将科学知识与自己的生活经验紧密联系起来,关注学生在灵活应用统计学知识、创造性地解决实际问题时所表现出来的情感、态度和价值观。并通过实践活动,使学生对学习统计产生兴趣,变抽象的科学法则、科学方法为得心应手的工具,从而使学生在解决问题过程中,体验参与学习统计的快乐,享受成功解决实际问题的愉悦。

三、以建构主义理论为指导统计学教法探讨

1、设计课堂教学新模式

统计学课程旨在培养学生能够运用统计学基本理论和定量分析方法,对经济现象进行定性和定量的分析和评价。统计学课程内容基本分为三个模块两个层次。第一模块:研究统计学的一般问题,属于基础理论。第二模块:推断统计的理论与方法,相关与回归分析,属于一般的统计方法及其在社会经济领域的运用。第三模块:时间序列分析与预测,统计指数与因素分析,统计综合评价,属于社会经济统计方法的特有问题,侧重于各种统计分析方法运用。两个层

反映了知识、能力、素质培养的要求。在建构主义学习环境下,教师和学生的地位、作用和传统教学相比已发生很大变化。因而首先教师必须改变传统的教育思想与教育观念,以现代教育思想和学习理论为指导,利用多媒体等现代化技术优势,探索最优的课堂教学模式。课堂教学中应进一步发挥好学生的主体作用,让学生主动地参与到获取知识的过程中去,做到:(1)合理处理好教材,创造性地使用教材,充分展示学习内容的实用意义。(2)教学思路清晰,过程流畅、自然。(3)采用启发式、精讲多练式、答疑式、案例式等教学方法,构建情景逼近式的教学模式,努力提高课堂教学效果。

2、设计课内课外相融共生的大课堂

课堂教学不仅要教会想要传授给学生的知识,还要教会学生在书本之外查阅图书、报刊、杂志、网络等资料,以开阔视野,扩大知识面,吸取精华,为我所用,要教给学生发现问题、分析问题、解决问题的方法。此外,还要通过课内设计的实训教学内容激发学生主动参与的热情,实训教学内容主要包括统计调查方案的编制、调查问卷的设计、统计表统计图的制作、综合指标分析、统计案例分析等内容。统计实训的课内教学采用精讲、示范、多练、答疑的方式;课外教学采用学生自行分散复习和有组织分组制表、制图、社会调查、整理计算分析等方式。

3、实行点、线、面、体相结合的大统计

“点”是指让学生根据某一知识点完成作业、实习。“线”是指让学生针对某一问题进行深入分析。“面”是指让学生把若干知识点联系起来进行综合的分析和实训。“体”是指让学生能就学科体系及相关学科的内容进行深入、全面、综合的分析与应用。在讲授基本理论和基本知识的同时,注重学生基本技能培养、综合能力培养、设计能力的培养。使学生能从高度整体把握统计的思路和统计分析、评价思想。

4、充分发挥学生的主体作用

建构主义理论强调学习者在建构性学习中的积极作用,是要求教师在课堂教学中善于激发学生的好奇心和求知欲,使学生主动积极的学习。教学中应根据统计教学内容和学生特点,选择适当的教学方法,灵活运用适当的教学手段,设置悬念,使学生产生好奇心和强烈的求知欲。统计学教学过程中涉及到特有的概念及科学家,教学中可以适当拓展,开阔学生的视野,影响学生的心智,塑造学生的灵魂,在潜移默化中激发学生学习统计的兴趣;教师的教学语言要准确生动形象,善于设疑,启发学生思维,活跃课堂气氛,使学生充满求知思索的激情;做到理论联系实际,强化学习的动机,激发学生学习统计持久的浓厚的兴趣,激励学生不断提高对自己能力的欲求,不断增强自己的学习信心,不断地在自我实现中超越自我。

5、设置情境,在交互中实现教学目标

学校是社会的一个细胞,是社会的一个重要组成部分。课堂也不单纯是“老师教、学生学”的木讷课堂。课堂中的社会性环境主要包括两方面,一是师生之间的交互,二是学生之间的交互。建构主义认为,每个学习者都有自己的经验世界,不同的学习者可以对某种问题形成不同的假设和推论。师生在课堂上可以通过合作解决问题、小组讨论、意见交流、 辩论 等形式,促进学习者之间的沟通和互动。统计教学要从过去主要关注“人机交互”到关注“人际交互”;从只关注学生与教师、教学信息的交互到关注学生之间的交互以及学生与校外专家、实践工作者的交互;从关注个别化学习到同时关注学习共同体的建立。教学中要充分利用社会性资源,调动学生的学习情趣,拓展学生的知识面,在交互中实现最佳的教学效果。

6、构建科学的考核评价体系

建构主义理论强调学习是诊断性学习和 反思 性学习和自主性学习,这意味着学生必须从事自我监控、自我测试、自我检查、自我约束等活动,以诊断和判断学习中所追求的是否是自己设置的目标。在教学中,应该根据理论和实训教学的不同特点、不同教学内容的具体组织方式,不断的反馈,使学生自己及时评价。同时,在学生成绩考试评定中,应采取了灵活的考试方式

笔试、有口试,也有设计方案和调查报告,笔试内容也应着重考核学生运用所学知识分析问题解决问题的能力,注重知识、能力和素质的综合评价。

以上探讨了在建构主义理论指导下统计学课堂教学方法,统计教学是一门艺术,艺无止境。相信当建构主义理论真正走进统计课堂教学时,统计教学会取得更好的教学效果。

浅谈统计学教育分析论文相关 文章 :

1. 统计学教学专业论文范文

2. 统计学教学优秀毕业论文

3. 统计学专业课程建设模式探究论文

4. 统计学课程教学专业论文

5. 统计学教学专业优秀硕士论文

6. 统计学课程教学相关论文

统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。下文是我为大家整理的关于统计相关论文的范文,欢迎大家阅读参考!

浅谈概率在统计学中的应用

摘 要:概率是研究随机现象的数学学科,其理论严谨、 应用广泛、 发展迅速。目前,概率的理论与方法已广泛应用于 统计学中,主要是从正态分布、小概率事件两方面介绍了概率在统计学中的一些应用。

关键词:随机现象;事件;样本;母体;正态分布;小概率原理

统计学主要分为描述性统计学和推断性统计学。给定一组数据统计学可以摘要并且描述这些数据,这个用法称为描述性统计学。另外,观察者以数据的形式建立起一个用以解释其随机性和不确定性的数学模型,以之来推论研究中的步骤及母体,这种用法被称为应用统计学。另外,还有一个叫做数理统计学的学科专门用来讨论这门科目背后的理论基础。

同一仪器多次测量同一物体的重量,所得的结果彼此总是略有差异,这是由于诸如测量仪器受大气影响,观察者身体或 心理上的变化等等偶然因素引起的。同样的,同一门炮向同一目标发射多发同种炮弹,弹落点也不一样,因为炮弹制造时的种种偶然因素对炮弹质量也会有影响。此外,炮筒位置的误差,天气条件的微小变化等等都影响弹落点。再如从某生产线上用同一种工艺生产出来的灯泡寿命也是有差异的等等。

总之所举这些现象的一个共同点是:在基本条件不变的情况下,经过一系列试验或观察会得到不同的结果。换句话说,就个别的试验结果或观察结果而言,它会时而出现这种结果,时而出现那种结果,呈现出一种偶然性。这种现象称为随机现象。对于随机现象通常关心的是在试验或观察中某个结果是否出现,这种结果称为随机事件,简称事件。为了实际的理由选择研究团体的子集代替研究母体的每一笔资料,这个子集称作样本。推论统计学被用来将资料中的数据模型化,计算它的几率并且做出对于母体的推论,这个推论可能以对或错的答案呈现(假设检验)出对未来观察的预测,关联性的预测,或是将关系模式化(回归)。

随机现象有其偶然性的一面,也有其必然性的一面。这种必然性表现为大量试验中随机事件出现的频率的稳定性,即一个随机事件的频率常在某个固定的常数附近摆动,这种规律我们称之为统计规律性。频率的稳定性说明随机事件发生的可能性的大小是随机事件本身所固有的,不随人们的意志而改变的一种客观属性,因此可以对它进行度量。对于一个随机事件A用一个数p(A)来表示该事件发生的可能性的大小,这个数p(A)就称为随机事件A的概率,因此概率度量了随机事件发生的可能性的大小。

如果样本足以代表母体,那么由样本所做的推论和结论可以引申到整个母体之上,统计学提供了许多方法来估计和修正样本资料过程中的随机性(误差)。要了解随机性的一定几率必须具备基本的数学观念。数理统计是应用数学的分支,它使用几率论来分析并且验证统计的理论基础。

概率在统计学中有着重要的作用,包括总体、抽样研究、统计描述、统计推断、正态分布规律等,正态分布是概率中最重要的一种分布。一方面正态分布是自然界最常见的一种分布,例如测量的误差;炮弹弹落点的分布;人的生理特征的尺寸:身长、体重等;农作物的收获量;工厂产品的尺寸:直径、长度、宽度、高度,都近似服从正态分布。

一般来说若影响某一个数量指标的随机因素很多,而每个因素所起的作用又不太大,则服从正态分布这点可以用概率论的极限定理来加以证明。另一方面正态分布具有许多良好的性质,许多分布可用正态分布来近似,另外一些分布又可由正态分布来导出,因此在理论研究中,正态分布十分重要。如利用正态分布规律统计学校的成绩分布,得出一个阶段的学生总体是否进步,然后寻找原因,得出改进办法。分析一年 经济的发展,预测来年的收入。找出影响发展的主要因素,寻求改进的方法等等。

小概率事件即发生概率很小的事件(p≤),在统计学中有着重要的应用,这样的事件理论上发生的可能性则几乎为零。如买彩票中大奖,就是典型的小概率事件,也许每一期均会有大奖开出(可能性很小),但对于每一个彩民来说,他买一注中大奖的可能性(小概率事件在一次试验中就发生的概率几乎没有。其实,这就是小概率事件在统计学上应用的重要理论依据——小概率原理。)即小概率事件在一次试验中发生的可能性很小,如果真的发生了,根据统计学可怀疑其真实性。

如某接待站在一天内共接待5人单独来访,结果这5人全在周一到访,由此能否推断接待站有规定的接待日?假定没有规定的接待日,一个来访者在五天中任何一天来访都是等可能的用Am(m=1,2,3,4,5,)表示“一周接待了m个人,全都是周一来访”事件,Am的概率如下表示:

事件 A1概率 事件 A2概率

事件 A3概率 事件 A4概率

事件 A5概率

5个人都在周一来访的概率为,大约万分之三。现在概率很小的事件在一次试验中发生了,于是怀疑假定的正确性,从而推断接待站有规定的接待日。

公元1814年,拉普拉斯在他的新作中,记载了一个有趣的统计,世界上男婴与女婴的出生比值是22∶21,即在出生的婴儿中,男婴占,女婴占,可奇怪的是1745-1784年四十年间统计巴黎男婴的出生率时,却得到另一个比是25∶24,男婴占,与前者相差,对于这千分之一点八的微小差异,进行调查研究,发现巴黎人有“重女轻男”的现象,有抛弃男婴的陋习,以至于歪曲了出生率,经过修正出生比依然是22∶21。统计学依据小概率原理作出结论的正确性很高,但也存在犯错误的风险(较低)。

小概率原理在统计上有着非常重要的应用。如假设检验结论的判断,假设检验是用样本信息推测总体的一种统计推断方法,由于抽样误差的存在,样本信息和总体特征间可能不尽相同,所以假设检验实际上就是判断待比较各方的差别是不是由抽样误差造成的。假设检验中p值的大小反映的就是差别由抽样误差造成的概率。在假设检验中就是通过比较p值与检验水准a(通常设为)的大小关系,从而做出差别有无统计学意义。

如果p值小于a统计学则认为差别由抽样误差造成的概率很低,那么根据小概率原理认为,小概率事件在一次抽样中就发生的可能性几乎为零,所以判定差别可能是由于比较各方在本质上的不同导致的。否则认为差别是由抽样误差造成的。在这里检验水准是在假设检验前认为设定的,是研究者能够承受的本次假设检验放弃真错误的概率,也可以理解为是研究者设立的小概率事件的概率。而p值则是通过计算,即在检验假设成立的情况下,差别是由抽样误差造成的概率。

统计在现代化 管理和 社会生活中的地位日益重要,随着社会经济和科学技术的发展统计在现代化国家管理和企业管理中的地位越来越重要,人们的日常生活都离不开统计,统计的影响是这样巨大,故与之密切相关的概率的作用也越来越重要。

浅谈统计学基础教学方法与学生应用能力的培养

摘要:统计学基础知识是一门研究数据的技术性学科,具有综合性,抽象性及应用面广等特点,通过该课程的教学能培养学生运用统计工具,系统的分析问题和解决问题的能力。在中职教学中需结合本学科的特点,不断改进教学方法,提高学生综合应用统计知识的能力。

关键词:统计学教学方法设计能力培养

统计学基础知识是一门研究数据的技术性学科,学科内容中的调查研究和分析处理问题的方法,不仅应用于各项工作中,也用于其他学科研究过程中的数据搜集、整理、分析并得出结论。故统计学具有综合性,抽象性,应用面广等特点,通过该课程的教学能培养学生运用统计工具,系统的分析问题和解决问题的能力。现结合本学科的特点探讨其教学方法和学生应用能力的培养。

一、统计学基础课程教学的特点

统计学基础也是社会经济统计学原理,其学科内容的特点:一是基本概念多,理论讲授上较抽象;二是指标类别多,初学时严格划清各种指标内涵难;三是调查分析方法多,正确理解和选择恰当的调查方法难;四是正确的调查方式、方法指标体系的设置,统计范围的界定与是否得出反映事物的正确结论直接相关;五是科学设置调查事物的指标体系又与弄清反映该事物的客观内在本质的相关指标直接相关。因此,对年龄小,分析能力差的中职学生教学对象来讲,即便从概念上掌握了统计学的原理,如果不结合实际的统计案例资料和采用恰当的教学方法,就很难达到正确应用统计知识解决现实社会经济中问题的目的,甚至会因为错误使用方法,得出对事物评判的错误结论。

二、结合本学科知识的特点采用适当的教学方法,增强应用能力的培养

在教学中,首先通过对教材内容体系的全面分析和教学对象知识结构的分析,以及学生对统计学知识学习的兴趣、理解的深度和掌握应用情况的总结,在教学中的不同环节恰当地实施不同的教学方法。

1、通过学科内容体系导入与工作任务联系,提升学生学习兴趣

在讲授本学科内容时,首先给学生介绍统计学基础教材内容的基本框架:统计学的涵义、研究对象、性质、职能和研究的基本方法。其次是介绍学科知识体系:统计学中的基本概念,统计资料调查整理的方式方法,统计数据的显示与提供,以及提供的统计数字资料运用多种指标法进行分析(总量指标法--反映事物的规模状况,平均指标法--反映事物的集中趋势及一般规律,相对指标法--反映事物的纵向横向比较和事物之间的联系,标准差法--反映事物中总体单位标志值之间的离散趋势和程度,分析事物之间的差异。统计指数法--反映事物中各种直接因素的影响。

时间数列法--反映事物在时间段上的发展变化趋势。抽样调查法--统计专门调查方法中最科学的方法。相关回归分析法--分析事物中的因果关系。)通过内容体系的简单讲解导入,让学生在学习具体理论知识前就对该学科有一个总体感性认识,产生兴趣。带着要通过掌握统计知识去解决实际问题的意识和目的去学习。

2、让学生的学习从理性认识过渡到感性认识,增强应用能力

我在教学中介绍统计学的基本概念和统计调查方法内容时,除对每个知识点进行举例说明外,一部分知识讲完后,给出几个典型的统计调查方案让学生弄清在这些调查方案中所涉及的统计总体、总体范围的界定、总体单位、标志、指标以及采用的哪种调查方式等。这不仅让学生把抽象的统计学概念知识从理性认识过渡到了感性认识,而且通过这些案例还进一步让学生明白了调查方式的选用必须要根据调查对象和要解决的问题适当选取,而不是什么调查目的,什么事物都可以用任何一种调查方式。只有正确选用统计方式、方法去调查分析客观事物才能得出正确的结论,才能具备正确利用统计知识去分析解决问题的能力。

3、综合指标应用与典型资料结合法,提高学生的应用能力在讲授综合指标法时,对每一种指标的理解都是

分别举例说明让学生理解该指标的含义和作用。为了让学生能正确理解和区分每一种指标的作用,在所有指标介绍完后,我选用了国民经济年度统计公报资料作为案例,让学生从统计公报资料中找出学习过的每一种综合指标,如:2007年全国GDP总值,人口数等是总量指标。本年度GDP完成百分比是计划完成相对指标,本年度GDP比上年度增长百分比是动态相对指标。人均GDP是强度相对指标。

GDP构成比例是结构相对指标。五年中平均每年增长的百分比是后面要学习的平均发展速度和平均增长速度的应用。通过这样的案例,学生不仅对各种综合指标法的应用有了正确的理解,而且把各种指标的理解认识变成了应用能力,同时还对后面学习动态数列知识奠定了基础。在教学中很好地起到了巩固理解知识和预习下一教学环节内容的潜在作用。还起到了掌握知识综合性的效果。通过这样一个案例,学生进一步明确,研究一个总体的问题时,可以对问题的不同方面运用多种指标进行分析,弄清事物之间客观存在的关联,这些都必须用一定的统计数据来说话。因此进一步强调了学生学习统计知识的必要性,也让他们认识到统计学知识的科学性和实用性。

4、新旧知识在现实案例中的综合运用,提升学生应用能力

在讲授统计指数的内容时,传授给学生统计指数编制的基本方法的原理,教材中举例的商品价格、商品量、以及职工工资水平指数的编制都仅仅是一种计算基本方法的介绍。要培养学生应用能力还必须结合实际统计指数编制的案例进行讲解,让学生能够将理论知识及其计算方法应用到实际工作中去,所以我特意在理论知识和计算方法讲完后,介绍实际工作中零售物价指数的编制。这个经济指数也是民众普遍关注的问题,与人们生活水平息息相关。

告诉学生,物价指数的编制运用了抽样调查的知识,实际工作中不可能对每一种商品都采价调查,而是分大类商品,在商场和集贸市场分别采价。例如集贸市场的蔬菜价格每周至少要采集三次,每次要采集成交价的三人次,进入零售商品物价指数编制的价格实际上是一个多次简单平均的价格,而每天某种商品的三个价格要简单平均,每周三次的平均价格再简单平均。商场的商品价格如较稳定可用期初和期末的平均。通过这样一个案例,既给学生传授了新知识,又复习巩固了平均指标计算方法的具体应用,不仅日常生活中用,而且在经济研究中应用非常广泛。进一步告诉学生加权平均法和调和平均法在编制物价指数和其他社会经济现象指数中的应用。

5、典型调查案例教学法,培养学生综合应用统计知识,分析解决问题的能力

教学中我把学生应用统计知识,分析问题能力的培养放在抽样技术的教学内容中,抽样技术的基本理论也是抽象的。如,抽样误差,抽样平均误差,抽样的组织方式。针对研究对象的特点,都必须具体问题具体分析,而抽样误差的计算既涉及到平均指标的计算又涉及到标准差的计算,新旧知识的交替如何培养学生应用新旧知识计算、分析问题,解决问题是教学的难点。

为了突破这个难点,我在教学中利用了一个草席质量抽样调查的案例,这个案例体现了从制定调查方案中的调查方式的确定,采用主要标志划类,简单随机抽样原则,到调查实施的步骤:草席宽度分类,登记原验级等级,编顺序号,确定抽样总体,计算全级总体标准差,决定抽样数目,设计计算表格,决定样本号,现场调查中的统一验级标准。

验级过程:由5人分别验级,级数的最后确定采用众数办法,5人验级中的3人验级标准为准。以上这些都具有前面介绍的抽样调查方式的代表性,而又用到了平均指标和众数的方法。同时,在计算草席平均等级时,还用到了品质标志值平均指标的计算,即将等级品质标志值过渡成数量标志来计算该批不同尺寸草席的平均等级,再计算抽样指标与原验级指标之间的误差。

这样一个复杂的抽样调查过程和指标的计算结果,更清晰的告诉学生要说明和解决的问题:由于收购草席时,验级人员在判断标准上的误差带来了草席等级误差与价格的差异。而由于误差的存在,根据此抽样调查结果计算出的整个库存草席的总价值与实际价值的差异巨大。对导致这样的结果,进一步结合政策市场以及人为等多种因素进行分析,查找了原因并提出了切实可行的解决方案,促使了草席的收购价实相符。

通过以上几方面的教学方法设计,能让学生对统计学有更全面的认识,对学科基础内容有一个总体框架性把握,让那些学生在学习时感觉模糊的概念和繁杂的理论通过这几个教学环节的反复巩固和练习也逐步变得清晰,并大大提高了其综合应用统计知识的能力。

概率论与数理统计论文

论文> 工业技术 > 一般工业技术 > 工程基础科学 > 工程数学 > 概率论、数理统计的应用论文下属分类: 运筹学的应用 | 工程控制论 | 可靠性理论 | ·《可重构装配线建模、平衡及调度研究》·《粒子群算法的改进与应用研究》·《压力容器用钢疲劳可靠性研究》·《稳健设计及其在工业中的应用》·《基于概率的结构动力拓扑优化设计研究》·《基于随机模拟试验的稳健优化设计方法研究》·《复杂系统可靠性工程相关理论及技术研究》·《故障部件不可修复如新的线形相邻n中连续k系统的可靠性分析》·《基于目标和空间正交分解的布局启发式算法的研究》·《考虑失效相关时不可修复工程系统的可靠性分析》·《多维数值积分的数论方法及其在结构可靠度分析中的应用》·《三维位势场快速多极边界元法》·《大规模动态过程优化的拟序贯算法研究》·《不确定性结构的分析方法研究》·《非线性结构随机分析数值模拟的方法研究》

请问楼主是要自己写还是需要找人写发,如果是后者的话,那么就需要仔细谨慎的甄别选择,在时候宽裕的前提下,小心上当上。建议楼主去(中国期刊库)看看,也许会有想要的收获,可以去咨询一下论文发表方面的信息。谢谢,希望能够采纳。求一个关于概率方面的论文题目和论文大概内容-爱问知识人你要是大学生的话,在学校的图书馆有相应的论文下载系统,你可以去试试,要是你还是找不到的话,你再联系我,我帮你下几个 现在我的资料里给你下了几个,你自己看看吧现在要确定论文题目,我是数学系的,最好是写数值计算或者概率论这方面的比如《关于整超越动力系统的不动点的数值计算》,或者《复平面上超越方程根的求解方法》等概率论与数理统计方向有哪些论文题目你不妨从数理统计的角度去,可以分析的比较多。比如:三大分布在某一方面的应用,在知网上挺多的。光写一个分布就可以写很多了。假设检验,估计,EM算法之类的都可以写如果一定要从概率论,那不妨研究一下比较典型的概率问题,比如为什么同班同学生日在同一天的概率很高很多地方的,从理论的角度对于一个学生确实太难了,不如多多从应用的角度入手。概率论与数理统计论文题目有哪些题目是没有什么硬性规定的关于概率论方面的小论文-爱问知识人如果您仅仅需要文献,那就不用看.您可以去我个人中心(点我名字进去),按照上边的"老君论文资料查找方法"来查找和下载您所需要的论文资料.字少找

是2篇?各一份还是什么? 概率论与数理统计”是理工科大学生的一门必修课程,由于该学科与生活实践和科学试验有着紧密的联系,是许多新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的。� “概率论与数理统计”的学习应注重的是概念的理解,而这正是广大学生所疏忽的,在复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚。对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件。如函数y=f(x),当x确定后y有确定的值与之对应。而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错。由于基本概念没有搞懂,即使是十分简单的题目也难以得分。从而造成低分多的现象。另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算。因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因。� 根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果。下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议。�一、 学习“概率论”要注意以下几个要点 1. 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。 此外若对一切实数集合B,知道P(X∈B)。 那么随机试验的任一随机事件的概率也就完全确定了。所以我们只须求出随机变量X的分布P(X∈B)。 就对随机试验进行了全面的刻画。它的研究成了概率论的研究中心课题。故而随机变量的引入是概率论发展历史中的一个重要里程碑。类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会。� 2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间。而它的取值是不确定的,随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布。只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解。又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)。P(B)>0,则A,B独立则一定相容。类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂。� 3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得。计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握。� 4. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过。因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去。这样往往能“事半功倍”。二、 学习“数理统计”要注意以下几个要点� 1. 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义。了解数理统计能解决那些实际问题。对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆。例如估计未知分布的数学期望,就要考虑到① 如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足。掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误。� 2. 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住。事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背。

概率论与数理统计毕业论文选题

43 经济统计学早期思想发展简史 44 多元统计分析方法思想发展思想史 45 现代概率论思想发展简史 46 数理统计学早期思想发展简史 47 现代数理经济学发展简史 48 概率论早期思想发展简史 49 数理经济学早期思想发展简史 50 灰色理论在社会经济中的应用 51 现代经济统计学思想发展简史 52 现代数理统计学思想发展简史 53 社会统计学早期思想发展简史 54 现代社会统计学思想发展简史 55 中国汽车保有量定量研究 56 中国股市波动性定量研究 57 中国股票市场风险研究 58 中国收入差距研究 59 论统筹城乡与城乡差距 60 重庆市城乡差距定量研究 61 重庆汽车消费需求的动态分析与预测 62 灰色系统预测方法在我国私人汽车拥有量预测中的应用 63 旅游业对重庆市社会经济贡献的定量分析 64 房价上涨的成因及对策研究

概率论与数理统计硕士毕业论文新课改背景下的师专“概率论与数理统计”教学研究 基于概率论及数理统计对间歇式能源功率平滑输出的研究 信息技术与本科概率统计课程整合的实验研究 本科概率论试验课程设计初探基于随机模拟试验的稳健优化设计方法研究 随机变量序列部分和乘积的几乎处处中心极限定理 AQSI序列的强极限定理几类相依混合随机变量列的大数律和L~r收敛性 现代经济计量学建立简史 任意随机变量序列的相关定理新建电气化铁路电能质量影响预测研究 鞅差与相依随机变量序列部分和精确渐近性 ND序列若干收敛性质的研究证券组合投资决策的均匀试验设计优化研究 相依随机变量序列部分和收敛速度行为两两NQD随机变量阵列加权和的收敛性 数值计算的统计确认研究与初步应用 基于证据理论的足球比赛结果预测方法 城市工业用地集约利用评价与潜力挖掘 节理化岩体边坡稳定性研究 随机变分不等式及其应用基于模糊综合评价的靶场实时光测数据质量评估基于路径的加权地域通信网可靠性研究 LNQD样本近邻估计的大样本性质 20CrMoH齿轮弯曲疲劳强度研究我国股票市场与宏观经济之间的协整分析 一类Copula函数及其相关问题研究 乐透型彩票N选M中奖号码的概率分析 协整理论在汽车发动机系统故障诊断中的应用 2010年上海世博会会展中断风险分析和保险建议 贝儿康有限公司激励设计研究 云模型在系统可靠性中的应用研究离散更新模型破产概率及赤字的上下界估计 输电线微风振动与疲劳寿命电器产品模糊可靠性分析中模糊可靠度的研究 变分不等式及变分包含解的存在性与算法 隧道测量误差控制方案的研究 塔式起重机臂架可靠性分析软件开发分布式认证跳表及其在P2P分布式存储系统中的应用 房地产行业企业所得税纳税评估实证研究 具有预测能力的呼叫中心系统的设计与实现 PVAR模型在研究经济增长与能源消费关系中的应用 基于有限元的深基坑组合型围护结构可靠度分析 一些带有偏序结构的完全码

统计学作为一门综合性很强的学科,其运用范围非常广泛,不少学生在写作统计学论文时,都困在了选题这一步,其实就统计学而言,可供作为论文题目的热词有很多,如:企业管理、实证研究、统计估计、统计分析、计算机应用、支持向量机、数学模型、GIS、多元分析、统计报表等等,学术堂精选了20个优质“统计学毕业论文题目”,供大家参考。1、药品检验中常用的统计学方法及其应用2、应用统计学在现实生活中的应用分析3、浅谈统计学在金融领域的应用4、统计学在实验室质量控制中的应用5、论应用统计学PDTR教学模式的必要性和可行性6、水产生物统计学课程中学生统计思维能力与应用意识的培养研究7、地质统计学在某铜矿床资源量估算中的应用熊8、基于地质统计学的采空区储量估算9、密井网条件下地质统计学岩性反演在河道砂体预测中的应用10、地质统计学在稀土矿储量计算研究应用11、地质统计学在矿床品位估算中的应用研究12、地质统计学在细脉型矿体模拟中的应用:以新疆梅岭-红石铜矿为例13、地质统计学地震反演技术在溱潼南华地区薄砂层的预测应用14、朝阳沟油田扶余油层组深度域地质统计学反演15、基于DMine软件下地质统计学在矿山储量计算中的应用

教育专业毕业论文题目只是需要题目吗?论文呢?

本科概率统计毕业论文

概率论与数理统计硕士毕业论文新课改背景下的师专“概率论与数理统计”教学研究 基于概率论及数理统计对间歇式能源功率平滑输出的研究 信息技术与本科概率统计课程整合的实验研究 本科概率论试验课程设计初探基于随机模拟试验的稳健优化设计方法研究 随机变量序列部分和乘积的几乎处处中心极限定理 AQSI序列的强极限定理几类相依混合随机变量列的大数律和L~r收敛性 现代经济计量学建立简史 任意随机变量序列的相关定理新建电气化铁路电能质量影响预测研究 鞅差与相依随机变量序列部分和精确渐近性 ND序列若干收敛性质的研究证券组合投资决策的均匀试验设计优化研究 相依随机变量序列部分和收敛速度行为两两NQD随机变量阵列加权和的收敛性 数值计算的统计确认研究与初步应用 基于证据理论的足球比赛结果预测方法 城市工业用地集约利用评价与潜力挖掘 节理化岩体边坡稳定性研究 随机变分不等式及其应用基于模糊综合评价的靶场实时光测数据质量评估基于路径的加权地域通信网可靠性研究 LNQD样本近邻估计的大样本性质 20CrMoH齿轮弯曲疲劳强度研究我国股票市场与宏观经济之间的协整分析 一类Copula函数及其相关问题研究 乐透型彩票N选M中奖号码的概率分析 协整理论在汽车发动机系统故障诊断中的应用 2010年上海世博会会展中断风险分析和保险建议 贝儿康有限公司激励设计研究 云模型在系统可靠性中的应用研究离散更新模型破产概率及赤字的上下界估计 输电线微风振动与疲劳寿命电器产品模糊可靠性分析中模糊可靠度的研究 变分不等式及变分包含解的存在性与算法 隧道测量误差控制方案的研究 塔式起重机臂架可靠性分析软件开发分布式认证跳表及其在P2P分布式存储系统中的应用 房地产行业企业所得税纳税评估实证研究 具有预测能力的呼叫中心系统的设计与实现 PVAR模型在研究经济增长与能源消费关系中的应用 基于有限元的深基坑组合型围护结构可靠度分析 一些带有偏序结构的完全码

概率论与数理统计课程的改革与实践论文

摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效果。

Abstract: The necessity and importance of teaching reform of the course of probability and mathematical statistics were discussed, ideas and principles of curriculum reform were put forward, and the achieved effect of this curriculum’s reform and practice was summarized.

关键词: 概率论与数理统计;改革;实践

Key words: probability and mathematical statistics; reform; practice

概率论与数理统计是工程、人文、经济、社会等领域研究和处理随机现象的一门重要的随机数学,是目前数学专业大学本科阶段乃至其它理工类专业的唯一一门随机数学的必修课。自上个世纪六十年代引入大学课堂以来,它对于传承人类科学文明、培养人才的综合素质能力、解决实际问题的实践动手能力等起到了非常重要的作用。在信息社会高度发达的今天,随机数学的基本理论与方法作为信息采集、加工、利用的重要的理论基础和方法论基础,已经成为现代专业人才重要的必不可少的知识构成。文献[1-3]对该课程的改革与实践进行了探讨。本文就该课程的特点,结合我院(系)学生的特点就该课程改革与实践的必要性,具体思路与原则,以及改革实践的效果做一探讨。

1 概率论与数理统计课程教学改革的必要性与重要性

教学内容、手段、方法的陈旧反映出教育思想的落后,转变教育思想和更新教育观念是进行一切改革的先导。传统的数学教育理念重视教学过程的理论性,严谨性,逻辑性。但对于学生应用数学的理论和方法解决实际问题能力的培养从教和学两个侧面有所忽视。

现在,有一种流行的教育教学方法称为“案例教学”。“案例教学”就是通过实际问题的描述、假设、建模与求解,演示理论与方法的应用过程。数学上,这样的教学方式就是所谓的‘问题解决’的数学建模的思想。这种方法不拘泥于对理论和方法的阐述,更注重对理论与方法的实际应用过程的展示:包括问题的描述、所涉及的变量及其相互关系、问题的假设与简化、问题的数学模型的建立与求解。

信息社会的加速来临,在实际生活和科技工作中,海量、庞杂的数据不断产生,但是有用的信息并不会自动生成,它需要数学工作者利用数据采集、整理、分析与处理的工具,去发现有用的信息,以解决实际问题。数据采集与信息分析与处理的数学基础就是《概率论与数理统计》这门数学类专业的必修课程,这也是其它理工科专业的一门必修课程,只是对数学专业的`要求既注重理论又兼顾方法的实际应用,而对其它理工科专业,这门课程主要注重方法的应用。

但是,《概率论与数理统计》这门课程不同于以往学习的确定性数学,对于第一次接触这门课程的学生,理解起来会很困难,更不用说去利用它去进行统计数据的采集、整理、处理、分析等。因此,单从这点考虑,我们就有必要对其教学方法、手段等进行改革。从本门课程的应用目的角度来考虑,也必须进行改革,以增加实践性教学环节,培养学生应用概率论与数理统计的理论和方法解决实际问题的能力。

从培养学生利用数学的理论和方法、基于统计数据,建立和求解数学模型的能力的角度看,这完全符合现代大众化高等教育的目的,也符合我校的办学指导思想。

《概率论与数理统计》是其它随机数学的理论和方法的基础,这些课程是:多元统计分析、时间序列分析、随机过程,基于支持向量机的现代非参数统计学习方法等,为了这些知识和方法的学习与应用,我们也必须改变教学方式,为学生打下坚实继续学习的基础。

2 概率论与数理统计课程教学改革的思路与原则

通过以上的分析,我们认为概率论与数理统计课程的改革必须首先改变教学方法,抛弃那种古板的、填鸭式的、纯粹的重视逻辑推理而不重视应用的传统的教学观念,而采取不仅重视理论与方法的学习,为后继课程的学习打下良好基础,又能激发学生学习兴趣,同时还能培养学生应用所学理论和方法解决实际问题的能力的培养。

因此,概率论与数理统计课程的改革是一项系统工程,既要考虑课程本身理论与方法的学习,还要也兼顾后继课程的学习(有些课程是研究生的必修课),又要考虑学生应用理论与方法解决实际问题能力的培养,还要使得学生学习起来兴趣盎然。应用系统工程原理,从理论、实践、计算能力等全方位改革和建设,不能只重视某一个环节,而应从整体上思考。

在学时有限的约束条件下,我们必须改革教学内容,教学方法和教学手段,以期达到预期的改革目的。改革过程必须培养一批从事《概率论与数理统计》课程的课堂教学、实验教学的人才,积累改革的成果,不断总结经验。改革过程不会一番风顺,遇到非议也是可以理解的。但是,改革的决策一旦确定,就要毫不犹豫的进行下去。

3 概率论与数理统计课程教学改革的内容与措施

首先确定合理的教学学时,经过大家集思广益,制定了相应的教学大纲,使教学改革有法可依。为了达到上述改革目标,我们对教材的内容进行必要的增加和删减。由于,《概率论与数理统计》课程是大学生接触的第一门研究随机现象及其规律的数学学科,不同于以往的确定性数学,学生理解起来是相当困难的。为此,考虑到实际课时和课程的难度,在课堂教学中,借助于多媒体技术和计算机编程技术,增加了对一些随机现象的直观演示。删除掉一些陈旧的知识,比如关于一些定理的证明,或者保留这些证明,作为自学内容,提供给有能力学习的学生。这也起到因材施教的目的。经过多年的实践,编写了自己的教材《概率论与数理统计》(陕西师范大学出版社出版),该教材是国家面向21世纪规划教材。

为了达到培养学生利用计算机和数学软件,以及应用概率论与数理统计的理论和方法解决实际问题的能力,我们在自己编写的教材中,首次引入了SAS(Statistical Analysis Systems)高级程序设计语言。

为了使得课堂教学生动、有趣、直观以及指导学生的学习,我们研制开发了多媒体课件,并编写了与本门课程配套的课程学习指导教材。

为了达到培养学生的收集数据、整理数据、建立数学模型、利用相关的理论与方法解决实际问题的能力之目的,我们增加实践性教学环节。从1997级开始,我们在全国首次开设了《概率论与数理统计》的实验教学环节,并且编写相应实验教学大纲和实验指导书,使实验课有纲可循,有事可做而不流于形式。

为了培养学生的综合应用随机数学解决实际问题的能力,我们构建了以《概率论与数理统计》为核心的课程群,包括《多元统计分析》、《时间序列分析》、《教育测量与统计学》、《随机过程》、《数学模型与数学实验》、《数学软件》等选修课程,大大丰富了学生随机数学的理论与方法解决实际问题的数据处理与分析的能力及数学建模能力。

为了开拓学生的视野,在学年论文和毕业论文中,我们加强指导,向学生介绍了一种现代非参数统计学习方法:《基于支持向量机的统计学习方法》,将这种方法用于相关关系的学习中。

为了达到培养学生学习《概率论与数理统计》课程及其课程群的学习及其解决实际问题的能力,我们连续多年组织了对我校参加全国大学生数学建模竞赛的学生的培训工作,特别是随机数学解决实际问题能力的培养。

由于我们改革教学的内容,增加了实验教学环节,并注重学生平时能力的培养,所以我们改革考核方式:学生平时作业及考勤占总成绩的20%,实验占20%,课程考试占60%。

为了传承我们的改革成果,我们注意在改革中积累经验,培养人才,使我们的改革有了传承、继续推进的后备人才,形成本门课程及其课程群的年龄、学历层次和职称结构合理的教师队伍,有博士1个,硕士3个,学士5个;教授1个,副教授6个,讲师2个。

4 概率论与数理统计课程教学改革与实践的效果

通过几年来的改革实践,概率论与数理统计的教学取得了较显著的效果。教学内容、方法手段的改革增加了学生学习该课程的兴趣,使学生真正体会到该课程的内容在工农业生产以及科学研究中的应用价值,充分调动了学生学习的主动性,激发了学生的创造性思维,增加了学生应用概率统计方法解决实际问题的能力。该课程的改革与实践取得了良好的教学效果,提高了教学质量,得到了学生的认可和赞同,问卷调查表明90%以上的学生对现在的教学方式和考试方法给予肯定,大多数学生都认为概率统计课在各学科中有较重要的应用。说明同学们对该门课程的思想方法和应用性有了较深刻的认识,教学改革的总体方向是正确的。

随着本课程及相关课程的深入改革,有许多学生在学年论文及毕业论文的选题上倾向于采用《概率论与数理统计》课程的理论与方法。与本课程相关的多篇毕业论文被评为校级优秀论文

此外,本课程的任课教师还积极组织、培训、指导学生参加全国大学生数学建模竞赛并取得优异成绩。

参考文献:

[1]朱松涛.师专数学系《概率论与数理统计》课程教学的改革实践[J].数学通报,1998,(4).

[2]邓华玲等.概率论与数理统计课程的改革与实践[J].大学数学,2004,(1).

[3]陈新美等.《概率论与数理统计》教学改革与实践[J].湖南科技学院学报,2006,(11).

毕业论文选题是实现毕业论文教学目的、确保毕业论文质量的关键环节。下面是我带来的关于统计学本科论文选题参考的内容,欢迎阅读参考!

1. 小企业/工业企业等审计重点关注问题解析

2. 浅论我国社会责任会计信息披露

3. 浅析我国现代企业 成本管理

4. 财务报表列报问题与分析。

5. 人民币汇率变动对FDI的影响分析

6. 人民币汇率变动对大宗商品进出口的影响分析

7. 人民币汇率变动对经济增长的影响分析

8. 人民币汇率变动对贸易差额的影响分析

9. 人民币汇率变动对外汇储备的影响分析

10. 外商直接投资变动对福建省经济发展的影响分析

11. 消费、投资与出口对中国经济增长作用的分析

12. 投资与经济增长关系量化研究

13. CPI波动与传导研究

14. 我国股票价格波动与通货膨胀关系研究

15. 我国股票价格波动与消费关系分析

16. 我国股票价格波动与投资的实证分析

17. 我国房价波动财富效应的实证分析

18. 货币供给与资产价格波动实证分析

19. 中国农村剩余劳动力转移动因研究

20. 影响农民工务工收入的因素分析

21. 农村劳动力流动对农业劳动力老龄化形成的影响

1. 统计体制视角下的统计数据质量理论研究

2. 统计软件在统计专业课教学中的应用

3. 加强统计基层基础建设,推动统计工作再上新台阶

4. 论统计台帐对于房地产企业统计工作的重要性

5. 浅谈财务统计信息在医院财务与统计中的作用

6. 独立学院面向非统计学专业统计学教学改革研究

7. 提高统计队伍素质服务水利统计工作

8. 基于统计学发展趋势的高校统计学教学改革研究

9. 基层政府统计部门统计环境现状分析

10. 统计理论对财税统计工作的指导作用分析

11. 坚持依法统计,确保统计事业健康发展

12. 统计管理体制与企业统计创新保证研究

13. 做好统计信息化工作提高统计服务水平

14. 加强基层统计教育提升统计服务效能

15. 试谈高职经管类非统计专业统计学教学方法

16. 统计学中的统计思想刍议

17. 经历统计过程,发展统计观念

18. 浅析统计安全与统计法治

19. 统计信息化建设对统计管理模式的影响与促进研究

20. 案例教学法在非统计专业统计学教学中的应用

1. 论基层统计人员对企业统计数据质量的影响

2. 探索高职院校非统计专业统计学教学新思路

3. 统计软件在体育统计教学中的应用与实践

4. 加强统计工作 促进医院统计管理

5. 加快统计管理体制改革,完善统计规章制度建设

6. 加强县域统计提高统计数据质量

7. 关于统计信用与统计数据质量研究

8. 统计数据质量是统计工作的生命

9. 统计工作中统计思想的重要作用分析

10. 提高统计人员素质做好企业统计工作

11. 统计思想在统计工作中的应用

12. 统计意识在概率统计课程教学中的作用

13. 经济类非统计专业统计学教学探索

14. 加强基层统计管理 提高统计数据质量

15. 注重统计方法,认真搞好统计

16. 基层水利统计单位如何做好水利统计工作

  • 索引序列
  • 概率与统计毕业论文
  • 统计与概率论文
  • 概率论与数理统计论文
  • 概率论与数理统计毕业论文选题
  • 本科概率统计毕业论文
  • 返回顶部