首页 > 期刊论文知识库 > 有关极限思想的论文题目

有关极限思想的论文题目

发布时间:

有关极限思想的论文题目

论刘徽割圆术与现代极限思想的异同

极限思想是高中数学中的一种重要的数学思想,利用极限思想使人们能够从有限中认识无限,从近似中认识精确,从量变中认识质变成为可能。高中数学教材中有多处内容渗透了极限的思想和方法,如“球的体积和表面积”、“双曲线的渐近线”等,但是极限思想在实际教学中没有得到普遍的认可和推广,学生对这种思想方法相当陌生。对于某些数学问题,如果我们能够灵活运用极限思想求解,往往可以避开一些抽象复杂的运算,降低解题难度,还可以优化解题思路,收到事半功倍的效果。下面是笔者尝试将极限思想和方法渗透融合在解题教学中,实现方法与内容的整合。一、寻求极限位置,实现估算与精算的结合例1 过抛物线 的焦点F作一直线交抛物线于P、Q两点,若线段PF与QF的长分别是p、q,则 等于( )。 (A)2a (B) (C) 4a (D) 图1解析:本题是有关不变性的问题,常规解法是探求p、q、a的关系,过程繁琐,且计算较复杂。若能充分认识到变与不变的辨证关系,利用运动和变化的观点,借助于极限思想即取PQ的极限位置可使问题变得简便易行,如图1所示,将直线PQ绕点F顺时针方向旋转到与y轴重合,此时Q与O重合,点P运动到无穷远处,虽不能再称它为抛物线的弦了,它是弦的一种极限情形,因为 ,而 ,所以 ,故答案选C。针对客观选择题题型的特点,这种解法体现出思维的灵活性和敏捷性,凸显了试题的选拔功能。【评注】将精算与估算相结合,是一种重要的数学能力,有利于从不同层面对理性思维能力进行全面而又灵活的考查。因此,这类数学试题给高中数学教与学的方向以启示,注重多元联系表示,拓宽思维,提高思维含量。二、考查极限图形,简化计算例2 在正n棱锥中,相邻两侧面所成的二面角的取值范围是( )。 (A) (B) (C) (D) 解析:如图2所示,设正n棱锥为 ,由于n多变,所以底面正n边形、侧面出现不确定状态,这样导致直接分析求解将是繁难,甚至是“到而不达”的,若另辟蹊径,采用极限法,则解法将是简捷、易行的,其计算量得到极大的简化。本例中底面正n边形固定,而棱锥的高不定,故可将顶点S看作是运动变化的,设相邻两侧面所成的二面角的平面角为 。当点S向下运动无限趋近底面正n边形的中心这个极限位置时, 趋于平角 ;当点S向上运动趋于无穷远时,侧棱将无限趋于与底面垂直,即正n棱锥趋近于正n棱柱,此时 无限趋于底面正n边形的内角 ,故二面角的取值范围是: ,从而答案选A。【评注】“化静为动,以动制静”,利用运动和变化的观点,着眼于问题的极限状态,摈弃了繁琐的数学运算,使得所研究问题更加直观、明朗。因此,根据问题的不同条件和特点,合理选择运算途径是提高运算能力的关键,而灵活地利用极限思想就成为减少运算量的一条重要途径。三、分析极限状态,探索解题思路例3 已知抛物线方程为 。求证:在x轴正方向上必存在一点M,使得对于抛物线上任意一条过M的弦PQ均有 为定值。分析:假设点M确实存在,因为过点M的任意一条弦PQ均有 为定值,因此对过点M的一条特殊弦——垂直于x轴的弦 也应该有 为定值。如图3所示,设 ,则 ,但是仅凭此式还看不出点M到底是哪个定点。下面再考查弦的一个极限情形——x轴的正半轴,它过点M,它的一个端点是原点O,另一个端点可以看成是无穷远处的极限点 (假想的点),它是弦的一种极限情形,显然有 ,所以 ,它也应该是定值,且 ,由此可得 ,于是可以猜想定点M(p,0),下证过点M(p,0)的任一弦PQ均有 (定值)。 图3证明:设过点M(p,0)的直线参数方程为 ,代入抛物线方程得 ,设此方程的两根为 ,则 ,而 的几何意义分别表示MP及MQ的值。所以 。因此点M(p,0)是满足题意的点。【评注】通过分解有关对象在运动变化过程中的极限状态,提取信息、信息整合,从而寻求到合理的解决问题的途径,降低了解题难度,优化了解题过程,有效激活了创新思维,凸显了极限思想在解题中的独特功能及应用的广泛性。四、巧取极限,实现无限与有限的统一例4 设数列 满足 (1)当 时,求 ,并由此猜想出 的一个通项公式; (2)当 时,证明对所有的 ,有① ;② 。解析:本题是数列与不等式的综合题,是考查猜想、归纳、迭代、放缩推理及分析问题和解决问题能力的一道优秀试题。(1)及(2)①入口宽,也易解决。但是(2)②的放缩难度较大,拉开了档次,体现了较好的区分度。事实上,(2)①的结论给解答(2)②有明确的启示。因为由 可以推导出 ( ),运用这个不等式来证明(2)②,思路最为清晰、快捷。这种要求,是考查考生进入高校继续学习的潜能所必须的。(1) (略)。(2)①用数学归纳法证明(略)。②由(2)①可知 ,即 。 于是 。 。【评注】本例利用了高等数学中的级数理论:正项级数 的前n项和有上界,故级数 收敛,但其收敛速度不大于 的收敛速度( )。其实从初等数学的观点也很容易理解:若单调递增数列 存在极限,则 。通过无限与有限的统一,实现了对不等式的放缩。利用极限思想,把问题放置于极限状态,即活跃了思维,又提高了分析、解决问题的能力。因此,教师要有意识地强化用极限思想解题的意识,并在不断应用它解决问题的过程中,让学生真正体会到“提高观点,降低难度,减轻负担”的含义。自己去瞧瞧吧,,,,,我只能帮到这里了。。。。。

根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)

极限与哲学的高等思维

极限思想毕业论文

我也急。明天交,还没有逼出来。

极限思想是高中数学中的一种重要的数学思想,利用极限思想使人们能够从有限中认识无限,从近似中认识精确,从量变中认识质变成为可能。高中数学教材中有多处内容渗透了极限的思想和方法,如“球的体积和表面积”、“双曲线的渐近线”等,但是极限思想在实际教学中没有得到普遍的认可和推广,学生对这种思想方法相当陌生。对于某些数学问题,如果我们能够灵活运用极限思想求解,往往可以避开一些抽象复杂的运算,降低解题难度,还可以优化解题思路,收到事半功倍的效果。下面是笔者尝试将极限思想和方法渗透融合在解题教学中,实现方法与内容的整合。一、寻求极限位置,实现估算与精算的结合例1 过抛物线 的焦点F作一直线交抛物线于P、Q两点,若线段PF与QF的长分别是p、q,则 等于( )。 (A)2a (B) (C) 4a (D) 图1解析:本题是有关不变性的问题,常规解法是探求p、q、a的关系,过程繁琐,且计算较复杂。若能充分认识到变与不变的辨证关系,利用运动和变化的观点,借助于极限思想即取PQ的极限位置可使问题变得简便易行,如图1所示,将直线PQ绕点F顺时针方向旋转到与y轴重合,此时Q与O重合,点P运动到无穷远处,虽不能再称它为抛物线的弦了,它是弦的一种极限情形,因为 ,而 ,所以 ,故答案选C。针对客观选择题题型的特点,这种解法体现出思维的灵活性和敏捷性,凸显了试题的选拔功能。【评注】将精算与估算相结合,是一种重要的数学能力,有利于从不同层面对理性思维能力进行全面而又灵活的考查。因此,这类数学试题给高中数学教与学的方向以启示,注重多元联系表示,拓宽思维,提高思维含量。二、考查极限图形,简化计算例2 在正n棱锥中,相邻两侧面所成的二面角的取值范围是( )。 (A) (B) (C) (D) 解析:如图2所示,设正n棱锥为 ,由于n多变,所以底面正n边形、侧面出现不确定状态,这样导致直接分析求解将是繁难,甚至是“到而不达”的,若另辟蹊径,采用极限法,则解法将是简捷、易行的,其计算量得到极大的简化。本例中底面正n边形固定,而棱锥的高不定,故可将顶点S看作是运动变化的,设相邻两侧面所成的二面角的平面角为 。当点S向下运动无限趋近底面正n边形的中心这个极限位置时, 趋于平角 ;当点S向上运动趋于无穷远时,侧棱将无限趋于与底面垂直,即正n棱锥趋近于正n棱柱,此时 无限趋于底面正n边形的内角 ,故二面角的取值范围是: ,从而答案选A。【评注】“化静为动,以动制静”,利用运动和变化的观点,着眼于问题的极限状态,摈弃了繁琐的数学运算,使得所研究问题更加直观、明朗。因此,根据问题的不同条件和特点,合理选择运算途径是提高运算能力的关键,而灵活地利用极限思想就成为减少运算量的一条重要途径。三、分析极限状态,探索解题思路例3 已知抛物线方程为 。求证:在x轴正方向上必存在一点M,使得对于抛物线上任意一条过M的弦PQ均有 为定值。分析:假设点M确实存在,因为过点M的任意一条弦PQ均有 为定值,因此对过点M的一条特殊弦——垂直于x轴的弦 也应该有 为定值。如图3所示,设 ,则 ,但是仅凭此式还看不出点M到底是哪个定点。下面再考查弦的一个极限情形——x轴的正半轴,它过点M,它的一个端点是原点O,另一个端点可以看成是无穷远处的极限点 (假想的点),它是弦的一种极限情形,显然有 ,所以 ,它也应该是定值,且 ,由此可得 ,于是可以猜想定点M(p,0),下证过点M(p,0)的任一弦PQ均有 (定值)。 图3证明:设过点M(p,0)的直线参数方程为 ,代入抛物线方程得 ,设此方程的两根为 ,则 ,而 的几何意义分别表示MP及MQ的值。所以 。因此点M(p,0)是满足题意的点。【评注】通过分解有关对象在运动变化过程中的极限状态,提取信息、信息整合,从而寻求到合理的解决问题的途径,降低了解题难度,优化了解题过程,有效激活了创新思维,凸显了极限思想在解题中的独特功能及应用的广泛性。四、巧取极限,实现无限与有限的统一例4 设数列 满足 (1)当 时,求 ,并由此猜想出 的一个通项公式; (2)当 时,证明对所有的 ,有① ;② 。解析:本题是数列与不等式的综合题,是考查猜想、归纳、迭代、放缩推理及分析问题和解决问题能力的一道优秀试题。(1)及(2)①入口宽,也易解决。但是(2)②的放缩难度较大,拉开了档次,体现了较好的区分度。事实上,(2)①的结论给解答(2)②有明确的启示。因为由 可以推导出 ( ),运用这个不等式来证明(2)②,思路最为清晰、快捷。这种要求,是考查考生进入高校继续学习的潜能所必须的。(1) (略)。(2)①用数学归纳法证明(略)。②由(2)①可知 ,即 。 于是 。 。【评注】本例利用了高等数学中的级数理论:正项级数 的前n项和有上界,故级数 收敛,但其收敛速度不大于 的收敛速度( )。其实从初等数学的观点也很容易理解:若单调递增数列 存在极限,则 。通过无限与有限的统一,实现了对不等式的放缩。利用极限思想,把问题放置于极限状态,即活跃了思维,又提高了分析、解决问题的能力。因此,教师要有意识地强化用极限思想解题的意识,并在不断应用它解决问题的过程中,让学生真正体会到“提高观点,降低难度,减轻负担”的含义。自己去瞧瞧吧,,,,,我只能帮到这里了。。。。。

1, 在解题中例如我们以前的物理学科一般是某个因素在连续变化过程中另一个因素的变化情况,采用极限方法可以简化复杂的公式的证明,适合于选择题的快速解答.比如电路中电阻变小,极限情况就是短路,电阻变大的极限就是断路,知道初始情况,知道极限情况,就可以选择变化规律正确的选项2, 经济方面经济学中的边际、弹性、消费者剩余等许多问题,都涉及到极限思想这一重要方法.3,智力游戏其实都是些思路,举个例子:两人坐在方桌旁,相继轮流往桌面上平放一枚同样大小的硬币.当最后桌面上只剩下一个位置时,谁放下最后一枚,谁就算胜了.设两人都是高手,是先放者胜还是后放者胜?(G·波利亚称“由来已久的难题”)G·波利亚的精巧解法是“一猜二证”:猜想(把问题极端化) 如果桌面小到只能放下一枚硬币,那么先放者必胜.证明(利用对称性) 由于方桌有对称中心,先放者可将第一枚硬币占据桌面中心,以后每次都将硬币放在对方所放硬币关于桌面中心对称的位置,先放者必胜.从波利亚的精巧解法中,我们可以看到,他是利用极限的思想考察问题的极端状态,探索出解题方向或转化途径.极限思想是一种重要的数学思想,灵活地借助极限思想,可以避免复杂运算,探索解题新思路.

1, 在解题中例如我们以前的物理学科一般是某个因素在连续变化过程中另一个因素的变化情况,采用极限方法可以简化复杂的公式的证明,适合于选择题的快速解答。比如电路中电阻变小,极限情况就是短路,电阻变大的极限就是断路,知道初始情况,知道极限情况,就可以选择变化规律正确的选项2, 经济方面经济学中的边际、弹性、消费者剩余等许多问题,都涉及到极限思想这一重要方法。3,智力游戏其实都是些思路,举个例子:两人坐在方桌旁,相继轮流往桌面上平放一枚同样大小的硬币。当最后桌面上只剩下一个位置时,谁放下最后一枚,谁就算胜了。设两人都是高手,是先放者胜还是后放者胜?(G·波利亚称“由来已久的难题”)G·波利亚的精巧解法是“一猜二证”:猜想(把问题极端化) 如果桌面小到只能放下一枚硬币,那么先放者必胜。证明(利用对称性) 由于方桌有对称中心,先放者可将第一枚硬币占据桌面中心,以后每次都将硬币放在对方所放硬币关于桌面中心对称的位置,先放者必胜。从波利亚的精巧解法中,我们可以看到,他是利用极限的思想考察问题的极端状态,探索出解题方向或转化途径。极限思想是一种重要的数学思想,灵活地借助极限思想,可以避免复杂运算,探索解题新思路。不知道这样的回答你满意吗

极限论文的题目

函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。1. 中值定理微分学中有费马引理、罗尔定理和拉格朗日中值定理。拉格朗日定理 如果函数 满足:(ⅰ)在闭区间 , 上连续;(ⅱ)在开区间 , 内可导,则在 , 内至少存在一点 ,使或由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。2. 用导数研究函数的性质为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。反过来,我们是否可以有导数的符号来判定函数的单调性呢?一阶导数的符号在 上任取两点 、 ,其中 < ,在区间[ , ]上应用微分中值定理,得到( < < )有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。由此我们可以归纳出函数单调性的判别法。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。此外,导数的绝对值告诉我们变化率的大小。当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。曲线的上下凹性设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的;如果在某一区间内 ,那么 在该区间式递减的。如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少, 点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。二阶导数的符号函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。局部极值性我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。 在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。 在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。函数的极大值和极小值概念是局部性的。如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。最大值与最小值在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可知,函数 在闭区间 , 的最大值、最小值必定存在;其次,如果最大值或最小值在开区间 , 内的某一点 取得,那么这个最大值或最小值 必定是函数 的一个极大值或极小值。于是,点 必定为函数 的驻点;最后,函数 的最大值或最小值也可能是在 或 处取得。我们通过一个例子来看一看最大值或最小值的求法过程。例5 求函数 在闭区间 , 上的最大值与最小值。

极限与哲学的高等思维

(一)确定论文提要,再加进材料,形成全文的概要论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。(二)原稿纸页数的分配写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。(三)编写提纲论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。编写要点编写毕业论文提纲有两种方法:一、标题式写法。即用简要的文字写成标题,把这部分的内容概括出来。这种写法简明扼要,一目了然,但只有作者自己明白。毕业论文提纲一般不能采用这种方法编写。二、句子式写法。即以一个能表达完整意思的句子形式把该部分内容概括出来。这种写法具体而明确,别人看了也能明了,但费时费力。毕业论文的提纲编写要交与指导教师阅读,所以,要求采用这种编写方法。详细提纲举例详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。

关于求极限的论文题目

生命无极限生命本是一泗清泉,只有勇于拼搏的人才能尝出它的甘洌。在奥运场上,四年一次的舞台,给了他们生命的展示。如果说只有冠军才能有王者的风韵。那么,这变是人类史上最大的遗憾。多少年来,人们为着同一个目标努力着。可是,金牌,只有一个,然而想拥有它的人,却有一群。但在我的心里,登上奥运战场,他们,便是王者。也许为了这最后的胜利,他们付出了毕生的努力,他们为了成功,牺牲了最动人的年华。我国的竞走运动员,为了奥运,离开了她仅4个月大的女儿。墙上多少个"正"字才能换回与女儿的相见一面。那是一种穿心的痛,作为一个母亲她将自己献给了体育。面对窗外出升的新月,却只能孤独地想象,我的亲人在哪儿,他们是否也在念挂着我。可是,为了奥运,我要拼搏,即使是最后一名,跑道上也要留有我的身影。留想奥运,那是一种拼搏的精神。 生命本是一米阳光,只有把握住机会的人才能体会它的灿烂。最后一枪,是扣人心弦的,也就是这最后一枪,改变了人一生的命运,最后一枪,使全世界知道了杜丽的名字。在最后一枪之前,还有0。6环的差距。可是对手没有把握住。杜丽,你赢了!奥运,是懂得怎样把握住机会的竞技场。 生命本是那坚硬的石头上的一颗小水珠,只有永不放弃的人才能拥有水滴石穿之时。21:23,在前三局中国以1:2败与俄罗斯,这是至关重要的一局,如果输了,中国只能跟金牌擦身而过。许多人不想看到女排一败涂地的结局,纷纷转换了频道。然而,上帝在创造女排姑娘之前,为她们安装了一颗永不服输的心。就是这颗坚韧的心,陪着女排姑娘们度过了最艰难的一关。窗外发出一阵激烈的掌声。我知道,我们一定是赢了。是她们,顶着巨大的压力,在大比分落后的情况下,挽回了致命的一局。我注意到了这样一个镜头:在拦网过程中,李婷摔倒,她用双拳向地面使劲地一锤,是啊,每一分对于她们来说是多么重要。李婷站了起来,重新开始了她的征途。当时,我是用一颗感恩的心来看待这些姑娘的。感恩,感谢你们为祖国添加了本届奥运会第一枚团体金牌;感恩,感谢教练的微笑,给了她们莫大的支持;感恩,感谢上苍赐予她们一颗永不言弃的心。今天,是感恩节。是奥运健儿为我们带来了胜利的曙光,使自豪填满我们的胸膛。 在人生的旅途中,有太多的也许,也许曾经得到,也许就这样错过。蓦然会首中,依旧不变的,是一颗无悔的心。他们选择了体育,从此就等待希望。他们没有后悔,哪怕放弃拥有。他们创造了太多的奇迹,那是生命的真谛,那是生命的根源:生命无极限!

考研的数学分为四种,分别是数学一、数学二、数学三、数学四 数学一是一般的理工科要考的,如计算机/材料等理工专业 数学二是对数学要求略微低一点的专业要考的,但他与数学一基本相当。如纺织专业 数学三是偏向于经济类别的考生,如经济管理 偏向概率 数学四是其它对数学要求相对低的学科。 而四种数学出题的题型相同,所占比例也相同,你很容易在网上或者书店找到某一年的考试题看一下每年出的题类型相同的。 大纲见下: 全国硕士研究生入学考试数学三考试大纲 考试科目 微积分、线性代数、概率论与数理统计 微积分 一、函数。极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数 基本初等函数的性质及其图形 初等函数 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的基本性质及阶的比较 极限四则运算 极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限 函数连续与间断的概念 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数、反函数、隐函数和分段函数的概念. 4.掌握基本初等函数的性质及其图形,理解初等函数的概念. 5.会建立简单应用问题中的函数关系式. 6.了解数列极限和函数极限(包括左极限与右极限)的概念. 7.了解无穷小的概念和基本性质.掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系. 8.了解极限的性质与极限存在的两个准则.掌握极限的性质及四则运算法则,会应用两个重要极限. 9.理解函数连续性的概念(含左连续与右连续). 10. 了解连续函数的性质和初等函述的连续性. 了解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)及其简单应用. 二、一元函数微分学 考试内容 导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 微分中值定理及其应用 洛必达(L'Hospital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点、浙近线 函数图形的描绘 函数的最大值与最小值 考试要求 1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念). 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数与隐函数求导法以及对数求导法. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分. 5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理、柯西(Cauchy)中值定理的条件和结论,掌握这三个定理的简单应用. 6.会用洛必达法则求极限. 7.掌握函数单调性的判别方法及其应用,掌握极值、最大值和最小值的求法(含解较简单的应用题). 8.会用导数判断函数图形的凹凸性和拐点,会求函数图形的渐近线. 9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形. 三、一元函数积分学 考试内容 原函数与不定积分的概念 不定积分的基本性质 基本积分公式 不定积分的换元积分法和分部积分法 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 定积分的换元积分法和分部积分法 广义积分的概念和计算 定积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握计算不定积分的换元积分法和分部积分法. 2.了解定积分的概念和基本性质,了解定积分中值定理,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法.了解变上限定积分定义的函数并会求它的导数. 3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解简单的经济应用问题. 4.了解广义积分的概念,会计算广义积分,了解广义积分(此处略)的收敛与发散的条件. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续性 有界闭区域上二元连续函数的性质 多元函数的偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,掌握求多元复合函数偏导数和全微分的方法,会用隐函数的求导法则. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件。会求二元函数的极值,会用拉格朗日乘数法求条件极值.会求简单多元函数的最大值和最小值,会求解一些简单的应用题. 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法.会计算无界区域上的较简单的二重积分. 五、无穷级数 考试内容 常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数以及它们的收敛性 正项级数收敛性的判别 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1.了解级数的收敛与发散、收敛级数的和的概念. 2.掌握级数的基本性质和级数收敛的必要条件.掌握几何级数及p级数的收敛与发散的条件.掌握正项级数的比较判别法和比值判别法. 3.了解任意项级数绝对收敛与条件收敛的概念,以及它们之间的关系.掌握交错级数的莱布尼茨判别法. 4.会求幂级数的收敛半径、收敛区间及收敛域. 5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数. 6.掌提 ex,sinx,cosx,ln(1+x)与(1+x)a幂级数的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展成幂级数. 六、常微分方程与差分方程 考试内容 常微分方程的概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用 考试要求 1.了解微分方程的阶及其解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性方程. 4.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程. 5.了解差分与差分方程及其通解与特解等概念. 6.掌握一阶常系数线性差分方程的求解方法. 7.会应用微分方程和差分方程求解简单的经济应用问题. 线性代数 一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解n阶行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 1、理解矩阵的概念,了解单位矩阵、对角矩阵、数量矩阵、三角矩阵的定义和性质,了解对称矩阵和反对称矩阵及正交矩阵等的定义和性质。 2、掌握矩阵的线性运算、乘法,以及他们的运算规律,掌握矩阵转置的性质,了解方阵的幂,掌握方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆. 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩. 5.了解分块矩阵的概念,掌握分块矩阵的运算法则. 三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大无关组的概念,掌握求向量组的极大无关组的方法. 4.了解向量组等价的概念,理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩. 四、线性方程组 考试内容 线性方程组的克莱姆(Cramer)法则 线例方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解 考试要求 1.会用克莱姆法则解线性方程组. 2.掌握线性方程组有解和无解的判定方法. 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示齐次线性方程组的通解. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵 考试要求 1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法. 2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量性质. 六、二次型 考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准报和规范形 正交变换 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念. 2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理的条件和结论,会用正交变换和配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,掌握正定矩阵的性质. 概率论与数理统计 一、随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求 1.了解样本空间(基本时间空间)的概念,理解随机事件的概念,掌握事件的关系及运算. 2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、全概率公式以及贝叶斯公式等基本公式. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念. 二、随机变量及其概率分布 考试内容 随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布 考试要求 1.理解随机变量及其概率分布的概念,理解分布函数F(x)=P{X<=x}(负无穷2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用. 3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2)、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为f(x)=(此处略). 5.会根据自变量的概率分布求其简单函数的概率分布. 三、随机变量的联合概率分布 考试内容 随机变量联合分布函数 离散型随机变量的联合概率分布、边缘分布和条件分布 连续型随机变量的联合概率密度、边缘密度和条件密度 随机变量的独立性和相关性 常见二维随机变量的联合分布 两个及两个以上随机变量的函数的概率分布 考试要求 1.理解随机变量的联合分布函数的概念和基本性质. 2.理解随机变量的联合分布的概念、性质及其两种基本表达式:离散型联合概率分布和连续型联合概率密度.掌握两个随机变量的联合分布的边缘分布和条件分布. 3.理解随机变量的独立性及相关性的概念,掌握随机变量独立的条件;理解随机变量的不相关性与独立性的关系. 4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义. 5.会根据两个随机变量的联合概率分布求其函数的概率分布,会根据多个独立随机变量的概率分布求其函数的概率分布. 四、随机变量的数字特征 考试内容 随机变量的数学期望(均值)、方差和标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差和相关系数及其性质 考试要求 1.理解随机变量数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计等具体分布的数字特征,掌握常用分布的数字特征. 2.会根据随机变量的概率分布求其函数的数学期望;会根据两个随机变量联合概率分布求其函数的数学期望. 3.掌握切比雪夫不等式. 五、大数定律和中心极限定理 考试内容 切比雪夫(Chebyshev)大数定律 伯努利(Bernonlli)大数定律 辛钦(Khinchine)大数定律 棣莫弗一拉普拉斯( De Moivre- Laplace)定理(二项分布以正态分布为极限分布) 列维一林德伯格(Levy-Lindberg)定理(独立同分布随机变量列的中心极限定理) 考试要求 1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)成立的条件及结论. 2.掌握棣莫弗—拉普拉斯中心极限定理、列维—林得伯格中心极限定理的结论和应用条件,并会用相关定理近似计算有关事件的概率. 六、数理统计的基本概念 考试内容 总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 χ2分布 t分布 F分布 分位数 正态总体的常用抽样分布 考试要求 1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.其中样本方差定义为:S2=(此处略) 2.了解产生χ2变量、t变量和F变量的典型模式;理解标准正态分布、χ2分布、t分布和F分布的分位数,会查相应的数值表. 3.掌握正态总体的抽样分布. 七、参数估计 考试内容 点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值的区间估计 单个正态总体方差和标准差的区间估计 两个正态总体的均值差和方差比的区间估计 考试要求 1.理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和相合性(一致性)的概念,并会验证估计量的无偏性;会利用大数定律证明估计量的相合性. 2.掌握矩估计法(一阶、二阶矩)和最大似然估计法. 3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数字特征的置信区间的求法. 4 掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法. 八、假设检验 考试内容 显著性检验的基本思想和步骤 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验 考试要求 1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验. 2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率. 3.了解单个和两个正态总体参数的假设检验. 试卷结构 (一)内容比例 微积分 约50% 线性代数 约25% 概率论与数理统计 约 25% (二)题型比例 境空题与选择题约 30% 解答题(包括证明题) 约70% 由于这里回答问题限制字数,所以数学四的考纲无法贴上,请你自己去查找,网上有

极限挑战论文题目

因为在很久以前,我也曾经妄想过得到很多,我没有得到的,或者是不属于我的东西,可是当时我并没有意料到那些东西不属于我我以为的是,只要肯努力就肯定能够得到,或者是你的努力,不会让你白费的。可是现在努力了那么长时间,我始终都没有得到,而别人却不费吹灰之力就能够轻易得到,我就在想到底是什么因素在阻止着我们或许很多东西是我们没有办法用言语说的清楚的,在我们头顶之上有一双无形的时候在掌控着我们的命运。也许那才是真正的强者。但是无论怎样,我们不能在一起这种状态继续盲目的追随下去了,我们需要停止脚步,静观其变,看清楚到底是谁在影响着我们的步伐,或者是在很大程度上改变着我们的命运。直到最后,我来到了这里。我以为故人不会再重逢,可是当他们来到我面前时,他们微笑着对我说话,喊着我的名字时,我就感觉到很多东西好像就是发生了不一样的变化,但是又说不出来到底是哪里不对劲。只是惶惶忽忽的觉得,上天之中有虚空,而虚空之中,承载着自己的灵魂。当你的灵魂真的无处安放之时,你就会觉得那种茫然,真的是能够让自己整个人都手足无措。

宽容,往往宽容就是一种“爱”。宽容,是第二种严厉。宽容也会激发人的意志。懂得宽容的人,全都是有成就的人。如果将人生比做道路,那么宽容,是让人从曲曲折折的小道走向明敞的大路。也许,每个人的第一步就是应该懂得宽容。如果去因为一点点小事就与别人争吵,那你就是不对的。来吧,让我们懂得宽容吧!学会宽容大海因为宽容,而变得浩瀚无边;天空因为宽容,云彩绵绵而美丽动人;山峰因为宽容,汇集细土尘沙而巍峨耸立。人——应该学会宽容,才能放出异彩。法国大作家维克多雨果曾经说过:世界上最宽阔的是海洋,比海洋更宽阔的是天空,比天空更宽阔的是人的胸怀。有些人认为,宽容是懦夫的行为,这种想法就大错特错。懦夫是自己的利益受到伤害而不敢只言片语的人才是懦夫,贪生怕死,为敌卖命的人才是懦夫。懂得宽容的人,是从大局出发,考虑全局利益的人。清朝宰相张英与叶侍郎比邻而局,因叶家无理霸占张家三迟地方,张家就写信给在外的张英,张英回复到:千里家书只为墙,再让三迟又何妨,万里长城今犹在,不见当年秦始皇。张家按信中的意思退后三迟,叶家也惭愧地退后三迟。足以证明,宽容能化解人与人之间的恩怨。如果两家恩怨是小事,那国家安危就是大事了。战国时期,将军廉颇一直对比自己地位高的蔺相如很是不服,处处刁难,蔺相如为了不使两人之间再有恩怨,不使敌国乘虚而入,危害国家,危害人民。总是处处忍让,宽容。可见,宽容能使国家兴旺。宽容,能化解人与人之间的恩怨;宽容,能是事业发达;宽容,能使国家繁荣昌盛。让我们学会宽容,让民族,让国家更加兴旺发达吧!

人生的挑战 挑战,在我们的生活中每时每刻都要面临着挑战,挑战现在,挑战未来,更主要的是挑战自己。 挑战自己,就要放飞我们的生命,也许高处不胜寒,也许前方很渺茫,即使是黄昏,也必然布满歌唱的流霞。所以,只要战胜自己,就会取得胜利。 其实,更高的山并不是在人的身旁,而在人的心里。在学习、工作、生活中,迈开的第一步是挑战,改变不适当的习惯是挑战,承担自己应负的责任是挑战,承认错误也是一种挑战…… 从前有四个旅行者,他们一起寻找传说中神奇的仙果,他们怀着不同的愿望,但都为了一个目的,一起出发了,他们历辛艰苦,互相搀扶,互相鼓动,艰难采着每一步。岁月的刻刀磨去了他们年少的轻狂,在他们的额头眼角刻下沧桑。他们开始衰老。他们中的三个人都放弃了,可是只有其中的一个人一次次挑战极限,死里逃生,长的像他五十年不停追寻的漫长历程。 终于有一天,他踏上了一块平地,他的手和脸已苍老得失去了知觉,只有一颗心依然顽强跳动,他看不明听不清,只能用心细细地感觉到这片土地,闻到叶的清香,花的浓烈,果的馥郁。他吃力地摘下一枚软果,咬了一口,奇迹般出现了,他清晰地看见果树成行。只有亲自摘品采新鲜的仙果,才能是最大的收获。 三个人面面相觑,是后悔自己的不坚持还是懊丧自己没有挑战自己,他们失败了,好后悔!这是因为没有成功地挑战自己。 失去月亮,再不能失去星星,再努力一点,前方有梦 ,可追梦的脚步是艰难的,前路茫茫,有些心怯,有些迷茫,只有先挑战自己,才能够成功地挑战人生,相信风雨洗礼后,天空才能出现彩虹! 我们要欢笑地面对人生,只有经过挑战,才能磨练出自己的意志和成就。

你可以拿一些名人为题材,展开你的文章。比如爱迪生。历尽千难万险研究出来电灯。司马迁,历尽磨难完成了《史记》。等等。

  • 索引序列
  • 有关极限思想的论文题目
  • 极限思想毕业论文
  • 极限论文的题目
  • 关于求极限的论文题目
  • 极限挑战论文题目
  • 返回顶部