首页 > 期刊论文知识库 > 高等代数毕业论文简单的题目

高等代数毕业论文简单的题目

发布时间:

高等代数毕业论文简单的题目

同是天涯沦落人纳。。。数学到后期真蛋疼。。。我表示我准备写多项式代数中的复解析解在微分方程中的应用。。。具体什么简单。。。不好说,要写出一篇有灵魂的论文是有压力的。。。

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!

最全组合数学论文题目

1、并行组合数学模型方式研究及初步应用

2、数学规划在非系统风险投资组合中的应用

3、金融经济学中的组合数学问题

4、竞赛数学中的组合恒等式

5、概率 方法 在组合数学中的应用

6、组合数学中的代数方法

7、组合电器局部放电超高频信号数学模型构建和模式识别研究

8、概率方法在组合数学中的某些应用

9、组合投资数学模型发展的研究

10、高炉炉温组合预报和十字测温数学建模

11、证券组合的风险度量及其数学模型

12、组合数学中的Hopf方法

13、PAR方法在组合数学问题中的应用研究

14、概率方法在组合数学及混合超图染色理论中的应用

15、一些算子在组合数学中的应用

16、陀螺/磁强计组合定姿方法的相关数学问题研究

17、高中数学人教版新旧教材排列组合内容的比较研究

18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究

19、基于数学形态学-小波分析组合算法的牵引网故障判定方法

20、证券组合投资的灰色优化数学模型的研究

21、一些算子在组合数学中的应用

22、概率方法在组合数学中的应用

23、组合数学中的Hopf方法

24、概率方法在组合数学中的某些应用

25、概率方法在组合数学及混合超图染色理论中的应用

26、竞赛数学中的组合恒等式

27、Stern-Lov醩z定理及在组合结构中的应用

28、几类特殊图形的渐近估计及数值解

29、Fine格路和有禁错排

30、基于DFL的Agent自主学习模型及其应用研究

31、基于DFL的多Agent自动推理平台设计

32、预应力混凝土斜拉桥施工监控概率方法研究

33、最大概率方法与最近邻准则下的图像标注

34、亚式期权定价的偏微分方程方法和概率方法

35、编目空间碎片的碰撞概率方法研究及应用

36、基于概率方法的机器人定位

37、民用建筑内部给水设计秒流量的概率方法研究

38、图论中的组合方法和概率方法

39、物理概率方法预估贮存寿命研究

40、静载下结构参数识别的误差分析和概率方法

41、概率方法在组合计数证明中的应用

42、基于非概率方法的结构全寿命总费用评估

43、概率方法在组合数学中的应用

44、概率方法与邻点可区别全染色的色数上界

45、既有钢筋混凝土结构耐久性评定的概率方法

46、概率方法在多任务EEG脑机接口中的应用研究

47、应用概率方法对居住小区给水设计秒流量的推求

48、概率方法与图的染色问题

49、概率方法对居住小区设计秒流量的推求

50、概率方法在组合数学中的某些应用

51、概率方法在组合恒等式证明中的应用

52、遗传算法的研究与应用

53、基于空间算子代数理论的链式多体系统递推动力学研究

54、关于Weidmann猜想及具有转移条件微分算子的研究

55、实数编码遗传算法杂交算子组合研究

56、基于OWA算子理论的混合型多属性群决策研究

57、序列算子与灰色预测模型研究

58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究

59、高精度径向基函数拟插值算子的构造及其应用

60、多线性算子加权Hardy算子与次线性算子的相关研究

数学建模论文题目

1、高中数学核心素养之数学建模能力培养的研究

2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例

3、培养低年段学生数学建模意识的微课教学

4、信息化背景下数学建模教学策略研究

5、数学建模思想融入解析几何的实际应用探讨

6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例

7、基于高等数学建模思维的经济学应用

8、以数学建模促进应用型本科院校数学专业的发展

9、高等代数在数学建模中的应用探讨

10、融入数学建模思想的线性代数案例教学研究

11、以“勾股定理的应用”为例谈初中数学的建模教学

12、经管概率统计中的数学建模思想研究——评《经管与 财税 基础》

13、数学建模实例——河西学院校内充电站最佳选址问题

14、基于数学建模探讨高职数学的改革途径

15、大数据时代大学生数学建模应用能力的提升研究

16、“数学写作之初见建模”教学设计及思考

17、大学数学教学过程中数学建模意识与方法的培养简析

18、基于建模思想的高等数学应用研究

19、小学数学建模教学实践

20、依托对口支援平台培养大学生的数学建模能力

21、跨界研究在数学建模教与学中的应用

22、基于结构参数的机织物等效导热率数学建模

23、数学建模对大学生综合素质影响的调查研究

24、计算机数学建模中改进遗传算法与最小二乘法应用

25、数学建模在高中数学课堂的教学策略分析

26、发动机特性数字化处理与数学建模

27、数学建模中的数据处理——以大型百货商场会员画像描绘为例

28、数学建模竞赛对医学生 学习态度 和自学能力的影响

29、数学建模思想与高等数学教学的融会贯通

30、试论数学建模思想在小学数学教学中的应用

31、浅析飞机地面空调车风量测控系统数学建模及工程实施

32、高中数学教学中数学建模能力的培养——基于核心素养的视角

33、注重数学建模 提炼解题思路——对中考最值问题的探究

34、在数学建模教学中培养思维的洞察力

35、刍议数学建模思想如何渗透于大学数学教学中

36、数学建模竞赛背景下对高校数学教学的思考

37、数学建模课程对高职学生创新能力的培养探究

38、高等数学教学中数学建模思想方法探究

39、初中数学教学中数学建模思想的渗透

40、无线激光通信网络海量信息快速调度数学建模

41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析

42、中学数学建模教学行为探究

43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究

44、基于数学建模活动的高校数学教学改革

45、数学建模与应用数学的结合研究

46、谈初中数学建模能力的培养

47、数学建模在初中数学应用题解答中的运用

48、基于数学建模思想的高等数学 教学方法 研究

49、数学建模融入高等数学翻转课堂模式研究

50、数学软件融入数学建模课程教学的探讨

最新小学数学教学论文题目

小学数学教材问题探析

小学数学生活化教学研究

小学数学___教学方法有效性分析

小学数学多媒体课件设计研究

小学生数学思维培养探究

小学数学中创新意识的培养

数学作业批改中巧用评语

新课标下小学数学教学改革研究

数学游戏在小学数学教学中的应用

《9和几的进位加法》教学设计

小学数学教学中素质 教育 研究

小学数学学困生的转化策略

小学数学教学中的情感教育

《六的乘法口诀》教学 反思

浅谈数学课堂中学生问题意识的培养

问答式学习课堂教学怎样转向小组合作学习

浅谈农村课堂的有效交流

浅谈在实践活动中提高学生解决实际问题的能力

浅谈小学应用题教学

浅谈学生合作意识的培养

“层次性体验”在数学课堂中的应用

数学课堂教学中学生探索能力的培养

小学数学低段学生阅读能力培养点滴

“观察、 品味、 顿悟” 我谈小学数学空间与图形教学

浅谈小学数学课堂教学中的“留白”

润物细无声--小班化数学作业面批有效策略的尝试

“我的妈妈体重 50 千克” 对培养良好数感的思考

“圆的面积” 教学一得

利用图解法解决逆推题

我教《24 时计时法》

《解简易方程》 教学反思

“可能性” 的反思

折线统计图折射出的“光芒”

《平均数》 教学反思

数学课堂上的“失误“也是一种资源

幽默语言在教学中的应用

“圆的认识” 教学片断与反思

计算机多媒体与小学数学教学的整

充分发挥学生的主体作用

“圆柱的体积” 教学反思

“平行四边形的面积” 听课反思

听“逆向求和应用题” 有感

小学低年级教学策略的实践与反思

“相遇问题” 建立“数学模型”

如何提高课堂语言评价的有效性

“20 以内退位减法” 教学反思

关于数学方向的优秀论文题目相关 文章 :

★ 关于数学专业毕业论文题

★ 数学方面毕业论文题目参考大全

★ 关于数学专业毕业论文题目参考

★ 数学的优秀论文

★ 数学优秀论文范文

★ 数学学术论文的题目

★ 数学教育论文题目

★ 数学教育方向的论文范文

★ 数学教育方向相关论文(2)

可以写类似关于【解决实际问题的数学模型的建立】方面的你们应该修了数学建模了吧再或者如果编程强力的话可以做做算法相关的计算方法你们应该也修过吧

同一专业呐!你那边有题目吗?我也正头痛呢?

高等代数论文的题目

1、高等代数与解析几何课程整合的思考2、线性代数教材内容与体系结构改革的思考与实践3、关于空间解析几何中“矢量积”教学的探讨4、解析几何最值问题探究5、解析几何的建立和意义

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!

最全组合数学论文题目

1、并行组合数学模型方式研究及初步应用

2、数学规划在非系统风险投资组合中的应用

3、金融经济学中的组合数学问题

4、竞赛数学中的组合恒等式

5、概率 方法 在组合数学中的应用

6、组合数学中的代数方法

7、组合电器局部放电超高频信号数学模型构建和模式识别研究

8、概率方法在组合数学中的某些应用

9、组合投资数学模型发展的研究

10、高炉炉温组合预报和十字测温数学建模

11、证券组合的风险度量及其数学模型

12、组合数学中的Hopf方法

13、PAR方法在组合数学问题中的应用研究

14、概率方法在组合数学及混合超图染色理论中的应用

15、一些算子在组合数学中的应用

16、陀螺/磁强计组合定姿方法的相关数学问题研究

17、高中数学人教版新旧教材排列组合内容的比较研究

18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究

19、基于数学形态学-小波分析组合算法的牵引网故障判定方法

20、证券组合投资的灰色优化数学模型的研究

21、一些算子在组合数学中的应用

22、概率方法在组合数学中的应用

23、组合数学中的Hopf方法

24、概率方法在组合数学中的某些应用

25、概率方法在组合数学及混合超图染色理论中的应用

26、竞赛数学中的组合恒等式

27、Stern-Lov醩z定理及在组合结构中的应用

28、几类特殊图形的渐近估计及数值解

29、Fine格路和有禁错排

30、基于DFL的Agent自主学习模型及其应用研究

31、基于DFL的多Agent自动推理平台设计

32、预应力混凝土斜拉桥施工监控概率方法研究

33、最大概率方法与最近邻准则下的图像标注

34、亚式期权定价的偏微分方程方法和概率方法

35、编目空间碎片的碰撞概率方法研究及应用

36、基于概率方法的机器人定位

37、民用建筑内部给水设计秒流量的概率方法研究

38、图论中的组合方法和概率方法

39、物理概率方法预估贮存寿命研究

40、静载下结构参数识别的误差分析和概率方法

41、概率方法在组合计数证明中的应用

42、基于非概率方法的结构全寿命总费用评估

43、概率方法在组合数学中的应用

44、概率方法与邻点可区别全染色的色数上界

45、既有钢筋混凝土结构耐久性评定的概率方法

46、概率方法在多任务EEG脑机接口中的应用研究

47、应用概率方法对居住小区给水设计秒流量的推求

48、概率方法与图的染色问题

49、概率方法对居住小区设计秒流量的推求

50、概率方法在组合数学中的某些应用

51、概率方法在组合恒等式证明中的应用

52、遗传算法的研究与应用

53、基于空间算子代数理论的链式多体系统递推动力学研究

54、关于Weidmann猜想及具有转移条件微分算子的研究

55、实数编码遗传算法杂交算子组合研究

56、基于OWA算子理论的混合型多属性群决策研究

57、序列算子与灰色预测模型研究

58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究

59、高精度径向基函数拟插值算子的构造及其应用

60、多线性算子加权Hardy算子与次线性算子的相关研究

数学建模论文题目

1、高中数学核心素养之数学建模能力培养的研究

2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例

3、培养低年段学生数学建模意识的微课教学

4、信息化背景下数学建模教学策略研究

5、数学建模思想融入解析几何的实际应用探讨

6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例

7、基于高等数学建模思维的经济学应用

8、以数学建模促进应用型本科院校数学专业的发展

9、高等代数在数学建模中的应用探讨

10、融入数学建模思想的线性代数案例教学研究

11、以“勾股定理的应用”为例谈初中数学的建模教学

12、经管概率统计中的数学建模思想研究——评《经管与 财税 基础》

13、数学建模实例——河西学院校内充电站最佳选址问题

14、基于数学建模探讨高职数学的改革途径

15、大数据时代大学生数学建模应用能力的提升研究

16、“数学写作之初见建模”教学设计及思考

17、大学数学教学过程中数学建模意识与方法的培养简析

18、基于建模思想的高等数学应用研究

19、小学数学建模教学实践

20、依托对口支援平台培养大学生的数学建模能力

21、跨界研究在数学建模教与学中的应用

22、基于结构参数的机织物等效导热率数学建模

23、数学建模对大学生综合素质影响的调查研究

24、计算机数学建模中改进遗传算法与最小二乘法应用

25、数学建模在高中数学课堂的教学策略分析

26、发动机特性数字化处理与数学建模

27、数学建模中的数据处理——以大型百货商场会员画像描绘为例

28、数学建模竞赛对医学生 学习态度 和自学能力的影响

29、数学建模思想与高等数学教学的融会贯通

30、试论数学建模思想在小学数学教学中的应用

31、浅析飞机地面空调车风量测控系统数学建模及工程实施

32、高中数学教学中数学建模能力的培养——基于核心素养的视角

33、注重数学建模 提炼解题思路——对中考最值问题的探究

34、在数学建模教学中培养思维的洞察力

35、刍议数学建模思想如何渗透于大学数学教学中

36、数学建模竞赛背景下对高校数学教学的思考

37、数学建模课程对高职学生创新能力的培养探究

38、高等数学教学中数学建模思想方法探究

39、初中数学教学中数学建模思想的渗透

40、无线激光通信网络海量信息快速调度数学建模

41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析

42、中学数学建模教学行为探究

43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究

44、基于数学建模活动的高校数学教学改革

45、数学建模与应用数学的结合研究

46、谈初中数学建模能力的培养

47、数学建模在初中数学应用题解答中的运用

48、基于数学建模思想的高等数学 教学方法 研究

49、数学建模融入高等数学翻转课堂模式研究

50、数学软件融入数学建模课程教学的探讨

最新小学数学教学论文题目

小学数学教材问题探析

小学数学生活化教学研究

小学数学___教学方法有效性分析

小学数学多媒体课件设计研究

小学生数学思维培养探究

小学数学中创新意识的培养

数学作业批改中巧用评语

新课标下小学数学教学改革研究

数学游戏在小学数学教学中的应用

《9和几的进位加法》教学设计

小学数学教学中素质 教育 研究

小学数学学困生的转化策略

小学数学教学中的情感教育

《六的乘法口诀》教学 反思

浅谈数学课堂中学生问题意识的培养

问答式学习课堂教学怎样转向小组合作学习

浅谈农村课堂的有效交流

浅谈在实践活动中提高学生解决实际问题的能力

浅谈小学应用题教学

浅谈学生合作意识的培养

“层次性体验”在数学课堂中的应用

数学课堂教学中学生探索能力的培养

小学数学低段学生阅读能力培养点滴

“观察、 品味、 顿悟” 我谈小学数学空间与图形教学

浅谈小学数学课堂教学中的“留白”

润物细无声--小班化数学作业面批有效策略的尝试

“我的妈妈体重 50 千克” 对培养良好数感的思考

“圆的面积” 教学一得

利用图解法解决逆推题

我教《24 时计时法》

《解简易方程》 教学反思

“可能性” 的反思

折线统计图折射出的“光芒”

《平均数》 教学反思

数学课堂上的“失误“也是一种资源

幽默语言在教学中的应用

“圆的认识” 教学片断与反思

计算机多媒体与小学数学教学的整

充分发挥学生的主体作用

“圆柱的体积” 教学反思

“平行四边形的面积” 听课反思

听“逆向求和应用题” 有感

小学低年级教学策略的实践与反思

“相遇问题” 建立“数学模型”

如何提高课堂语言评价的有效性

“20 以内退位减法” 教学反思

关于数学方向的优秀论文题目相关 文章 :

★ 关于数学专业毕业论文题目

★ 数学方面毕业论文题目参考大全

★ 关于数学专业毕业论文题目参考

★ 数学的优秀论文

★ 数学优秀论文范文

★ 数学学术论文的题目

★ 数学教育论文题目

★ 数学教育方向的论文范文

★ 数学教育方向相关论文(2)

数学教学是让学生了解自己的知识、能力水平,弥补缺陷,纠正错误,完善知识系统和思维系统,提高分析和解决问题的能力的过程。下面我给大家带来2021各阶段数学教学论文题目参考,希望能帮助到大家!

中职数学教学论文题目

1、线性方程的叠加原理及其应用

2、作为函数的含参积分的分析性质研究

3、周期函数初等复合的周期性研究

4、“高等代数”知识在几何中的应用

5、矩阵初等变换的应用

6、“高等代数”中的思想 方法

7、中职数学教学中的数学思想和方法

8、任N个自然数的N级排列的逆序数

9、“高等代数”中多项式的值,根概念及性质的推广

10、线性变换“可对角化”的条件及“对角化”方法

11、数域概念的等价说法及其应用

12、中职数学教学与能力培养

13、数学能力培养的重要性及途径

14、论数学中的基本定理与基本方法

15、论电脑、人脑与数学

16、论数学中的收敛与发散

17、论小概率事件的发生

18、论高等数学与初等数学教学的关系

19、论数学教学中公式的教学

20、数学教学中学生应用能力的培养

21、数学教与学的心理探究

22、论数学思想方法的教与学

23、论数学家与数学

24、对称思想在解题中的应用

25、复数在中学数学中应用

26、复变函数论思想方法在中学数学教学中的应用

27、复变函数论思想方法在中学数学竞赛中的应用

28、代数学基本定理的几种证明

29、复变函数的洛必达法则

30、复函数与实函数的级数理论综述

31、微积分学与哲学

32、实数完备性理论综述

33、微积分学中辅助函数的构造

34、闭区间上连续函数性质的推广

35、培养学生的数学创新能力

36、教师对学生互动性学习的影响

37、学生数学应用意识的培养

38、数学解题中的 逆向思维 的应用

39、数学直觉思维的培养

40、数学教学中对学生心理素质的培养

41、用心理学理论指导数学教学

42、开展数学活动课的理论和实践探索

43、《数学课程标准》解读

44、数学思想在数学教学中的应用,学生思维品质的培养

45、数形结合思想在中学数学中的应用

46、运用化归思想,探索解题途径

47、谈谈构造法解题

48、高等数学在中学数学中的应用

49、解决问题的策略思想--等价与非等价转化

50、挖掘题中的隐含条件解题

51、向量在几何证题中的运用

52、数学概念教学初探

53、数学 教育 中的问题解决及其教学途径

54、分类思想在数学教学中的作用

55、“联想”在数学中的作用研究

56、利用习题变换,培养学生的思维能力

57、中学数学学习中“学习困难生”研究

58、数学概念教学研究

59、反例在数学教学中的作用研究

60、中学生数学问题解决能力培养研究

61、数学教育评价研究

62、传统中学数学教学模式革新研究

63、数学研究性学习设计

64、数学开放题拟以及教学

65、数学课堂 文化 建设研究

66、中职数学教学设计及典型课例分析

67、数学课程标准的新增内容的尝试教学研究

68、数学课堂教学安全采集与研究

69、中职数学选修课教学的实话及效果分析

70、常微分方程与初等数学

71、由递推式求数列的通项及和向量代数在中学中的应用

72、浅谈划归思想在数学中的应用

73、初等函数的极值

74、行列式的计算方法

75、数学竟赛中的不等式问题

76、直觉思维在中学数学中的应用

77、常微分方程各种解的定义,关系及判定方法

78、高等数学在中学数学中的应用

79、常微分方程的发展及应用

80、充分挖掘例题的数学价值和 智力开发 功能

小学数学教学论文题目参考

1、小学数学教师几何知识掌握状况的调查研究

2、小学数学教师教材知识发展情况研究

3、中日小学数学“数与代数”领域比较研究

4、浙江省Y县县域内小学数学教学质量差异研究

5、小学数学教师教科书解读的影响因素及调控策略研究

6、中国、新加坡小学数学新课程的比较研究

7、小学数学探究式教学的实践研究

8、基于教育游戏的小学数学教学设计研究

9、小学数学教学中创设有效问题情境的策略研究

10、小学数学生活化教学的研究

11、数字 故事 在小学数学课堂教学中的应用研究

12、小学数学教师专业发展研究

13、中美小学数学“统计与概率”内容比较研究

14、数学文化在小学数学教学中的价值及其课程论分析

15、小学数学教师培训内容有效性的研究

16、小学数学课堂师生对话的特征分析

17、小学数学优质课堂的特征分析

18、小学数学解决问题方法多样化的研究

19、我国小学数学新教材中例题编写特点研究

20、小学数学问题解决能力培养的研究

21、渗透数学思想方法 提高学生思维素质

22、引导学生参与教学过程 发挥学生的主体作用

23、优化数学课堂练习设计的探索与实践

24、实施“开放性”教学促进学生主体参与

25、数学练习要有趣味性和开放性

26、开发生活资源,体现数学价值

27、对构建简洁数学课堂的几点认识和做法

28、刍议“怎样简便就怎样算”中的“二指技能”现象

29、立足现实起点,提高课堂效率

30、宁缺毋滥--也谈课堂教学中有效情境的创设

31、如何让“生活味”的数学课堂多一点“数学味”

32、有效教学,让数学课堂更精彩

33、提高数学课堂教学效率之我见

34、为学生营造一片探究学习的天地

35、和谐课堂,让预设与生成共精彩

36、走近学生,恰当提问--谈数学课堂提问语的优化策略

37、谈小学数学课堂教学中教师对学生的评价

38、课堂有效提问的初步探究

39、浅谈小学数学研究性学习的途径

40、能说会道,为严谨课堂添彩

41、小学数学教学中的情感教育

42、小学数学学困生的转化策略

43、新课标下提高日常数学课堂效率的探索

44、让学生参与课堂教学

45、浅谈新课程理念下如何优化数学课堂教学

46、数学与生活的和谐之美

47、运用结构观点分析教学小学应用题

48、构建自主探究课堂,促进学生有效发展

49、精心设计课堂结尾巩固提高教学效果

50、浅谈数学课堂提问艺术

51、浅谈发式教学在小学数学教学中的运用

52、浅谈数学课堂中学生问题意识的培养

53、巧用信息技术,优化数学课堂教学

54、新课改下小学复式教学有感

55、让“对话”在数学课堂中焕发生命的精彩

56、小学几何教学的几点做法

初中数学教学论文题目

1、翻转课堂教学模式在初中数学教学中的应用研究

2、数形结合思想在初中数学教学中的实践研究

3、基于翻转课堂教学模式的初中数学教学设计研究

4、初中数学新教材知识结构研究

5、初中数学中的研究性学习案例开发实施研究

6、学案导学教学模式在初中数学教学中的实践与研究

7、从两种初中数学教材的比较看初中数学课程改革

8、信息技术与初中数学教学整合问题研究

9、初中数学学习困难学生学业情绪及其影响因素研究

10、初中数学习题教学研究

11、初中数学教材分析方法的研究

12、初中数学教师课堂教学目标设计的调查研究

13、初中数学学习障碍学生一元一次方程应用题解题过程及补救教学的个案研究

14、初中数学教师数学教学知识的发展研究

15、数学史融入初中数学教科书的现状研究

16、初中数学教师课堂有效教学行为研究

17、数学史与初中数学教学整合的现状研究

18、数学史融入初中数学教育的研究

19、初中数学教材中数学文化内容编排比较研究

20、渗透数学基本思想的初中数学课堂教学实践研究

21、初中数学教师错误分析能力研究

22、初中数学优秀课教学设计研究

23、初中数学课堂教学有效性的研究

24、初中数学数形结合思想教学研究与案例分析

25、新课程下初中数学教科书的习题比较研究

26、中美初中数学教材难度的比较研究

27、数学史融入初中数学教育的实践探索

28、初中数学课堂教学小组合作学习存在的问题及对策研究

29、初中数学教师数学观现状的调查研究

30、初中数学学困生的成因及对策研究

31、“几何画板”在初中数学教学中的应用研究

32、数学素养视角下的初中数学教科书评价

33、北师大版初中数学教材中数形结合思想研究

34、初中数学微课程的设计与应用研究

35、初中数学教学生成性资源利用研究

36、基于问题学习的初中数学情境教学模式探究

37、学案式教学在初中数学教学中的实验研究

38、数学文化视野下的初中数学问题情境研究

39、中美初中数学教材中习题的对比研究

40、基于人教版初中数学教材中数学史专题的教学探索

41、初中数学教学应重视学生直觉思维能力的培养

42、七年级学生学习情况的调研

43、老师,这个答案为什么错了?--由一堂没有准备的探究课引发的思考

44、新课程背景下学生数学学习发展性评价的构建

45、初中数学学生学法辅导之探究

46、合理运用数学情境教学

47、让学生在自信、兴趣和成功的体验中学习数学

48、创设有效问题情景,培养探究合作能力

49、重视数学教学中的生成展示过程,培养学生 创新思维 能力

50、从一道中考题的剖析谈梯形中面积的求解方法

51、浅谈课堂教学中的教学机智

52、从《确定位置》的教学谈体验教学

53、谈主体性数学课堂交流活动实施策略

54、对数学例题教学的一些看法

55、新课程标准下数学教学新方式

56、举反例的两点技巧

57、数学课堂教学中分层教学的实践与探索

58、新课程中数学情境创设的思考

59、数学新课程教学中学生思维的激发与引导

60、新课程初中数学直觉思维培养的研究与实践

2021各阶段数学教学论文题目相关 文章 :

★ 优秀论文题目大全2021

★ 大学生论文题目大全2021

★ 大学生论文题目参考2021

★ 优秀论文题目2021

2021毕业论文题目怎么定

★ 2021教育学专业毕业论文题目

★ 2021优秀数学教研组工作总结5篇

★ 2021数学教学反思案例

★ 2021交通运输方向的论文题目及选题

★ 小学数学教学论文参考(2)

呵呵```我高数最烂了帮不了你

高等代数组论文题目

呵呵```我高数最烂了帮不了你

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

您好。高等代数论文题目确实不是很好选 对于这种理论性质的学科,创新点很少 需要根据您的兴趣爱好选题

这个问题也不太难啊,你可以向你的学长和学姐们请教一下,或者向你的老师问问

高等代数毕业论文题目那些

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

这个应该是比较简单的,关于这个命题的证明好象很多书上都是有的,而且好象还不址一种.找找最古老的一本高等代数或者线性代数的书看看就可以了我推荐北京大学的,好象是不错的,武汉大学的有个教材也不错.主要是证明乘积后的秩的规律性

这个问题也不太难啊,你可以向你的学长和学姐们请教一下,或者向你的老师问问

高等代数矩阵论文题目

数学教学是让学生了解自己的知识、能力水平,弥补缺陷,纠正错误,完善知识系统和思维系统,提高分析和解决问题的能力的过程。下面我给大家带来2021各阶段数学教学论文题目参考,希望能帮助到大家!

中职数学教学论文题目

1、线性方程的叠加原理及其应用

2、作为函数的含参积分的分析性质研究

3、周期函数初等复合的周期性研究

4、“高等代数”知识在几何中的应用

5、矩阵初等变换的应用

6、“高等代数”中的思想 方法

7、中职数学教学中的数学思想和方法

8、任N个自然数的N级排列的逆序数

9、“高等代数”中多项式的值,根概念及性质的推广

10、线性变换“可对角化”的条件及“对角化”方法

11、数域概念的等价说法及其应用

12、中职数学教学与能力培养

13、数学能力培养的重要性及途径

14、论数学中的基本定理与基本方法

15、论电脑、人脑与数学

16、论数学中的收敛与发散

17、论小概率事件的发生

18、论高等数学与初等数学教学的关系

19、论数学教学中公式的教学

20、数学教学中学生应用能力的培养

21、数学教与学的心理探究

22、论数学思想方法的教与学

23、论数学家与数学

24、对称思想在解题中的应用

25、复数在中学数学中应用

26、复变函数论思想方法在中学数学教学中的应用

27、复变函数论思想方法在中学数学竞赛中的应用

28、代数学基本定理的几种证明

29、复变函数的洛必达法则

30、复函数与实函数的级数理论综述

31、微积分学与哲学

32、实数完备性理论综述

33、微积分学中辅助函数的构造

34、闭区间上连续函数性质的推广

35、培养学生的数学创新能力

36、教师对学生互动性学习的影响

37、学生数学应用意识的培养

38、数学解题中的 逆向思维 的应用

39、数学直觉思维的培养

40、数学教学中对学生心理素质的培养

41、用心理学理论指导数学教学

42、开展数学活动课的理论和实践探索

43、《数学课程标准》解读

44、数学思想在数学教学中的应用,学生思维品质的培养

45、数形结合思想在中学数学中的应用

46、运用化归思想,探索解题途径

47、谈谈构造法解题

48、高等数学在中学数学中的应用

49、解决问题的策略思想--等价与非等价转化

50、挖掘题中的隐含条件解题

51、向量在几何证题中的运用

52、数学概念教学初探

53、数学 教育 中的问题解决及其教学途径

54、分类思想在数学教学中的作用

55、“联想”在数学中的作用研究

56、利用习题变换,培养学生的思维能力

57、中学数学学习中“学习困难生”研究

58、数学概念教学研究

59、反例在数学教学中的作用研究

60、中学生数学问题解决能力培养研究

61、数学教育评价研究

62、传统中学数学教学模式革新研究

63、数学研究性学习设计

64、数学开放题拟以及教学

65、数学课堂 文化 建设研究

66、中职数学教学设计及典型课例分析

67、数学课程标准的新增内容的尝试教学研究

68、数学课堂教学安全采集与研究

69、中职数学选修课教学的实话及效果分析

70、常微分方程与初等数学

71、由递推式求数列的通项及和向量代数在中学中的应用

72、浅谈划归思想在数学中的应用

73、初等函数的极值

74、行列式的计算方法

75、数学竟赛中的不等式问题

76、直觉思维在中学数学中的应用

77、常微分方程各种解的定义,关系及判定方法

78、高等数学在中学数学中的应用

79、常微分方程的发展及应用

80、充分挖掘例题的数学价值和 智力开发 功能

小学数学教学论文题目参考

1、小学数学教师几何知识掌握状况的调查研究

2、小学数学教师教材知识发展情况研究

3、中日小学数学“数与代数”领域比较研究

4、浙江省Y县县域内小学数学教学质量差异研究

5、小学数学教师教科书解读的影响因素及调控策略研究

6、中国、新加坡小学数学新课程的比较研究

7、小学数学探究式教学的实践研究

8、基于教育游戏的小学数学教学设计研究

9、小学数学教学中创设有效问题情境的策略研究

10、小学数学生活化教学的研究

11、数字 故事 在小学数学课堂教学中的应用研究

12、小学数学教师专业发展研究

13、中美小学数学“统计与概率”内容比较研究

14、数学文化在小学数学教学中的价值及其课程论分析

15、小学数学教师培训内容有效性的研究

16、小学数学课堂师生对话的特征分析

17、小学数学优质课堂的特征分析

18、小学数学解决问题方法多样化的研究

19、我国小学数学新教材中例题编写特点研究

20、小学数学问题解决能力培养的研究

21、渗透数学思想方法 提高学生思维素质

22、引导学生参与教学过程 发挥学生的主体作用

23、优化数学课堂练习设计的探索与实践

24、实施“开放性”教学促进学生主体参与

25、数学练习要有趣味性和开放性

26、开发生活资源,体现数学价值

27、对构建简洁数学课堂的几点认识和做法

28、刍议“怎样简便就怎样算”中的“二指技能”现象

29、立足现实起点,提高课堂效率

30、宁缺毋滥--也谈课堂教学中有效情境的创设

31、如何让“生活味”的数学课堂多一点“数学味”

32、有效教学,让数学课堂更精彩

33、提高数学课堂教学效率之我见

34、为学生营造一片探究学习的天地

35、和谐课堂,让预设与生成共精彩

36、走近学生,恰当提问--谈数学课堂提问语的优化策略

37、谈小学数学课堂教学中教师对学生的评价

38、课堂有效提问的初步探究

39、浅谈小学数学研究性学习的途径

40、能说会道,为严谨课堂添彩

41、小学数学教学中的情感教育

42、小学数学学困生的转化策略

43、新课标下提高日常数学课堂效率的探索

44、让学生参与课堂教学

45、浅谈新课程理念下如何优化数学课堂教学

46、数学与生活的和谐之美

47、运用结构观点分析教学小学应用题

48、构建自主探究课堂,促进学生有效发展

49、精心设计课堂结尾巩固提高教学效果

50、浅谈数学课堂提问艺术

51、浅谈发式教学在小学数学教学中的运用

52、浅谈数学课堂中学生问题意识的培养

53、巧用信息技术,优化数学课堂教学

54、新课改下小学复式教学有感

55、让“对话”在数学课堂中焕发生命的精彩

56、小学几何教学的几点做法

初中数学教学论文题目

1、翻转课堂教学模式在初中数学教学中的应用研究

2、数形结合思想在初中数学教学中的实践研究

3、基于翻转课堂教学模式的初中数学教学设计研究

4、初中数学新教材知识结构研究

5、初中数学中的研究性学习案例开发实施研究

6、学案导学教学模式在初中数学教学中的实践与研究

7、从两种初中数学教材的比较看初中数学课程改革

8、信息技术与初中数学教学整合问题研究

9、初中数学学习困难学生学业情绪及其影响因素研究

10、初中数学习题教学研究

11、初中数学教材分析方法的研究

12、初中数学教师课堂教学目标设计的调查研究

13、初中数学学习障碍学生一元一次方程应用题解题过程及补救教学的个案研究

14、初中数学教师数学教学知识的发展研究

15、数学史融入初中数学教科书的现状研究

16、初中数学教师课堂有效教学行为研究

17、数学史与初中数学教学整合的现状研究

18、数学史融入初中数学教育的研究

19、初中数学教材中数学文化内容编排比较研究

20、渗透数学基本思想的初中数学课堂教学实践研究

21、初中数学教师错误分析能力研究

22、初中数学优秀课教学设计研究

23、初中数学课堂教学有效性的研究

24、初中数学数形结合思想教学研究与案例分析

25、新课程下初中数学教科书的习题比较研究

26、中美初中数学教材难度的比较研究

27、数学史融入初中数学教育的实践探索

28、初中数学课堂教学小组合作学习存在的问题及对策研究

29、初中数学教师数学观现状的调查研究

30、初中数学学困生的成因及对策研究

31、“几何画板”在初中数学教学中的应用研究

32、数学素养视角下的初中数学教科书评价

33、北师大版初中数学教材中数形结合思想研究

34、初中数学微课程的设计与应用研究

35、初中数学教学生成性资源利用研究

36、基于问题学习的初中数学情境教学模式探究

37、学案式教学在初中数学教学中的实验研究

38、数学文化视野下的初中数学问题情境研究

39、中美初中数学教材中习题的对比研究

40、基于人教版初中数学教材中数学史专题的教学探索

41、初中数学教学应重视学生直觉思维能力的培养

42、七年级学生学习情况的调研

43、老师,这个答案为什么错了?--由一堂没有准备的探究课引发的思考

44、新课程背景下学生数学学习发展性评价的构建

45、初中数学学生学法辅导之探究

46、合理运用数学情境教学

47、让学生在自信、兴趣和成功的体验中学习数学

48、创设有效问题情景,培养探究合作能力

49、重视数学教学中的生成展示过程,培养学生 创新思维 能力

50、从一道中考题的剖析谈梯形中面积的求解方法

51、浅谈课堂教学中的教学机智

52、从《确定位置》的教学谈体验教学

53、谈主体性数学课堂交流活动实施策略

54、对数学例题教学的一些看法

55、新课程标准下数学教学新方式

56、举反例的两点技巧

57、数学课堂教学中分层教学的实践与探索

58、新课程中数学情境创设的思考

59、数学新课程教学中学生思维的激发与引导

60、新课程初中数学直觉思维培养的研究与实践

2021各阶段数学教学论文题目相关 文章 :

★ 优秀论文题目大全2021

★ 大学生论文题目大全2021

★ 大学生论文题目参考2021

★ 优秀论文题目2021

★ 2021毕业论文题目怎么定

★ 2021教育学专业毕业论文题目

★ 2021优秀数学教研组工作总结5篇

★ 2021数学教学反思案例

★ 2021交通运输方向的论文题目及选题

★ 小学数学教学论文参考(2)

初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。 高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。 高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。 集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也由很大的不同了。 高等代数发展简史 代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段颇不平坦的路途,付出了艰辛的劳动。 人们很早就已经知道了一元一次和一元二次方程的求解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。到了十三世纪,宋代数学家秦九韶再他所著的《数书九章》这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候以得到了高次方程的一般解法。 在西方,直到十六世纪初的文艺复兴时期,才由有意大利的数学家发现一元三次方程解的公式——卡当公式。 在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。 三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。 到了十九世纪初,挪威的一位青年数学家阿贝尔(1802~1829)证明了五次或五次以上的方程不可能有代数解。既这些方程的根不能用方程的系数通过加、减、乘、除、乘方、开方这些代数运算表示出来。阿贝尔的这个证明不但比较难,而且也没有回答每一个具体的方程是否可以用代数方法求解的问题。 后来,五次或五次以上的方程不可能有代数解的问题,由法国的一位青年数学家伽罗华彻底解决了。伽罗华20岁的时候,因为积极参加法国资产阶级革命运动,曾两次被捕入狱,1832年4月,他出狱不久,便在一次私人决斗中死去,年仅21岁。 伽罗华在临死前预料自己难以摆脱死亡的命运,所以曾连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿。他在给朋友舍瓦利叶的信中说:“我在分析方面做出了一些新发现。有些是关于方程论的;有些是关于整函数的……。公开请求雅可比或高斯,不是对这些定理的正确性而是对这些定理的重要性发表意见。我希望将来有人发现消除所有这些混乱对它们是有益的。” 伽罗华死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中。他的论文手稿过了14年,才由刘维尔(1809~1882)编辑出版了他的部分文章,并向数学界推荐。 随着时间的推移,伽罗华的研究成果的重要意义愈来愈为人们所认识。伽罗华虽然十分年轻,但是他在数学史上做出的贡献,不仅是解决了几个世纪以来一直没有解决的高次方程的代数解的问题,更重要的是他在解决这个问题中提出了“群”的概念,并由此发展了一整套关于群和域的理论,开辟了代数学的一个崭新的天地,直接影响了代数学研究方法的变革。从此,代数学不再以方程理论为中心内容,而转向对代数结构性质的研究,促进了代数学的进一步的发展。在数学大师们的经典著作中,伽罗华的论文是最薄的,但他的数学思想却是光辉夺目的。 高等代数的基本内容 代数学从高等代数总的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数、线性代数等。代数学研究的对象,也已不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算。虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。比如群、环、域等。 多项式是一类最常见、最简单的函数,它的应用非常广泛。多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论。研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法。 多项式代数所研究的内容,包括整除性理论、最大公因式、重因式等。这些大体上和中学代数里的内容相同。多项式的整除性质对于解代数方程是很有用的。解代数方程无非就是求对应多项式的零点,零点不存在的时候,所对应的代数方程就没有解。 我们知道一次方程叫做线性方程,讨论线性方程的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家莱布尼茨。德国数学家雅可比于1841年总结并提出了行列式的系统理论。 行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具。行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数。 因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论。矩阵也是由数排成行和列的数表,可以行数和烈数相等也可以不等。 矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以得到彻底的解决。矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。 代数学研究的对象,不仅是数,也可能是矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。比较重要的代数系统有群论、环论、域论。群论是研究数学和物理现象的对称性规律的有力工具。现在群的概念已成为现代数学中最重要的,具有概括性的一个数学的概念,广泛应用于其他部门。 高等代数与其他学科的关系 代数学、几何学、分析数学是数学的三大基础学科,数学的各个分支的发生和发展,基本上都是围绕着这三大学科进行的。那么代数学与另两门学科的区别在哪儿呢? 首先,代数运算是有限次的,而且缺乏连续性的概念,也就是说,代数学主要是关于离散性的。尽管在现实中连续性和不连续性是辩证的统一的,但是为了认识现实,有时候需要把它分成几个部分,然后分别地研究认识,在综合起来,就得到对现实的总的认识。这是我们认识事物的简单但是科学的重要手段,也是代数学的基本思想和方法。代数学注意到离散关系,并不能说明这时它的缺点,时间已经多次、多方位的证明了代数学的这一特点是有效的。 其次,代数学除了对物理、化学等科学有直接的实践意义外,就数学本身来说,代数学也占有重要的地位。代数学中发生的许多新的思想和概念,大大地丰富了数学的许多分支,成为众多学科的共同基础。

1、高等代数与解析几何课程整合的思考2、线性代数教材内容与体系结构改革的思考与实践3、关于空间解析几何中“矢量积”教学的探讨4、解析几何最值问题探究5、解析几何的建立和意义

  • 索引序列
  • 高等代数毕业论文简单的题目
  • 高等代数论文的题目
  • 高等代数组论文题目
  • 高等代数毕业论文题目那些
  • 高等代数矩阵论文题目
  • 返回顶部