人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。以下是我整理的人工智能的期末论文的相关资料,欢迎阅读!
摘要:人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。
关键词:人类智能,人工智能,认知,心理学
人工智能技术无论是在过去,现在还是将来,都作为科学研究的热点问题之一。人类对自己本身的秘密充满好奇,随着生物技术的飞速发展,人类不断破译人体的生命密码。而以生物科学为基础的人工智能技术也得到了长足的发展。人们希望通过某种技术或者某些途径能够创造出模拟人思维和行为的“替代品”,帮助人们从事某些领域的工作。为了让计算机能够从事一些只有人脑才能完成的工作,解脱人的繁重的脑力劳动,人类对自身的思维和智能不断地研究探索。但是,科学技术是一柄双刃剑,人们对人工智能技术的飞速发展存在着恐慌。如果机器真的具有了人类的智能,在未来的某一天,他们会不会取代人类而成为地球的主宰者?人类智能和人工智能,谁才是未来的传奇?
1.你在和谁说话?
“先进的人工智能机器人不但拥有可以乱真的人类外表,而且还能像人类一样感知自己的存在。”这是人工智能发展到高级阶段的目标和任务。那么,我们在不久的未来能否实现这样一个目标呢?人类真的能发明出足以乱真的智能人类吗?隔着一堵墙,我们是否能分辨出正在与我们对话的是一部机器还是人类?
. 人工智能的定义
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法心理学,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能发展的过程归纳为机器不断取代人的过程。
. 人工智能技术的发展
几个世纪以来,人类依靠智慧,发明了许多机器,使人类能够从许多体力劳动中解放出来。从1956年正式提出人工智能学科算起,40多年来取得长足的发展,成为一门广泛的交叉和前沿科学。科学家发明了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是这些不能模仿人类大脑的功能。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。1997年5月,IBM公司研制的深蓝(Deep Blue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。计算机的出现,使得人工智能有了突破性的进展。计算机不仅能代替人脑的某些功能,而且在速度和准确性上大大超过人脑,它不仅能模拟人脑部分分析和综合的功能,而且越来越显示某种意识的特性。真正成了人脑的延伸和增强。
. 人工智能的研究领域
人工智能是一种外向型的学科,也是一门多领域综合学科。它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。而人工智能的最根本目的是模拟人类的思维,因此,它的研究领域与人类活动息息相关。什么地方只要有人在工作,他就可以运用到那个领域。
现阶段主要研究领域有专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动程序设计心理学,机器人学,博弈,智能决定支持系统和人工神经网络等等。
2.机器真的可以思考吗?
机器真的可以思考吗?机器的思考归根结底还是模仿人类的思维模式,正是“思考”这一人类的本质属性,使得人工智能和心理学从最初就紧密地联系在一起。心理学研究人脑中信息的输入、输出、存储和加工,并研究人脑各个部位的功能。最早的双核计算机模仿人的左右脑,在人脑不同区域主管各个不同功能这一原理的基础上,来设计负责不同功能的芯片。以此为出发点,心理学家和计算机学者进一步合作,通过研究人解决问题的方法来研究开发人工智能。随着人工智能的发展,所要求实现的职能愈加复杂,但最基本的方式还是逻辑推理和归纳,这正是心理学家和逻辑学家的专业领域。心理学家以研究探讨人类逻辑思维方式为人工智能提供了基本原理和原则。
. 人类意识的本质
意识是世界的内在规定、一般规律和组成部分,是具有客观实在性同世界的其它组成部分处在对立统一关系中的事物。意识普遍存于世界和万物之中,世界是包含意识的世界,万物是包含意识的万物。没有意识存在于其中的世界不是我们现实生活中的世界,没有意识存在于其中的万物也不是我们天天眼见手触的万物。有了意识的存在,世界和万物就有了生机和活力。
. 意识是与物质相对应的哲学范畴,与物质既相对立又相统一的精神现象。
意识是自然界长期发展的产物,由无机物的反应特性,到低等生物的刺激感应性,再到动物的感觉和心理这一生物进化过程是意识得以产生的自然条件。意识是社会的产物,人类社会的物质生产劳动在意识的产生过程中起决定的作用。辩证唯物主义在强调物质对意识起决定作用的前提下肯定意识对于物质具有能动的反作用,在意识活动中人们从感性经验抽象出事物的本质、规律形成理性认识,又运用这些认识指导自己有计划、有目的地改造客观世界。
. 从意识的起源看,意识是物质世界发展到一定阶段的产物;从意识的本质来看,意识是客观存在在人脑中的反映。
意识是人脑对客观存在的反映:第一,正确的思想意识与错误的思想意识都是客观存在在人脑中的反映;第二,无论是人的具体感觉还是人的抽象思维,都是人脑对客观事物的反映;第三,无论是人们对现状的感受与认识,还是人们对过去的思考与总结,以至人们对未来的预测,都是人脑对客观事物的反映。 意识的能动作用首先表现在,意识不仅能够正确反映事物的外部现象,而且能够正确反映事物的本质和规律;意识的能动作用还突出表现在,意识能够反作用于客观事物,以正确的思想和理论为指导心理学,通过实践促进客观事物的发展。
. 人类意识与人工智能的关系
认知心理学和人工智能,是认知科学的两个组成部分。人工智能使用了心理学的理论,心理学又借用了人工智能的成果。人类意识与人工智能两者具有以下关系:
l人工智能是研究用机器模拟和扩展人的智能的科学。它撇开了人脑的内在结构和意识的社会性,而只是把人脑作为一种信息处理的过程,包括信息的接收、记忆、分析、控制和输出五部分。现代科学技术用相应的部件来完成着五个过程,就构成了人工智能或电脑。
l人工智能可以代替人的某些脑力劳动,甚至可以超过人的部分思维能力,随着现代科学技术的发展,它发挥着越来越重要的作用。人工智能的出现不仅解放了人的智力,而且为研究人脑的意识活动提供了新的方法和途径。它说明了人的意识活动不管多么复杂,都是以客观物质过程为基础的,而不是什么神秘的超物质的东西,人们完全可以用自然科学的精确方法来加以研究和模拟,它进一步证实了辩证唯物主义意识论的科学性。
l人工智能的产生和发展,深化了我们对意识相对独立性和能动性的认识。机器思维即人工智能表明,思维形式在思维活动中对于思维内容具有相对独立性,它可从人脑中分化出来,物化为机械的、物理的运动形式,部分地代替人的思维活动。
随着科学技术的发展,人工智能将向更高水平发展,反过来推动科学技术、生产力和人类智慧向更高水平发展,对人类社会进步将起着巨大的推动作用。
3. 人工智能的未来
人工智能是为了模拟人类大脑的活动而产生的科学,人类已经可以用许多新技术新材料模拟人体的许多功能,诸如皮肤,毛发,骨骼等等,也就是说,人类可以创造出“类人体”。只要能够模拟人的大脑的功能,人就可以完成人工生命的研究工作,人创造自己,这不但在科学上,而且在哲学上都具有划时代的意义。这就是人工智能承担的历史使命。
在科学技术日新月异的今天,知识爆炸,科技的增长超出了人类承受的速度。各种新科技的出现层出不穷,随之而来的成果简直让人瞠目结舌,克隆、基因芯片、转基因等等,人类自身的秘密开始一层一层的揭开。我们人脑的复杂结构,人体的基因链也逐渐被科学技术解剖。我们希望将来的人工智能机器能将我们从繁重的体力劳动和脑力劳动中解放出来心理学,例如机器人做家务,带孩子,做司机,秘书等等一系列我们不愿意花太多精力或者有太多限制条件的工作。然而,人类由于多种“性能”都不如机器人,反而退化成为机器人的奴隶?他们会不会有一天无法忍受人类对他们的“剥削”和“压迫”,挑战人类的统治?很多的科幻作品和电影中都预言了这样的场景,未来的智能机器人和人类争夺有限的地球资源,并最终打败人类,成为新的地球统治者。这也正是绝大多数心理学家和哲学家对人工智能的发展忧心忡忡的原因。
人工智能的发展,也只能无限接近于人的智能,而不能超越人的智能。因为人工智能技术的本质,是模拟人类的思维过程,是为人类服务的。我们在进行发明创造的同时,担心被我们所发明的物质所毁灭。正如人类发明了原子能,用于取代正在逐渐消逝的矿物能源,然而当原子能用于军事领域的时候,他产生的力量也足以毁灭人类文明。科技本身并不是问题,人类如何运用自己掌握的技术,才是问题的关键。我们最大的敌人不是我们发明的技术,而是我们自己本身。
【参考文献】
1.李建国人工智能与认知心理学[J]. 西南师范大学学报 1986年4月第二期 142-146页
2.郑南宁认知过程的信息处理和新型人工智能系统[J]. 中国基础科学.科学前沿2008年 9-18页
3.蔡自兴,徐光�人工智能及其应用(第三版)[M].北京.清华大学出版社 2004年
4.(美)Sternberg,.认知心理学[M] .北京.中国轻工业出版社 2006年
5.(美)Nils 人工智能[M].北京. 机械工业出版社 2004年
下一页分享更优秀的<<<人工智能的期末论文
人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读!
摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。论述了人工智能的定义,分析了目前在管理、教育、工程、技术、等领域的应用,总结了人工智能研究现状,分析了其发展方向。
关键词:人工智能;计算机科学;发展方向
中图分类号:TP18
文献标识码:A
文章编号:1672-8198(2009)13-0248-02
1人工智能的定义
人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
2人工智能的应用领域
人工智能在管理及教学系统中的应用
人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。
人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。
人工智能专家系统在工程领域的应用
人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。
人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。
人工智能在技术研究中的应用
人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。
人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。
3人工智能的发展方向
人工智能的发展现状
国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。
我国人工智能的研究现状。很长一段时间以来,机械
和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。
人工智能发展方向
在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。
基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。
人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。
4结语
由上述的讨论我们可以看到,目前人工智能的应用领域相当广泛。无论是学术界还是应用领域对人工智能都高度重视。人工智能良好的发展和应用前景,要求我们必须加大研究和投入力度,以使人工智能的发展能为人类服务。
下一页分享更优秀的<<<人工智能的毕业论文范文
人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读!
摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。论述了人工智能的定义,分析了目前在管理、教育、工程、技术、等领域的应用,总结了人工智能研究现状,分析了其发展方向。
关键词:人工智能;计算机科学;发展方向
中图分类号:TP18
文献标识码:A
文章编号:1672-8198(2009)13-0248-02
1人工智能的定义
人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
2人工智能的应用领域
人工智能在管理及教学系统中的应用
人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。
人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。
人工智能专家系统在工程领域的应用
人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。
人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。
人工智能在技术研究中的应用
人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。
人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。
3人工智能的发展方向
人工智能的发展现状
国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。
我国人工智能的研究现状。很长一段时间以来,机械
和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。
人工智能发展方向
在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。
基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。
人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。
4结语
由上述的讨论我们可以看到,目前人工智能的应用领域相当广泛。无论是学术界还是应用领域对人工智能都高度重视。人工智能良好的发展和应用前景,要求我们必须加大研究和投入力度,以使人工智能的发展能为人类服务。
下一页分享更优秀的<<<人工智能的毕业论文范文
目前学计算机 还是挺不错的好就业,计算机分很多专业如平面设计,UI设计,互联网营销,电竞,动漫,都是非常好就业的专业哦,选择自己喜欢的专业
近日,由论答公司主办的教育大数据研讨会在北京举行,讨论会主题为“大数据+教育,有哪些可能性?”。本次研讨会主要关注数据在教育领域的应用,具体包括自适应学习、学习数据分析和教育数据挖掘。来自宾夕法尼亚大学、人民大学、华中师范大学的专家和企业界代表,共同探讨了教育大数据和自适应学习领域的技术趋势和产业机会Ryan Baker是国际教育数据挖掘协会(International Educational Data Mining Society)的创始人、《教育数据挖掘》杂志(Journal Educational Data Mining)主编,在各类期刊和会议发表了260余篇学术论文,先后主持了美国科学基金会(National Science Foundation)、盖茨基金会(Gates Foundation)等研究基金的多项重大项目,累计获得研究经费超过1600万美元。他也在哥伦比亚大学教育学院和爱丁堡大学同时担任教职,他在Coursera和edX上开设的“Big Data in Education(教育大数据)”课程,有来自100多个国家和地区的学生注册。研讨会现场,Ryan Baker通过远程视频,分享了他对教育大数据的体验和应用。据他介绍,目前在教育大数据领域主要有四大研究组织,分别研究人工智能与教育、教育数据挖掘、学习数据分析和大规模学习。Ryan Baker表示,在教育领域广泛应用大数据的时代正在到来。教育数据挖掘有很多的应用方向,包括:预测学生是会辍学,还是会成功完成学业;自动检测学生的学习投入程度、情感、学习策略,以更好地达到个性化;给教师和其他相关人员提供更好的报告;教育科学的基础研究和发现。他认为,个性化教育至少要做到三件事情:1、确定学生的有关数据;2、了解对于学生的学习来说什么是真正重要的;3、有针对性地为学生提供合适的教学。而通过教育数据挖掘,我们可以推断很多事情:学生的元认知和求助。比如,这个学生有多自信?当他需要帮助时,有没有在寻求帮助?他有没有在给自己解释问题,有没有思考这个答案是正确的还是错误的?最重要的,当他面临挑战时,能否坚持下去?没有投入学习的行为。比如,“玩弄”系统,为了找到正确的答案,有的学生会试各种不同的答案,从“1”试到“38”。粗心,本身会做,但是不用心,最后给出的答案是错的。有些孩子会做非常难以解释的行为,比如不用方程符号,而是画了一个笑脸。学生情感。Baker的研究团队和其他研究团队,已经创造了研究模型,可以根据数据推断,学生是否感到厌倦、沮丧、困惑、好奇、兴奋、快乐,是否投入,等等。长期的学习结果。比如,学生能够记住刚才他学的东西吗?学生准备好学习下一个主题、下一个知识没有?中学生能上大学吗?他会从大学毕业还是辍学?Ryan Baker表示,要获得这样的推断,只需要学生与系统交互的数据,不需要学生戴上头盔检测器。目前,这些模型已经开始大规模应用于自适应学习,应用于几十万的美国学生。Ryan Baker列举了一些自适应学习系统的案例。Knewton通过系统决定学生下一个要学习的问题是什么,已在全球的多个领域多个学科中运用。ALEKS-ALEKS用的是先行知识结构和知识点模型,来选择最适合学生的学习材料。比如,一个学生在学习上出现了问题,系统能够检测出来,是以前学的知识点出了问题,然后让学生回到以前的知识点上去学习。ALEKS系统应用于美国高中、大学的数学、科学学科。Cognitive Tutor系统能自动检测学生的知识,直到学生掌握为止。比如,系统不会让学生学习下一步的知识,直到他展示出他已经学好了他现在正在学习的知识。系统能够给学校提供数据报告,学校根据报告能够更好地让学生投入到学习中去。每年大约被50万的美国初高中生用于数学学习。论答论答公司的系统与ALEKS的系统有些类似,也是用先行结构和知识点模型,选择合适的学习材料。同时也是自动检测学生的知识状态直到学生掌握为止。应用领域目前包括数学和英语,完全针对中国学生开发。Reasoning Mind用各种自动检测的模型来检测老师的教学是否有效。通过数据生成报告给每个地区的教学管理员,让他们找到方法帮助老师提高教学。主要是用于美国的小学数学。Duolingo自动检测学生记忆,来决定什么时候回顾已经学过的知识。在全世界范围内应用于外语词汇的学习。其他的像Civitas,Course Signals,Zogotech都是地区供应商,运用风险预测模型提供行动信息预测。它们会对学生做出预测,可能学不好、会失败,把报告提供给老师。已在世界范围内的大学应用。Ryan Baker指出,在这些系统中,有足够的证据证明,至少以下两个系统是非常好的。1、胡祥恩教授在美国做了大量实证研究,证明ALEKS系统对于帮助学生学习是有效的。他的研究证明,ALEKS系统对于不同人群的学生是同样有效的;特别值得提出的是,ALEKS可以帮助少数人群群体提高学习成绩。2、Ryan Baker本人领导的研究团队与论答公司合作的研究表明,学生通过论答系统学习,比通过传统的在线学习系统学习,效果更好。他们在中国3个不同的地区做的3次实证研究,都证明了论答系统的有效性。Ryan Baker分析了教育大数据算法模型的潜在发展方向。他认为,这些模型的长期潜力是,通过学生的知识和学习模型来确认,学生什么时候需要更多的支持:首先是“mastery learning”,学生在掌握一个知识前,不会让他去学习下一个知识。当学生需要支持的时候,自动介入;同时告诉老师和父母,这个学生什么时候需要支持。通过学习投入程度模型判断,学生什么时候开始变得厌倦、沮丧了,并调整学习活动,让厌倦的学生不再厌倦,让沮丧的学生的学习变得更容易一些。学习投入程度模型还可以检测,在线学习中,什么样的学习活动,能让学生更容易地投入进去,并最终发现,什么样的学习活动对学生更好、对什么样的学生更好。这样的模型也能告诉老师和父母,学生什么时候开始变得不再投入学习了。还可以运用学习模型确认,学生什么时候没有真正学会,需要更多支持。最后,Ryan Baker指出,下一步的目标是优化之前已经验证的经验和方法,然后把它们运用到系统中,最终让中国和世界上的数十亿学生受益。讨论:“因材施教”的千年理想该如何照进现实?王枫博士,论答公司(Learnta Inc.)创始人兼CEO胡飞芳博士,美国乔治华盛顿大学(George Washington University)统计学终身教授,中国人民大学统计与大数据研究院的教授胡祥恩博士,美国孟菲斯大学(University of Memphis)心理系、计算机科学系、计算机工程系终身教授,华中师范大学心理学院院长马镇筠博士,论答公司联合创始人兼首席数据科学家辛涛博士,北京师范大学中国基础教育质量监测协同创新中心常务副主任、博士生导师,兼任国家督学、教育部基础教育课程教材专家工作委员会委员、中国教育学会学术委员会委员。技术发展到今天,“因材施教”如何实现?王枫:因材施教,我首先到的是,每位学生学习的内容都不一样。如果有新的技术或者系统,系统应该像一个好老师一样,不会头疼医头脚疼医脚。比如说,一元二次方程做错了,好老师不会简单说一元二次方程做错了,你继续再做十道一元二次方程的题目,这其实是很差的老师,他没有真正去全面评判学生,到底是哪些掌握好、哪些掌握不好。一个好的老师可能会说,我全面地看了你整个学习,可能你的问题不是出在一元二次方程上面,老师看了你做的题目,一元一次方程没有掌握好、因式分解也没有掌握好,你继续做一元二次方程是浪费时间。这就是从系统角度来说,系统做到了根据每个学生最基础的先行知识点的结构,给你提供最适合你当前学习的知识点,题目也好、视频也好、还有其他各种各样的学习内容。胡飞芳:因材施教是我们教育的理想状态。孔子很早提出因材施教,在他当时的历史环境里面,因材施教可能更多是个体性的,因为那时学生少、老师也少,因材施教相对比较容易做到。随着历史的发展,我们有更多的人需要教育时,我们做的一件事情是什么呢?就是做了一个标准化。标准化做的是什么?课堂教育。课堂教育从某种意义上来讲是标准化。现在这个历史阶段,教育大数据可能真正要做到的就是因材施教,自适应学习本身想做的也是这个。胡祥恩:因材施教事实上在学习理论里有两个:一个是outerloop“学什么”,一个是innerloop“怎么学”。用技术来细化因材施教是教育产业走向成熟的一个标志。但是这个路非常非常难,因为“怎么学”那个层次非常非常难。马镇筠:“因材”代表认识到学生的个体化差异,“施教”指进行差异化教学,这是根本思想。但如果考虑到时代背景,孔夫子时代专注的是学生的职业发展方向,也就是说,把适合当政治家的培养成政治家,把适合当学者的培养成学者。现在再提因材施教,我们其实能做得更多、更精细化。比如,“因材”,对“材”的分类不仅是职业方向,还会考虑到学生的学习状态、学习目标、潜在能力、兴趣偏好等。而且,传统意义上的因材施教考虑的是学生个体间的差异,没有重视学生本身状态是在发生变化的,学生在不断学习,状态甚至兴趣各方面都可能发生变化。但这些是自适应学习能够做到,甚至比传统的因材施教做得更好的地方。再说到“施教”,现在我们能做的几件事,包括学习路径推荐,给不同的学生匹配他最合适的学习内容,这种非常精细化的层面,我们已经有了一定的技术积累。怎么判断一个产品做到了真正的自适应?马镇筠:大多数产品的学习过程可以分为测、学、练,可以从这三个环节去看这个产品做到什么程度。测,各种学习机构都有测评。但是国内只有论答团队第一个做出来能够在几十道题内,精准判断你一百个知识点,哪21个没掌握,哪79个掌握了。市场上大部分竞品,只会告诉你,知识点掌握率或者分数,79分或者知识掌握率达到79%;或者一些其他维度的总结,比如逻辑思维能力比较强、阅读的磨炼技巧比较好、学习动力哪方面稀缺。他们做了降维,本来很复杂的学习状态这样说出来,相对比较容易实现。但如果要做到具体告诉你,哪些知识点掌握、哪些知识点没掌握,这个难度就高很多了。关于学习路径推荐的话,很多题库类的软件,知识点学完之后,会给一些题目推荐,但真正实现路径推荐的很少很少。路径推荐也是很核心的,有20个知识点没掌握,先学哪个知识点,后学哪个知识点,学习顺序是非常关键的,必须遵循循序渐进的原则,哪些知识点是前提知识点,哪些知识点是后续知识点,随机给你知识点去学习的话不能起到最好效果。真正到了练或学的环节,推荐什么样的视频,先推视频还是先推文字讲义,推简单题、中等难度题还是复杂题目,都需要根据学生实际情况来决定。刚才只是举了几个例子,具体涉及到背后的算法、整个系统跟学习内容的结合以及整个教学流程的实现,中间很多环节必须要打通,形成一个闭环,才能对最终的结果负责。辛涛:我的研究领域是教育和心理学的测量和评价。我个人的学术观察,基本上在现代这领域是两个类型。一个是心理测量领域,有一套成熟的方法,包括早期的IRT(Item Response Theory)和现在的ADT。另外一个是人工智能检测。心理测量系统,是一小群人在做;人工智能化是大的方向,现在是显学,给大家提供了明显的可能性。重要的是,那些背后的算法,能够在企业里真正实现出来。现在可能很多算法已经在那儿了,大体上路径是通的。自适应学习基本上是把学习和评价联动起来了。因为,要自适应学习,必须有一个系统随时看到学生学到什么程度,这个完全是评价。但是,评价完了之后有一个新的呈现。这一块现在已经有一些很成熟的一些东西了,但不是一时半时可以说得特别具体的。我做教育的测量和心理测量,人工智能那块我不熟。但是,从教育测量角度来说,在自适应学习和新技术结合之前,很大一块还是自适应考试,CAT(computer adaptive test)。系列化产生一个CAT变成了一个自适应学习的过程。总的来说,使用最简单、最机械化的方法,连续的CAT实际上是可以破解一个学习过程的。测评本身经历了好几个阶段,通常用三个应用介词表示。accessment to learning and teaching;现在国家倡导的,accessment for learning and teaching,测评要对学习和教学有帮助;跟信息化结合,accessment as learning and teaching,它是学习提供的完全融合的一个环节。王枫:什么样的自适应学习系统才是真正的高级自适应学习系统?在中国的落地到底是怎么样才能真正落地?我在马博士的基础上想补充一点。自适应系统如果一定要分级,也可以简单分一下。一种最基础的系统是基于规则的,比如说埋点。一个学生做10道一元二次方程题目,我预先埋好了,你做错了,立马给你推五道一元一次方程题目、五道因式分解题目。这个是埋点埋好了,这是规则,预先由老师或公式设置好了。但这个规则有用性是非常有限的,因为每个学生不一样,A学生是因为一元一次方程不会,B学生可能是因式分解不会,C学生可能连小学的乘法快速运算都不会,这个没法预先直接埋点准备好。所以自适应系统真正到了更高级一点的话,一定是真正通过大数据、根据算法模型来分析学生的学习数据,匹配下一步应该学什么。在中国,自适应学习有效应用于教学有三个前提条件。做到这三点,自适应学习在中国的教育里面前途无限。好的产品。必须要有针对中国本土化的自适应学习产品,把它开发出来。像ALEKS系统的确算法不错,但里面连一套国内的高考题都没有,家长不会让小孩子用这样的系统,因为直接影响应试目标。真正本土化开发的话,没有一成不变的算法,世界上最好算法就是没有开发出来的。教育非常复杂,每个学科不一样。比如数学后台有强大的关系,先行后续关系;英语没达到数学这么强的相关性,但算法是一样可以应用的。好的学生、家长、老师。有了好的产品,首先学生应该真正投入进去学习。像Ryan Baker教授讲的,学生如果随便学一下,再好的系统也没用。第二,家长得督促孩子学习。第三,老师非常重要。老师应该做有价值的事情,比如给学生做个性化的辅导答疑,给学生针对性的讲解,组织学习活动小组,鼓励学生发挥创造能力,领导能力的培养。学校以点带面。学生大部分时间都在学校里面学习。如果学校里最基本的、有效的在线教学产品都不应用的话,其实是有问题的。但是改变绝对不是简单的行政命令可以解决的。一个好的产品,一定是从点到面,逐步推广。自适应学习,更适合有明确目的的学习,像应试教育这块可以做得更好。所以学校可以应用进去。胡祥恩:我觉得大家做自适应也好、因材施教也好,比较好的例子大家可以看一看。教育这个领域有多大,自适应概念就该有多宽。所以说,实验室里面有很多小的做得非常非常好的东西,只是没有到市场上面去,有很多非常非常巧妙的算法、一些东西。你会发现很多欧洲的、美国的实验室做的system,我每次看了都有种,自己是坐井观天的感觉。怎么看待人工智能在教育中的应用?胡飞芳:AlphaGo跟master,谷歌做了一个非常好的广告,人工智能在某些方面可以做得非常好。但是,我现在给你们讲另外一个谷歌自己不会去说的例子,但这也是事实。2008年、2009年的时候,谷歌推出一个免费产品,用各种搜集到的数据,预测美国的流感发展趋势。开始时很成功,预测跟实际发生的情况很相似。但到2015年,他自动撤回去了,不再提供预测。因为在2012跟2013年预测的时候,预测结果跟实际情况相差非常远。这说明像这种不确定性的问题,人工智能还有非常大的局限性。一旦有不确定的数据,就有噪音。数据量很大时,大数据可能产生大噪音。怎样使噪音下降?2015年一个哈佛教授的研究团队在谷歌的基础上,用谷歌的数据去做同样的预测。他用了什么呢?就是用了模型,实际上模型在很多时候降噪是很有用的,用模型去预测,而不完全是人工智能的方式去预测。结果,他做出来的预测基本都比较准。人工智能相对比较成功的,是比较确定的问题,所谓的确定是不管有多少种可能性,还是一个确定的东西。而流感很多时候是完全不确定的因素。教育其实很多时候也是不确定的。同样一个人,现在让他回答这个问题,他可能思路清楚地回答出来;过了一个小时后,即使是同样类型的问题,按道理他应该回答出来,结果他回答不出来。这是说,实际上有很多因素在干扰的时候,人工智能的功能是不是会减少一点。把模型跟人工智能加在一起,会弥补人工智能在某些方面的弱点,这样会更好。怎样促进商界和学界的交流,更好地把学界已经有的一些成果,运用到市场上来?胡祥恩:教育产业应该是一个最大的产业,教育产业事实上是一个知识产业链。到目前为止,很多人认为自己要做一整套系统而在美国汽车业,最赚钱的是供应商,是做轮胎、做玻璃的。一旦标准化之后,一个人如果螺丝钉生产得最好,他就能够养活几家人、几代人。到目前为止,美国推的就是教育标准化,教育内容的标准化、教育技术的标准化。比如说97年的时候,就说怎么样把内容标准化,你做的东西我可以用。我只是做整个教育知识产业链里面一个小块,做得很好。教育整个的产业链,有可能发挥特别特别技巧的那些小的公司,就能够在这个产业链里面生存、可以做得很好。第一个是要标准化,第二个要理解整个教育是一个产业链。
当前,以信息技术和数据作为关键要素的数字经济蓬勃发展,并成为推动我国经济增长的重要力量。数字人才是数字经济发展的核心要素。实践出真知,美林数据基于数十年数据领域实践经验,结合产业发展的人才需求,为高校提供从教学、实践、科研一体化的大数据应用能力解决方案。大数据人才应用能力成长平台——Tempo Talents,从产业人才需求的视角,通过模式创新、技术创新,为高校大数据人才培养提供从平台、课程内容到教学管理的系统解决方案。平台核心围绕“人才应用能力培养”,以实践为基础,将大数据人才培养所需的知识、技能和方法论三个层面互相融合,核心是通过学生动手实践,培养数据思维及解决问题的能力。
Tempo Talents——大数据应用能力成长平台核心面向大数据管理应用、数据科学与大数据技术、交叉学科等大数据相关专业,应用于教学实践、集中实训、在线竞赛、学习交流等场景。
Tempo Talents核心特点1、DT-CMPA人才能力地图,让学习目标清晰明确基于大数据行业人才标准及一万多个大数据相关岗位招聘需求解析,定义岗位素质模型,从岗位胜任力出发,规划学习路径和学习路线。基于人才能力地图,高校可以根据自己的学科建设目标、人才培养方向,进行课程体系的规划。而学生也能根据自己的就业目标,规划学习路径,让学生学习更具目标感,清楚学什么、为什么学。
2、专业课程实践资源,满足不同类型教学、实验需求1)系统课程体系设计,名师专业课程打造与多位高校老师沟通合作,围绕大数据学习路线的两个基础一个链条,打造9大方向、数百个分类,开发设计1000多个原子课,为高校实践教学提供丰富的课程资源。
2)创新原子课设计,知行合一Q:何为“原子课”?A:将课程中涉及的技术点、知识点“原子化”拆分,从基础原理、特性到最终应用,层层递进,用闯关的模式引导学生学习和实践,目的是让学生将每一个知识点吃透、掌握与应用。基于原子课实现“个性化定制课堂”,老师可根据人才培养需求、学科特色、所用教材在原子课程库中自由挑选、灵活搭配难易度合适的知识点原子,灵活组合,实现“个性化定制课堂”。3)个性化定制课堂,因材施教定制化“教学课堂”,自定义教学计划,学生学习行为与评测结果记录,洞察和解析学生学习路径与成果,过程与结果并重,探索教学目标达成的最佳方案。3、千余个项目应用实践经验,培养学生数据思维及解决问题的能力基于美林数据上千个行业头部客户大数据建设项目经验,以行业应用为引导,以真实项目案例为基础,内嵌6大行业,100+项目实训,让学生了解行业最新实践与应用场景,通过实战演练提升学生解决实际问题的能力。
对于大数据学习而言,最难的不是Python的一段代码实现、也不是算法原理的掌握,而是在具体业务场景中,将业务问题数据化,利用分析工具、大数据知识去找到解决方案。针对每一个实训项目,我们都将项目落地全过程进行深度剖析,还原项目落地全流程。将分析方法论、业务问题转化为数学问题的思维方式、知识技能的应用技巧等,全部融入到具体的项目实训案例中,让学生通过实训,掌握方法、提升思维模式。4、一体化实践运行平台,提供丰富实验实训环境1)技术创新,实验环境管理智能高效基于容器与虚拟化技术,提供在线编程、远程命令行、交互式编程、远程桌面等实验实训环境,通过无感知的实验资源分配与回收替代复杂的实验环境管理,让实验管理智能高效。2)编码式加拖拽式双环境,应用型与开发型兼顾既有以原理、技术教学为目标的编码环境,也有以应用为目标的拖拽式环境。拖拽式数据可视化分析与机器学习建模平台,以应用为目标,与编码环境充分融合,满足大数据分析应用实践,为交叉学科大数据人才应用能力培养提供环境支持。
5、激发学生学习热情,打造“自驱型”能力成长平台闯关、竞赛、自主探索的数据游乐场,打破传统的学习模式,打造专业与趣味性融合的学习体验,充分激发学生自主学习热情,打造“自驱型”能力成长平台。
[1]丘德龙.浅谈人工智能在汽车领域中的应用[J].内燃机与配件,2018(10):204-205.[2]钱历.浅谈人工智能在汽车领域中的应用[J].科技风,2018(2):130.[3]郭岱乔.浅谈人工智能在汽车领域中的应用[J].黑龙江科技信息,2017(16):120.[4]聂仙,徐洋.人工智能技术在汽车电子领域中发展及应用[J].数字化用户,2018,24(48):24.
智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。以下是我整理的人工智能的论文的相关 文章 ,欢迎阅读!
建筑智能化设计的相关探讨
【摘要】智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。智能化系统在智能建筑中起着重要的作用,在管理过程中,要科学管理、综合考究、有效安排、合理利用。以求达到最佳效果,确保建筑项目安全施工。本文将综合阐述有关智能建筑中智能化系统的设计概念、以及在设计和施工的过程中应该注意的相关问题。
【关键词】智能建筑;智能化系统;设计
一、建筑智能化系统的设计原则
(一)先进性。智能建筑的智能化系统是随着信息电子科学技术的发展而不断发展的,因此,在系统设计时应当分析智能化系统的发展状况,吸收开放的先进设计理念,以完善智能建筑功能的发挥。
(二)可靠性。在智能化系统设计时应当采用模块化设计理念,将智能化系统的各个子系统相互隔离,以确保在部分子系统发生故障的过程中不会影响其他子系统或链路的正常运行,由此提高系统运行的可靠性。
(三)标准化。随着智能化系统的快速发展,相关的系统设计标准也相继制定。在系统设计中应当严格按照系统标准进行设计,以方便系统的施工与维护。
(四)实用性。智能化系统的设计应当能够充分实现接收有线电视、图像、监控设备、多媒体通信、安全防范、语音、数据等功能,确保其在完善用户的信息沟通与娱乐的同时能够提高用户环境的安全性。
(五)经济性。智能化系统内部包含着多个子系统,其子系统又包含多种构件和设备,因此在系统设计过程中应当在考虑质量保证的同时尽量节省投资成本。
(六)扩展性。在电子信息技术的迅速发展状况下,当前的智能化系统设计内容会出现一定程度的约束与局限。所以,在进行智能化系统设计时应当考虑设计内容的可扩展性,确保智能建筑能够在未来的技术发展下得到更新扩展。
二、建筑智能化系统的设计
(一)供电系统设计
智能化系统的子系统通常需要进行单独供电,因此需要重视供电系统的设计。一般计算机网络系统会采用UPS 进行集中供电,在不间断电源机房其供电出线也需要进行集中供电,而供电进线则满足一定的容量要求即可;对于未使用不间断电源供电的的工作站,也应当采用单独回路进行供电,以避免电路混用危害系统运行,如安全防范系统应当使用单独回路进行集中供电,以保证其与消防联动系统在应对紧急情况时能够正常工作。
(二)接地系统设计
智能建筑的接地将直接影响到设备与工作人员安全、系统工作的可靠性与稳定性、信息传输的质量等。在建筑接地系统设计时应当根据建筑的功用与智能化系统工作要求进行设计,保证能够为其在应用部位提供响应接地端。其需要安装的有静电接地系统、辅助等电位铜排、防雷接地系统、安全保护接地系统、工作接地系统、直流接地系统等部分。其包括两种接地方式:
1、联合接地方式,其在应用中需注意:由于计算机等设备的抗雷击性能不高,且其系统包含超大规模的集成电路容易造成抗高频干扰差,很可能会受到其他系统的干扰,所以应当对计算的直流电源采用单独接地的方式;在使用联合接地方式时其接地电阻有可能会大于1Ω,所以对有特殊要求的智能化子系统均要采用单独接地。
2、单独接地方式,在使用统一接地时主要利用自然接地体,若不再使用人工接地体其应当满足以下条件:接地电阻应当在1Ω以下,即小于规定值;建筑基础内部的钢筋应当互相连接形成电气通路及闭合环,且闭合环英应当与地面保持以上的距离;建筑基础表面未设置绝缘防水层。由于单独接地方式具有施工简单方便、接地可靠、节省成本等优点,因此在智能建筑接地系统设计中得到了较广泛的应用。
(三)智能化管理间与智能化竖井
通常计算机网络系统对于数据通信线路有必要的长度与性能要求,在智能建筑智能化系统设计中,一般使用铜质双绞线作为计算机系统的水平线路,而铜质双绞线会影响到网络传输的带宽,所以根据布线标准与规范,应当保证网络交换机与计算机之间使用的铜质双绞线长度在100m的范围以内;根据管路的弯度与竖直条件,智能化管理间到建筑物的边缘距离应当在60m的范围内;在网络管理间应当安置相应的网络机柜,其周围要留设合理的安装与维护空间,其平面面积应当在5~10m2之间。
(四)综合布线系统设计
在综合布线系统设计中,一般的语音电缆或水平子系统数据电缆应当采用支持带宽100M的D级别系统和5e类的UTP电缆,以满足大量用户的扩展要求;其水平线缆的总长度应当在100m范围以内,其中水平布线电缆的最佳长度为90m,电信间配线架上的跳线与接线软线长度应当不小于5m,对于情况不明确的公共空间其电缆应当按照以下公式进行计算:
C=(102-H)/ W=C-5
其中H表示水平电缆的长度;C表示设备电缆、工作区电缆与电信间跳线的长度总和;W表示工作区电缆的最大长度,其值应当在22m以下;D表示设备电缆与电信间跳线的总长度。
三、目前智能建筑存在的问题
(一)国产化系统集成产品
现在占据国内智能建筑市场的产品仍然属于国外的几家公司,如美国的江森自控、IBM、朗讯科技和Honeywell等。国产系统集成产品没有主动权,这就很难使智能建筑完全真正地适应中国国情。
(二)技术障碍
在整个智能建筑领域仍然存在着一些技术上的缺陷,比如网络频宽的限制:数据传输量迅速增加和多媒体的使用,要求有宽阔的通讯空间;使用天线局域网络也要重新分配宝贵的音波频律。在新网络科技如ATM、Frame-relay等问世后,通讯空间的问题可获部分解决,但缺乏全面而完整的数据模型,各个建筑物自动化和应用系统之间仍然无法有效地交换数据。另外数据安全性和无缝话音与数据通讯之间还存在着矛盾,很多机构非常关注其内部资讯系统的安全性,以及保护其电脑和话音系统免被非法接达的问题,但如果把某建筑物隔离起来提供保护的话,就会导致无法使用更先进的通讯工具。
(三)人才缺乏
从事智能建筑的人才包括设计专门管理人才、安防产品技术支持工程师、布线、安防产品开发高级工程师、销售工程师(负责安防、综合布线产品的区域市场销售工作)、防盗报警、监控产品、大屏幕开发高级工程师、软件开发工程师(主要负责楼宇自控系统软件开发),而最为紧缺的是智能建筑系统设计管理人才。它需要懂得电子、通讯和建筑三方面专业知识的复合型人才。就智能建筑项目来说,工程的设计和施工是两个方面。而既懂工程设计,又懂施工方案的人,却是少而又少。设计与施工如何衔接和连贯好,关系到工程的进度与质量。
智能建筑是高科技的产物,智能建筑学科是多学科的交叉和融汇,人才培养应该是多层次、多方位的,只有强调理论与实践紧密结合,设计与技术紧密结合,施工与产品紧密结合,才能培养出新一代的智能建筑人才。
四、结束语
智能建筑设计中的智能化系统是一项科技水平高施工难度大的高科技建筑,无论是对智能化系统的规划还是对其进行管理,都要进行优化控制,以达到智能建筑的最优化设计。智能化系统施工设计质量好坏将直接关系着智能建筑整体质量和使用寿命。因此,相关研究和设计人员应当加强智能化系统的综合分析与管理, 总结 智能化系统施工中的 经验 与问题,以不断提高智能化系统施工设计水平和质量。
参考文献:
[1] 翟伟盛,浅谈智能化系统管理及维护,消费导刊,2009年10期
[2] 金红峰,浅谈智能化系统管理及维护的一点心得,艺术科技,2007年03期
[3] 邵胜华,智能化建筑智能化安装工程管理探究[J] 理论研究,2010(7)
下一页分享更优秀的>>>人工智能的论文
人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读!
摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。论述了人工智能的定义,分析了目前在管理、教育、工程、技术、等领域的应用,总结了人工智能研究现状,分析了其发展方向。
关键词:人工智能;计算机科学;发展方向
中图分类号:TP18
文献标识码:A
文章编号:1672-8198(2009)13-0248-02
1人工智能的定义
人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
2人工智能的应用领域
人工智能在管理及教学系统中的应用
人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。
人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。
人工智能专家系统在工程领域的应用
人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。
人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。
人工智能在技术研究中的应用
人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。
人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。
3人工智能的发展方向
人工智能的发展现状
国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。
我国人工智能的研究现状。很长一段时间以来,机械
和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。
人工智能发展方向
在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。
基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。
人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。
4结语
由上述的讨论我们可以看到,目前人工智能的应用领域相当广泛。无论是学术界还是应用领域对人工智能都高度重视。人工智能良好的发展和应用前景,要求我们必须加大研究和投入力度,以使人工智能的发展能为人类服务。
下一页分享更优秀的<<<人工智能的毕业论文范文
人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读!
摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。论述了人工智能的定义,分析了目前在管理、教育、工程、技术、等领域的应用,总结了人工智能研究现状,分析了其发展方向。
关键词:人工智能;计算机科学;发展方向
中图分类号:TP18
文献标识码:A
文章编号:1672-8198(2009)13-0248-02
1人工智能的定义
人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
2人工智能的应用领域
人工智能在管理及教学系统中的应用
人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。
人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。
人工智能专家系统在工程领域的应用
人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。
人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。
人工智能在技术研究中的应用
人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。
人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。
3人工智能的发展方向
人工智能的发展现状
国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。
我国人工智能的研究现状。很长一段时间以来,机械
和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。
人工智能发展方向
在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。
基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。
人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。
4结语
由上述的讨论我们可以看到,目前人工智能的应用领域相当广泛。无论是学术界还是应用领域对人工智能都高度重视。人工智能良好的发展和应用前景,要求我们必须加大研究和投入力度,以使人工智能的发展能为人类服务。
下一页分享更优秀的<<<人工智能的毕业论文范文
互联网教育论文篇三:《“互联网+教育”变革路径研究进展》 摘 要:互联网技术重构了社会关系,它也将颠覆学校的基本结构;互联网会变革教育业务流程,从而打造新的教育生态;“互联网+”为重组学校教育提供了新的可能,“互联网+教育”就是教育的转基因工程等。本文梳理了2015“互联网+教育”开放论坛的主要观点并进行了简要分析,以期为相关研究提供一些基本素材。 关键词:“互联网+”;教育变革;智慧教育;教育大数据 一、引言 自从2015年3月在政府工作报告中提出“互联网+”行动计划之后,“互联网+”在各行各业中引发了一场革命,教育领域也不例外,关于“互联网+教育”的讨论持续升温。2015年7月《国务院关于积极推进“互联网+”行动的指导意见》颁布,进一步明确提出“鼓励学校逐步探索网络化教育新模式……鼓励学校通过与互联网企业合作等方式,对接线上线下教育资源,探索基础教育、职业教育等教育公共服务提供新方式……”。[1] 为了探讨“互联网+教育”的本质,寻求“互联网+教育”的变革路径,北京师范大学未来教育高精尖创新中心、教育信息化协同创新中心、“移动学习”―教育部―中国移动联合实验室、友成企业家扶贫基金会联合举办的“互联网+教育”变革路径之开放论坛在北京师范大学敬文讲堂召开。论坛以开放的形式邀请了18位专家围绕课程、教学、学习、管理、评价、环境、学校组织结构和教师专业发展等八大核心领域在“互联网+”背景下的变革和转型进行了专题学术报告,这些报告既有宏观的理论引领,也有中观的课程规划和 实施方案 ,还有微观的操作策略。本文将从五个方面对这次会议的主题进行综述。 二、“互联网+”促进教育的创新和变革 1.“互联网+”时代的教育创新 “互联网+教育”是什么?这是讨论“互联网+教育”是否可以推动教育创新和变革的前提。华南师范大学的柯清超教授首先对“互联网+”的概念进行了解读,然后分别从“互联网+教育”形态形成的可能性、“互联网+”能推动学校结构性变革和教育变革动力三个方面对“互联网+教育”的概念进行了分析。柯教授认为基于大数据平台、学习分析技术和智能传感技术促使了“互联网+”新一代教育环境从“干预手段”到“教学生态”的变革;同时课程教学也逐渐从封闭到开放融合,从“传统的封闭式”教学到“半开放式/连接式”教学的翻转课堂和社会化自组织的开放式MOOC课程教学进行变革。柯清超教授认为,“互联网+教育”实现了一系列的转变,包括从知识建构到核心素养培养的转变,从以教师为中心到以学生为中心的转变、从个体学习到小组建构的转变,从直接传授到自主发现的转变,从多媒体演示到探究工具的转变。他以“联合国 儿童 基金会爱生远程教育项目”、“远程协作学习项目”和“技术启迪智慧项目”等作为案例分析了应用ICT来创新农村学生学习方式的创新实践[2]。 互联网技术重构了社会关系,它也将颠覆学校的基本结构,我们应该将互联网的开放、共享、平等、自由等特征与教育教学的本质规律相结合,形成对学习者、课程、学校、教育政策、机制体制等相关因素的重新定位与思考。 2.“互联网+”推动教育变革 教育部科技发展中心__民主任认为技术进步是人类文明发展的根本动力,互联网推动人类文明迈上新台阶。“互联网+”促进了教育领域中五个方面的转变,即:教的工具、学的工具、评的工具、课的结构和课的形态的转变。__民主任分析了教育的本质与作用,指出MOOC是互联网与教育的融合,是经过多年摸索出来的一个模式。MOOC的出现是一个革命性的契机,MOOC的极大发展,将提高教学效率,降低教育成本,促进教育公平,使得原本无法上大学的群体可以无障碍地学习大学课程,真正实现受教育机会的公平。MOOC促使课程教学将从一名教师逐渐变成教学团队,弥补知识快速更新中的教师短缺问题,课程质量大大提升;MOOC加速了大学国际化进程[3]。 在这样的背景下,我们应该思考互联网对大学功能带来的影响,现代大学的功能将从人才培养、科学研究、社会服务、 文化 传承逐渐转变成为知识探索、知识验证、考试认证等功能为主的研究院、考试院,甚至未来向数字化、泛在化和全球化的虚拟大学转变。 3.互联网教育与学习革命 中国高等教育学会的钟秉林教授认为中国教育的发展呼唤基于互联网的教学,互联网技术为教育发展带来了重要机遇,同时互联网教学对传统教育也提出了严峻的挑战,钟秉林教授提出了基于互联网技术的教学模式不断完善的若干对策,如:加强“连结”与“互动”、完善学习监督和效果评价机制、探索和完善互联网教学的运行机制等。他还告诫学术界,教育的终极目标是培养全面发展的人、要避免炒作概念、片面夸大互联网教育的作用,倡导严谨求实的态度,跳出互联网教学发展的误区;提高在线开放课程质量,优化网络教学环境、实现线上与线下教学的结合。[4] 4.“互联网+”促进学校组织结构转型 北京师范大学的余胜泉教授认为“互联网+”为重组学校教育提供了新的基础设施、新的生产要素、新的社会空间、新的分工形态;“互联网+”解决了教育中的两个焦点悖论:即公平和质量问题。余教授认为未来学生和家长可以订制个性化的学习课程与活动,以反映儿童的个性、兴趣、家长的目标与价值观;未来学校的形态是自组织的,他以Minerva大学为例分析了这所借助互联网的力量把线下教学资源无限扩大并化身为虚拟大学的特征。未来,BYOD(Bring Your Own Devices,学生带着自己的移动设备来上学)将成为事实,因此学校要开始重新审议并制定网络开放政策,要建设网络上的校园文化,要建设网络上的学习空间,实现线上线下(OTO)融合的校园育人环境。[5] “互联网+教育”的变革,会重构学校教育的生态系统,主要包括内容供给的重构、智慧学习环境的重构、教与学方式的重构以及管理与评价的重构。当然,互联网不可能替代学校,但可以改变学校的基因,“互联网+教育”就是教育的转基因工程。 5.互联网时代的教学范式转型 首都师范大学的孙众副教授分析了互联网时代教师的“隐与现”、学生的“惰与乐”、技术的“强与笨”,从而提出了教学范式转型的解决方案,并基于互联网构建了互联网+教学的COME模型(Classroom learning+ Online learning+ Mobile learning+ E-learning)。孙众副教授基于互联网构建了满足个性化学习需求的COME校园混合课程,实现了师生之间的无缝交流;这种移动互联的课程和活动,满足了学生的个性发展,同时可以记录学生的学习痕迹,便于教师进行过程诊断;此外,还可以进行多维的精准分析,对学生的学习过程和行为进行预测和干预。通过基于COME模型的教学,采用实体课堂+在线+手机的学习方式,能够找到学生的“乐”学点,实现了新的在线交流方式。在评价中COME模型采用“任务+评价表、同伴互评+教师点评”的方式,使得过程性数据的存留和学习分析更加便捷,有助于教师对学生学习效果的干预、学业表现的预测以及在线学习行为的分析。[6] “互联网+教育”促成了教学结构和范式的转型,不仅创新了教学理念,而且建立起比较彻底的“以学生为中心”的教学方式。在这种模式下,学生真正成为学习的主体,教师则是学生学习的组织者、帮助者和指导者。 6.“互联网+”促进课程的转型 清华附中的李晟宇老师分享了基于互联网思维的通用技术课程的转型专题,李老师以清华大学的一个校级课题《基于互联网思维的通用技术教学体验项目探究》为案例,讲解了课程转型的过程和具 体操 作策略。该项目借助互联网,建立了MOOC教学资源,整合了学科思想方法,在教学中引入项目管理、 时间管理 、四象限、SWOT等先进的管理学理念,有效提升了项目教学的有效性;同时依托网络云技术搭建学生交流平台,实现了师生交互方式的互联网化;通过互联网云平台实现了教学资源的共享和微信公众订阅号上学习内容和新闻的推送,使学生的学习体验得到革新。[7]中国科学院上海高等研究院的李栋提出了基于科普、融合创客的创新教育课程,该创新课程的组织方式包括:在线离线互动、线上线下结合和开放型课程设计等三种方式。李栋认为,创新教育的核心价值在于“线上线下一体化平台、创新导师科技成果持续对接与跟踪指导、学生创新力评价与 职业规划 ”。[8]可见,“互联网+课程”让整个学校课程从组织结构到基本内容都发生了巨大变化。”互联网+课程”使得中小学各学科课程内容全面拓展与更新,适合中小学生的诸多前沿知识及时进入课堂,成为学生的精神套餐,课程内容艺术化、生活化也变成现实。 从以上六位专家和老师的视点可看出,“互联网+”促进教育的创新和变革是多样化的,不仅创新了教师的教学模式,丰富了教师教的方式,而且真切关注到学生的核心素养的形成,这正契合了国家新教育改革的方针政策。对于学校层面,“互联网+”带来的转变更是具体的,深入到学校组织管理、课堂教学、课程优化等各个方面,学校的围墙逐步被打破,学校、教师和学生变得越来越“泛在”,“互联网+”让教育更加无形、有趣、多样。未来将会有更多“互联网+”带来的教育创新和变革成果。 三、“互联网+”促进评价的变革 评价是任何一种教育形态和教学模式都不能忽视的问题,本次论坛共有3位专家的报告涉及“互联网+”背景下的教学评价问题,分别是华东师范大学副校长任友群教授、南京师范大学朱雪梅教授和北京市教委专职委员李奕博士。 1.伴随式评价――“互联网+教育”变革的先导 华东师范大学的任友群教授从“教育+互联网”和“互联网+教育”这两个概念的界定和辨析开始,抛出了伴随式评价是“互联网+教育”变革的先导的观点。 任友群教授认为,“教育+互联网”是从当下教育、教学的既定逻辑出发,以信息技术、互联网技术为手段,使得既定教育、教学逻辑运转得更加顺畅,在“教育+互联网”的格局中互联网或信息技术并没有成为再造或重塑性的力量;而“互联网+教育”则是深度应用“互联网思维”,将信息技术与教育教学深度融合,真正发挥教育信息化的“革命性力量”,再造、变革现有教育的既定逻辑。[9] 评价的变革包括评价内容的变革(从评价“可以测量的能力”扩展到评价“难以测量的能力”)和评价方式的变革(从传统的“纸笔评价”走向“数字评价”)。要支撑评价内容的拓展、评价方式的变革都需要“伴随式评价”,所谓“伴随式评价”有三大特征:第一,伴随生活全领域(只有伴随生活才有可能解决那些“难以测量能力”的“测不准”问题);第二,伴随学习全过程(只有伴随学习才能使评价真正应用于调整学生的学习行为);第三,伴随个体自适应。而要实现“伴随式评价”信息技术是不可或缺的。 2.“互联网+”时代教育评价的转型变革 南京师范大学的朱雪梅教授用实证方法开展了一项长达十年并且在2014年获得了国家级教学成果一等奖的研究――《“多元交互式”教学评价体系的建构与实践》。在该研究中,朱教授开发了专门的支撑评价工具,利用网络平台中可预设、可调节的各类专门化观察量表,利用移动终端在听课过程中采集“教”与“学”的表现性数据信息,通过后台计算与图形化处理后,为评估结论提供客观的量化证据,实现科学的课堂诊断,达到了矫正偏差教学行为的目的。该研究以信息技术推动课堂评价变革,用移动终端替代传统纸笔听课工具;将课堂观察表及行为标准嵌入平台中,克服传统评课缺乏标准的问题;课堂评估基于移动互联网,克服传统听评课受到时空限制的问题;进行数据分析与可视化呈现,克服传统评课无科学论据的问题;多元化评价主体交互协作,克服传统评课主体单一的问题;因此,朱雪梅教授在以上基础上提出了“互联网+数据思维+课堂观察=科学的课堂教学评价”的论断。 同时,朱雪梅教授还提出了“互联网+校本教研评估”的观点,通过校本教研平台的实践研究实现了“让教研评估迈进数字化时代”。该平台改革了当前校本教研工作只“研”不“评”的现状,突破了教育信息化“学习空间人人通”未通的瓶颈,探寻了教育评估手段从 经验 迈向“数字化”的路径,消除了常态化教研活动深受时间与空间束缚的困境,降低了评估主观性,提高了校本教研品质与管理效率,引导了智慧教研方式。因此,朱教授给出了这样的公式:互联网+数据思维+校本教研评估=学校可持续发展。[10] 3.深化基础教育考试评价与课程改革背景下的移动互联 来自北京市教委的李奕委员在分析了首都教育“深综改”的基本思路和策略以及考试评价改革和课程改革的突出特点后认为:充分尊重学生的个性化发展,让学生有更多的学习选择,学生不必为自己的弱项惶恐,每个学生都有好的一面以及优势的展示机会。李奕指出,广义教育供给下“移动互联”成为必须的选择:在供给方式上,在线教师服务、在线课程服务、在线诊断服务、跨部门、跨系统服务等这些移动互联的方式更为时尚也更加尊重学生的消费习惯和消费方式;在供给内容上,基于大数据分析后的课程资源供给,定向推送作业、教辅、服务索引,教师在线的智力支持服务,促进优质教育服务的迁移与流转,以新型资源观指导资源库建设,服务于学生的能力成长,供给“同伴”,构建在线学生自我诊断的“体检中心”和“化验室”,使质量监控服务于学生的成长,而不是管理监督;在供给节奏上,长短课结合,大小课结合,学段内快慢结合,长周期作业;在线自我诊断的频度依据学生认知个性、进度的供给;在线双师辅导的周期要合适等。[11] 从这三位专家报告可得出,评价的角度、评价的工具、评价的方式,一切围绕评价的关键词都变成了“互联网+”。伴随式评价实现了互联网与人的融合,评价标准与评价工具的互联网加法承载了数据思维,助力了科学教学评价的可持续发展。在无法改变考试作为学生终极考核的大背景下,“互联网+”的思路让评价更加有针对性,学校教育一样可以个性化,大众教育向个性化教育转变变得更加容易,这都是“互联网+”评价的重要表现,一旦“互联网+”迸发力量,必然像火山喷发一样散出无限能量。 四、教育大数据的管理与决策 来自江苏师范大学的杨现民博士和国家开放大学的魏顺平博士分别就大数据支持下的智慧教育管理和教育决策进行了分析。 1.大数据支持下的智慧教育管理 杨现民博士分析了教育大数据的特点,提出了“教育大数据是发展智慧教育的基石”的论断。杨博士利用教育大数据的冰山模型,分析了教育大数据的发力点,并对“信息化视角下的智慧教育管理”进行了科学的论述,认为“通过智慧管理云平台系统,对外界需求进行智能处理,为教育管理提供资源配置、数据集成、信息管理、运行状态监控、教育质量监测等业务支持,实现教育智能决策、可视化管控、安全预警、远程督导和个性服务,提升教育管理智慧化水平的过程。同时,杨博士还分析了国内外大数据助力智慧管理和科学决策的十多个案例,如清华大学、康涅狄格大学、深圳市教育资源科学动态规划、美国数据通用标准、美国ECLS项目等。杨博士认为如何构建立体化教育数据网络、教育大数据如何落地应用推广、如何保障教育数据质量与安全、如何合理合规运营教育大数据等问题是值得进一步探讨的问题。[12] 2.大数据支持下的教育决策 国家开放大学的魏顺平博士阐述了数据挖掘及其教育大数据对于支持教育决策的重要作用,指出是教育数据的决策支持应用是为了让淹没在众多信息系统中的海量数据能够“说话”,为教育领域中的相关人员提供与他们利益相关的数据统计与分析结果,从而帮助他们做出知情的决策。魏博士以国家开放大学的教学、管理和科研作为案例,分析了这三个领域中的大数据收集及其通过数据挖掘得到的有关信息,并最终服务于教育决策的过程,认为大数据和基于大数据的数据挖掘是作为审慎决策的依据,可以提高教育决策的科学化。[13] 无论是进行智慧教育管理还是开展教育决策,这都说明了当前时代是个“数据为王”的时代。在教育行业里,每天都在产生各种大数据,大数据分布在我们周围的每个角落,教育者如何将大数据转变为现实的生产力,去改变教育教学是当下的研究方向。“互联网+”有意义,大数据有帮助,教育呼唤“互联网+大数据”带来的质变。 五、“互联网+”改革教师培训和教师专业发展 教师培训和教师专业发展是教育改革中的主导因素,如果没有教师的理念转变和专业发展,再宏大的教育变革也只能是空话。 1.“互联网+”改革乡村教师培训 国务院参事汤敏就“如何用互联网+改革乡村教师培训?”进行了探讨,汤敏先生从对乡村教师培训存在的问题开始讲起,以“一乡村中学与人大附中同堂上课”和“田东上法初中双师教学课堂”为例,分析了基于互联网的“双师教学”的特点,并给出了建议。汤敏认为,应该把“双师教学”模式与国培、省培计划有机地结合起来;按照课程设置要求和各地课本版本安排,在全国、省区内分别都找出一批优秀教师,把他们的课全程录制下来;对参与录制课程的学校、有一定的激励;开展多层次、多学科和多方式的培训试点,充分利用互联网将录制的优质课堂传播出去,实现资源共享,达到乡村教师培训的目的。[14] 2.“互联网+”环境下的教师混合式学习 北京市西城区教育研修学院的陈颖老师分析了“互联网+”环境下的教师混合式学习,陈老师以西城区教师研修网为例,介绍了西城区教师研修网的基本情况、教师网上研修的几个基本要素(平台、资源、活动和组织管理),着重讲解了如何利用视频案例促进教师自我 反思 和同伴互助、如何利用视频案例促进群体学习和行为改进以及如何利用视频案例丰富网上学习资源等三个问题。[15]目前西城区教师已经实现了网络研修的常态化,陈老师认为“教师网上学习是如何进行知识建构的、大量的网上研讨数据能否作进一步提炼、影响教师深层学习的因素是什么、如何促进教师的深层学习”等这几个问题将是未来研究需要突破的问题。 中小学教师的专业素养决定了下一代人才的质量,汤敏参事和陈颖老师都对“互联网+”时代的教师专业发展给出了具体的做法。针对当前的中小学教师培训,既要考虑“双师教学”的人力做法,也要有“混合式学习”的技术做法,既要有“双师教学”的合作思维,又要有多元化学习、时时更新教师知识的观念;教师可能无法改变教学的物理环境,却可以借助“互联网+”延展自己的学习空间,从而实现更大程度的进步。因此,“互联网+”环境下教师的专业发展必须植入“互联网+”的基因,教师要具备互联网思维,掌握信息技术应用能力,提升信息技术教学技能。 六、“互联网+”促进同伴教育 深圳市南山区教育科学研究中心石义琦教研员认为,同伴教育是指建立有相互认同感的社会关系主体之间共同分享信息、知识和观念,相互传递思想、情感,以唤起感情上的共鸣,促进社会规范在个体身上内化、达到相互感染而奋发向上的一种教育方式。教育技术促进了同伴教育的开展。石老师以“南山教育综合服务大平台”和南山“课堂重构”模式作为案例,分析了互联网对同伴教育的支撑,认为网络提供了人性化的交流平台,为孩子们搭建展示的舞台与交流的空间。南山区在信息技术支持下构建了南山“六学”同伴教育课堂,即“教师导学、个体自学、同伴助学、互动展学、网络拓学和实践研学”,同时在同伴教育区域基本模式基础上,构建了各具校本特色的变式模式,比如:基于智能学习的平台的个性化学习模式、基于APP的游戏化学习与创客学习模式、基于MOOC的翻转学习模式等。[16] 随着QQ、微信等媒体技术的逐渐成熟,同伴教育变得越来越具有可行性,“互联网+”成就了教育服务;智慧教育平台的应用、教育APP的常态推广、MOOC翻转学习等都会成为学生的同伴,真正实现“互联网+以人为本”的教育方式。 七、结束语 综上观点不难发现,无论是互联网对于教育、课程、教学,还是学校的组织结构,都可以集中一个观点来概括,那就是“互联网+”对教育和教学带来了创新和变革,“互联网+教育”促进了教育形态、学校组织结构和教学范式的转变,也促进了课程、学习方式和学生核心素养培养的转变,但这种转变不是简单的物理变化,而是一种化学变化,化学的反应会改变物质的形态和性质,正像北京师范大学副校长陈光巨教授在论坛开幕式致辞中所说的:期待“互联网+教育”变成一个化学效应,减少负面效应。无论是任友群的“伴随式评价”还是朱雪梅的“多元交互式评价”,都离不开“互联网+”的逻辑支撑,但是“互联网+”并不仅仅是一种简单的用来支撑评价的工具,“互联网+评价”是对传统教育评价内容和形式的变革,这种变革是智慧的、是自适应的,是“化学变化”也是“生态变化”。 “互联网+”打破了权威对知识的垄断,让教育从封闭走向开放[17]。基于MOOC、SPOC模式的学习效果超于传统课堂,网络教育的奇点可能临近了,信息技术的变革教育的威力可能要爆发了。[18]但是“互联网+教育”作为一种新生事物,既有新的机遇,也要面对新的挑战。面对“互联网+教育”的机遇和挑战,我们也需要冷静应对,既不能坚守避战,也不能任由互联网“肆意妄为”,而是应该从教育变革的真正需求出发,抓住机遇,直面挑战。 这是一个跨界的时代,大数据、智慧教育等新的技术和概念层出不穷,“互联网+教育”的变革路径需要我们不断探索。 参考文献: [1]国务院.《国务院关于积极推进“互联网+”行动的指导意见国发〔2015〕40号》. [2]柯清超.互联网+时代的教育创新[R].开放论坛演讲报告,. [3]__民.信息技术发展与教育变革[R].开放论坛演讲报告,2015,12,20. [4]钟秉林.互联网教学与学习革命.开放论坛演讲报告,. [5]余胜泉.互联网时代的学校组织结构转型[R].开放论坛演讲报告,2015,12,20. [6]孙众.互联网时代的教学范式转型[R].开放论坛演讲报告,. [7]李晟宇.基于互联网思维的通用技术课程转型[R].开放论坛演讲报告,. [8]李栋.基于科普融合创客的创新教育[R].开放论坛演讲报告,. [9]任友群.伴随式评价:变革的先导[R].开放论坛演讲报告,. [10]朱雪梅.互联网+时代教育评价的转型变革[R].开放论坛演讲报告,. [11]李奕.深化基础教育考试评价与课程改革背景下的移动互联[R].开放论坛演讲报告,. [12]杨现民.大数据支持下的智慧教育管理[R].开放论坛演讲报告,. [13]魏顺平.基于大数据的教育决策支持案例分享(国家开放大学)[R].开放论坛演讲报告,. [14]汤敏.如何用互联网+改革乡村教师培训?[R].开放论坛演讲报告,. [15]陈颖.互联网+环境下的教师混合式学习[R].开放论坛演讲报告,. [16]石义琦.同伴教育:教育信息化新视角[R].开放论坛演讲报告,. [17]赵国庆.“互联网+教育”:机遇、挑战与应对[N].光明日报,. [18]王涛.互联网变革教育的实践路径[R].开放论坛演讲报告,. 猜你喜欢: 1. 浅谈互联网对教育的影响论文 2. 有关网络教育论文 3. 关于互联网的形势与政策论文 4. “互联网+”形势下网络教育的现状与发展趋势探讨论文
“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,对《人工智能》这门专业选修课程的 教学 方法 进行了探索和 总结 。以下是我整理分享的关于人工智能结课论文的相关 文章 ,欢迎阅读!
对《人工智能》专业选修课教学的几点体会
摘要:“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,提高《人工智能》专业选修课的教学效果,我们结合近几年的实际教学 经验 ,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对《人工智能》这门专业选修课程的教学方法进行了探索和总结。
关键词:人工智能 优选教材 考核方式内容 手段 实践
人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。
一、优选教材
目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。
二、考核方式
在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行 教育 体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。
三、教学内容调整
对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。
四、教学手段的改进
(一) 激发学生的学习兴趣
经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。
(二) 借助多媒体教学
多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能 足球 机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。 (三)提倡课堂 辩论
我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列 辩论会 。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。
五、实践教学
实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验 报告 。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。
人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。
参考文献
[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.
[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.
[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.
[4]赵海波.人工智能课程教学方法的探讨[J].科技信息,2011,(7):541.
[5]张廷,杨国胜.“人工智能”课程教学的实践与探索[J].课程与教学,2009(11):133-134.
本研究得到了江苏省2011年度研究生双语授课教学试点项目—“模式识别与智能系统”项目经费的资助。
下一页分享更优秀的<<<人工智能结课论文
人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。以下是我整理的人工智能的期末论文的相关资料,欢迎阅读!
摘要:人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。
关键词:人类智能,人工智能,认知,心理学
人工智能技术无论是在过去,现在还是将来,都作为科学研究的热点问题之一。人类对自己本身的秘密充满好奇,随着生物技术的飞速发展,人类不断破译人体的生命密码。而以生物科学为基础的人工智能技术也得到了长足的发展。人们希望通过某种技术或者某些途径能够创造出模拟人思维和行为的“替代品”,帮助人们从事某些领域的工作。为了让计算机能够从事一些只有人脑才能完成的工作,解脱人的繁重的脑力劳动,人类对自身的思维和智能不断地研究探索。但是,科学技术是一柄双刃剑,人们对人工智能技术的飞速发展存在着恐慌。如果机器真的具有了人类的智能,在未来的某一天,他们会不会取代人类而成为地球的主宰者?人类智能和人工智能,谁才是未来的传奇?
1.你在和谁说话?
“先进的人工智能机器人不但拥有可以乱真的人类外表,而且还能像人类一样感知自己的存在。”这是人工智能发展到高级阶段的目标和任务。那么,我们在不久的未来能否实现这样一个目标呢?人类真的能发明出足以乱真的智能人类吗?隔着一堵墙,我们是否能分辨出正在与我们对话的是一部机器还是人类?
. 人工智能的定义
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法心理学,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能发展的过程归纳为机器不断取代人的过程。
. 人工智能技术的发展
几个世纪以来,人类依靠智慧,发明了许多机器,使人类能够从许多体力劳动中解放出来。从1956年正式提出人工智能学科算起,40多年来取得长足的发展,成为一门广泛的交叉和前沿科学。科学家发明了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是这些不能模仿人类大脑的功能。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。1997年5月,IBM公司研制的深蓝(Deep Blue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。计算机的出现,使得人工智能有了突破性的进展。计算机不仅能代替人脑的某些功能,而且在速度和准确性上大大超过人脑,它不仅能模拟人脑部分分析和综合的功能,而且越来越显示某种意识的特性。真正成了人脑的延伸和增强。
. 人工智能的研究领域
人工智能是一种外向型的学科,也是一门多领域综合学科。它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。而人工智能的最根本目的是模拟人类的思维,因此,它的研究领域与人类活动息息相关。什么地方只要有人在工作,他就可以运用到那个领域。
现阶段主要研究领域有专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动程序设计心理学,机器人学,博弈,智能决定支持系统和人工神经网络等等。
2.机器真的可以思考吗?
机器真的可以思考吗?机器的思考归根结底还是模仿人类的思维模式,正是“思考”这一人类的本质属性,使得人工智能和心理学从最初就紧密地联系在一起。心理学研究人脑中信息的输入、输出、存储和加工,并研究人脑各个部位的功能。最早的双核计算机模仿人的左右脑,在人脑不同区域主管各个不同功能这一原理的基础上,来设计负责不同功能的芯片。以此为出发点,心理学家和计算机学者进一步合作,通过研究人解决问题的方法来研究开发人工智能。随着人工智能的发展,所要求实现的职能愈加复杂,但最基本的方式还是逻辑推理和归纳,这正是心理学家和逻辑学家的专业领域。心理学家以研究探讨人类逻辑思维方式为人工智能提供了基本原理和原则。
. 人类意识的本质
意识是世界的内在规定、一般规律和组成部分,是具有客观实在性同世界的其它组成部分处在对立统一关系中的事物。意识普遍存于世界和万物之中,世界是包含意识的世界,万物是包含意识的万物。没有意识存在于其中的世界不是我们现实生活中的世界,没有意识存在于其中的万物也不是我们天天眼见手触的万物。有了意识的存在,世界和万物就有了生机和活力。
. 意识是与物质相对应的哲学范畴,与物质既相对立又相统一的精神现象。
意识是自然界长期发展的产物,由无机物的反应特性,到低等生物的刺激感应性,再到动物的感觉和心理这一生物进化过程是意识得以产生的自然条件。意识是社会的产物,人类社会的物质生产劳动在意识的产生过程中起决定的作用。辩证唯物主义在强调物质对意识起决定作用的前提下肯定意识对于物质具有能动的反作用,在意识活动中人们从感性经验抽象出事物的本质、规律形成理性认识,又运用这些认识指导自己有计划、有目的地改造客观世界。
. 从意识的起源看,意识是物质世界发展到一定阶段的产物;从意识的本质来看,意识是客观存在在人脑中的反映。
意识是人脑对客观存在的反映:第一,正确的思想意识与错误的思想意识都是客观存在在人脑中的反映;第二,无论是人的具体感觉还是人的抽象思维,都是人脑对客观事物的反映;第三,无论是人们对现状的感受与认识,还是人们对过去的思考与总结,以至人们对未来的预测,都是人脑对客观事物的反映。 意识的能动作用首先表现在,意识不仅能够正确反映事物的外部现象,而且能够正确反映事物的本质和规律;意识的能动作用还突出表现在,意识能够反作用于客观事物,以正确的思想和理论为指导心理学,通过实践促进客观事物的发展。
. 人类意识与人工智能的关系
认知心理学和人工智能,是认知科学的两个组成部分。人工智能使用了心理学的理论,心理学又借用了人工智能的成果。人类意识与人工智能两者具有以下关系:
l人工智能是研究用机器模拟和扩展人的智能的科学。它撇开了人脑的内在结构和意识的社会性,而只是把人脑作为一种信息处理的过程,包括信息的接收、记忆、分析、控制和输出五部分。现代科学技术用相应的部件来完成着五个过程,就构成了人工智能或电脑。
l人工智能可以代替人的某些脑力劳动,甚至可以超过人的部分思维能力,随着现代科学技术的发展,它发挥着越来越重要的作用。人工智能的出现不仅解放了人的智力,而且为研究人脑的意识活动提供了新的方法和途径。它说明了人的意识活动不管多么复杂,都是以客观物质过程为基础的,而不是什么神秘的超物质的东西,人们完全可以用自然科学的精确方法来加以研究和模拟,它进一步证实了辩证唯物主义意识论的科学性。
l人工智能的产生和发展,深化了我们对意识相对独立性和能动性的认识。机器思维即人工智能表明,思维形式在思维活动中对于思维内容具有相对独立性,它可从人脑中分化出来,物化为机械的、物理的运动形式,部分地代替人的思维活动。
随着科学技术的发展,人工智能将向更高水平发展,反过来推动科学技术、生产力和人类智慧向更高水平发展,对人类社会进步将起着巨大的推动作用。
3. 人工智能的未来
人工智能是为了模拟人类大脑的活动而产生的科学,人类已经可以用许多新技术新材料模拟人体的许多功能,诸如皮肤,毛发,骨骼等等,也就是说,人类可以创造出“类人体”。只要能够模拟人的大脑的功能,人就可以完成人工生命的研究工作,人创造自己,这不但在科学上,而且在哲学上都具有划时代的意义。这就是人工智能承担的历史使命。
在科学技术日新月异的今天,知识爆炸,科技的增长超出了人类承受的速度。各种新科技的出现层出不穷,随之而来的成果简直让人瞠目结舌,克隆、基因芯片、转基因等等,人类自身的秘密开始一层一层的揭开。我们人脑的复杂结构,人体的基因链也逐渐被科学技术解剖。我们希望将来的人工智能机器能将我们从繁重的体力劳动和脑力劳动中解放出来心理学,例如机器人做家务,带孩子,做司机,秘书等等一系列我们不愿意花太多精力或者有太多限制条件的工作。然而,人类由于多种“性能”都不如机器人,反而退化成为机器人的奴隶?他们会不会有一天无法忍受人类对他们的“剥削”和“压迫”,挑战人类的统治?很多的科幻作品和电影中都预言了这样的场景,未来的智能机器人和人类争夺有限的地球资源,并最终打败人类,成为新的地球统治者。这也正是绝大多数心理学家和哲学家对人工智能的发展忧心忡忡的原因。
人工智能的发展,也只能无限接近于人的智能,而不能超越人的智能。因为人工智能技术的本质,是模拟人类的思维过程,是为人类服务的。我们在进行发明创造的同时,担心被我们所发明的物质所毁灭。正如人类发明了原子能,用于取代正在逐渐消逝的矿物能源,然而当原子能用于军事领域的时候,他产生的力量也足以毁灭人类文明。科技本身并不是问题,人类如何运用自己掌握的技术,才是问题的关键。我们最大的敌人不是我们发明的技术,而是我们自己本身。
【参考文献】
1.李建国人工智能与认知心理学[J]. 西南师范大学学报 1986年4月第二期 142-146页
2.郑南宁认知过程的信息处理和新型人工智能系统[J]. 中国基础科学.科学前沿2008年 9-18页
3.蔡自兴,徐光�人工智能及其应用(第三版)[M].北京.清华大学出版社 2004年
4.(美)Sternberg,.认知心理学[M] .北京.中国轻工业出版社 2006年
5.(美)Nils 人工智能[M].北京. 机械工业出版社 2004年
下一页分享更优秀的<<<人工智能的期末论文
Artificial Intelligence (AI) is the intelligence of machines and the branch of computer science which aims to create it. Textbooks define the field as "the study and design of intelligent agents,"[1] where an intelligent agent is a system that perceives its environment and takes actions which maximize its chances of success.[2] John McCarthy, who coined the term in 1956,[3] defines it as "the science and engineering of making intelligent machines."[4]The field was founded on the claim that a central property of human beings, intelligence—the sapience of Homo sapiens—can be so precisely described that it can be simulated by a machine.[5] This raises philosophical issues about the nature of the mind and limits of scientific hubris, issues which have been addressed by myth, fiction and philosophy since antiquity.[6] Artificial intelligence has been the subject of breathtaking optimism,[7] has suffered stunning setbacks[8] and, today, has become an essential part of the technology industry, providing the heavy lifting for many of the most difficult problems in computer science.[9]AI research is highly technical and specialized, deeply divided into subfields that often fail to communicate with each other.[10] Subfields have grown up around particular institutions, the work of individual researchers, the solution of specific problems, longstanding differences of opinion about how AI should be done and the application of widely differing tools. The central problems of AI include such traits as reasoning, knowledge, planning, learning, communication, perception and the ability to move and manipulate objects.[11] General intelligence (or "strong AI") is still a long-term goal of (some) research.[12]Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the golden robots of Hephaestus and Pygmalion's Galatea.[13] Human likenesses believed to have intelligence were built in every major civilization: animated statues were worshipped in Egypt and Greece[14] and humanoid automatons were built by Yan Shi,[15] Hero of Alexandria,[16] Al-Jazari[17] and Wolfgang von Kempelen.[18] It was also widely believed that artificial beings had been created by Jābir ibn Hayyān,[19] Judah Loew[20] and Paracelsus.[21] By the 19th and 20th centuries, artificial beings had become a common feature in fiction, as in Mary Shelley's Frankenstein or Karel Čapek's . (Rossum's Universal Robots).[22] Pamela McCorduck argues that all of these are examples of an ancient urge, as she describes it, "to forge the gods".[6] Stories of these creatures and their fates discuss many of the same hopes, fears and ethical concerns that are presented by artificial problem of simulating (or creating) intelligence has been broken down into a number of specific sub-problems. These consist of particular traits or capabilities that researchers would like an intelligent system to display. The traits described below have received the most attention.[11][edit] Deduction, reasoning, problem solvingEarly AI researchers developed algorithms that imitated the step-by-step reasoning that human beings use when they solve puzzles, play board games or make logical deductions.[39] By the late 80s and 90s, AI research had also developed highly successful methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.[40]For difficult problems, most of these algorithms can require enormous computational resources — most experience a "combinatorial explosion": the amount of memory or computer time required becomes astronomical when the problem goes beyond a certain size. The search for more efficient problem solving algorithms is a high priority for AI research.[41]Human beings solve most of their problems using fast, intuitive judgments rather than the conscious, step-by-step deduction that early AI research was able to model.[42] AI has made some progress at imitating this kind of "sub-symbolic" problem solving: embodied approaches emphasize the importance of sensorimotor skills to higher reasoning; neural net research attempts to simulate the structures inside human and animal brains that gives rise to this intelligenceMain articles: Strong AI and AI-completeMost researchers hope that their work will eventually be incorporated into a machine with general intelligence (known as strong AI), combining all the skills above and exceeding human abilities at most or all of them.[12] A few believe that anthropomorphic features like artificial consciousness or an artificial brain may be required for such a project.[74]Many of the problems above are considered AI-complete: to solve one problem, you must solve them all. For example, even a straightforward, specific task like machine translation requires that the machine follow the author's argument (reason), know what is being talked about (knowledge), and faithfully reproduce the author's intention (social intelligence). Machine translation, therefore, is believed to be AI-complete: it may require strong AI to be done as well as humans can do it.[75][edit] ApproachesThere is no established unifying theory or paradigm that guides AI research. Researchers disagree about many issues.[76] A few of the most long standing questions that have remained unanswered are these: should artificial intelligence simulate natural intelligence, by studying psychology or neurology? Or is human biology as irrelevant to AI research as bird biology is to aeronautical engineering?[77] Can intelligent behavior be described using simple, elegant principles (such as logic or optimization)? Or does it necessarily require solving a large number of completely unrelated problems?[78] Can intelligence be reproduced using high-level symbols, similar to words and ideas? Or does it require "sub-symbolic" processing?[79][edit] Cybernetics and brain simulationMain articles: Cybernetics and Computational neuroscience There is no consensus on how closely the brain should be the 1940s and 1950s, a number of researchers explored the connection between neurology, information theory, and cybernetics. Some of them built machines that used electronic networks to exhibit rudimentary intelligence, such as W. Grey Walter's turtles and the Johns Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society at Princeton University and the Ratio Club in England.[24] By 1960, this approach was largely abandoned, although elements of it would be revived in the can one determine if an agent is intelligent? In 1950, Alan Turing proposed a general procedure to test the intelligence of an agent now known as the Turing test. This procedure allows almost all the major problems of artificial intelligence to be tested. However, it is a very difficult challenge and at present all agents intelligence can also be evaluated on specific problems such as small problems in chemistry, hand-writing recognition and game-playing. Such tests have been termed subject matter expert Turing tests. Smaller problems provide more achievable goals and there are an ever-increasing number of positive broad classes of outcome for an AI test are:Optimal: it is not possible to perform better Strong super-human: performs better than all humans Super-human: performs better than most humans Sub-human: performs worse than most humans For example, performance at draughts is optimal,[143] performance at chess is super-human and nearing strong super-human,[144] and performance at many everyday tasks performed by humans is quite different approach is based on measuring machine intelligence through tests which are developed from mathematical definitions of intelligence. Examples of this kind of tests start in the late nineties devising intelligence tests using notions from Kolmogorov Complexity and compression [145] [146]. Similar definitions of machine intelligence have been put forward by Marcus Hutter in his book Universal Artificial Intelligence (Springer 2005), which was further developed by Legg and Hutter [147]. Mathematical definitions have, as one advantage, that they could be applied to nonhuman intelligences and in the absence of human is a common topic in both science fiction and in projections about the future of technology and society. The existence of an artificial intelligence that rivals human intelligence raises difficult ethical issues and the potential power of the technology inspires both hopes and Shelley's Frankenstein,[160] considers a key issue in the ethics of artificial intelligence: if a machine can be created that has intelligence, could it also feel? If it can feel, does it have the same rights as a human being? The idea also appears in modern science fiction: the film Artificial Intelligence: . considers a machine in the form of a small boy which has been given the ability to feel human emotions, including, tragically, the capacity to suffer. This issue, now known as "robot rights", is currently being considered by, for example, California's Institute for the Future,[161] although many critics believe that the discussion is premature.[162]Another issue explored by both science fiction writers and futurists is the impact of artificial intelligence on society. In fiction, AI has appeared as a servant (R2D2 in Star Wars), a law enforcer (. "Knight Rider"), a comrade (Lt. Commander Data in Star Trek), a conqueror (The Matrix), a dictator (With Folded Hands), an exterminator (Terminator, Battlestar Galactica), an extension to human abilities (Ghost in the Shell) and the saviour of the human race (R. Daneel Olivaw in the Foundation Series). Academic sources have considered such consequences as: a decreased demand for human labor,[163] the enhancement of human ability or experience,[164] and a need for redefinition of human identity and basic values.[165]Several futurists argue that artificial intelligence will transcend the limits of progress and fundamentally transform humanity. Ray Kurzweil has used Moore's law (which describes the relentless exponential improvement in digital technology with uncanny accuracy) to calculate that desktop computers will have the same processing power as human brains by the year 2029, and that by 2045 artificial intelligence will reach a point where it is able to improve itself at a rate that far exceeds anything conceivable in the past, a scenario that science fiction writer Vernor Vinge named the "technological singularity".[164] Edward Fredkin argues that "artificial intelligence is the next stage in evolution,"[166] an idea first proposed by Samuel Butler's "Darwin among the Machines" (1863), and expanded upon by George Dyson in his book of the same name in 1998. Several futurists and science fiction writers have predicted that human beings and machines will merge in the future into cyborgs that are more capable and powerful than either. This idea, called transhumanism, which has roots in Aldous Huxley and Robert Ettinger, is now associated with robot designer Hans Moravec, cyberneticist Kevin Warwick and inventor Ray Kurzweil.[164] Transhumanism has been illustrated in fiction as well, for example in the manga Ghost in the Shell and the science fiction series Dune. Pamela McCorduck writes that these scenarios are expressions of the ancient human desire to, as she calls it, "forge the gods."[6]