首页 > 期刊论文知识库 > 应用物理学专业导论课程论文

应用物理学专业导论课程论文

发布时间:

应用物理学专业导论课程论文

楼主是新生吧?应用物理专业大一大二没有专业实验,只有大一第二学期、大二第一学期有全校学生都要上的“大学物理实验”,但是很简单,而且考试非常容易,楼主放心。大三时应用物理有“光电子专业实验”,实验难度相对比较大,但是考试非常简单,得高分很容易,楼主不用担心哦~另外,从大二开始会逐渐有一些课程设计,也是要动手操作的,比如说自己制作收音机什么的,都很好玩,很有意思。应用物理学专业大一第一学期主要课程有:军训、军事理论、高等数学、大学英语、思想道德修养与法律基础(就是政治啦)、应用物理学专业导论、体育等,课程很少,希望楼主大学生活愉快~~ 另外,如果楼主想了解应用物理专业四年的所有教育计划,可以留邮箱给我,我会发给你。

你好!其他学校我不清楚,我把我们中科大物理系课程列在下面;你要的书根据课程名称即得。(本来有课程结构图,可惜图形这里没办法拷进来)如果把中学物理比作新生婴儿第一眼看到的世界,那么研究生阶段就好比婴儿长大后在这个世界里徜徉的过程。Part 1:本科生修读课程要求要求修读的课程分为四个层次,每个层次的课程设置及结构如下:1、通修课:(学分)参照学校关于通修课的课程要求。其中物理类理论课程以本专业要求为准,以下课程也作为本专业的通修要求:电子线路基础实验(1学分)、大学物理―现代技术实验(1学分)、大学物理-研究性实验(1学分);2、学科群基础课:(70学分)MA02*(数学类课程):(11学分)复变函数(A)(3学分)、数理方程(A)(3学分)、计算方法(B)(2学分)、概率论与数理统计B(3学分);ES72*(电子类课程):(7学分)电子技术基础(1)(2学分)、电子技术基础(2)(2学分)、电子技术基础(3)(3学分);PH02*(物理类课程):(42-44学分)力学(4学分)、热学(3学分)、电磁学(4学分)、理论力学(4学分)、光学(4学分)、原子物理学(4学分)、电动力学(4学分)、量子力学A(4学分)和量子力学B(6学分)(二选一)、计算物理学(核科学类)(3学分)和计算物理学(非核科学类)(3学分)(二选一)、热力学与统计物理(4学分)、固体物理学A(3学分)和固体物理学B(4学分)(二选一)、物理讲坛(2学分);3、专业课(至少选满学分) 应用物理学专业在物理系有凝聚态物理和微电子固体电子学二个方向,每位同学选择一个方向,并至少修满学分: (1). 凝聚态物理方向:结构物性与固化(必修)(4学分),普化实验,信息功能材料,凝聚态物理实验方法,半导体物理,低温物理导论,固体光学与光谱学,磁性物理,发光物理,固体薄膜物理,固体表面分析原理,晶体学,现代凝聚态理论,纳米材料物理与化学,等离子体物理导论,数据结构与数据库,凝聚态物理实验(必修)(2学分) (2). 微电子固体电子学方向:半导体物理(必修)(3学分),半导体器件物理,半导体模拟集成电路,半导体数字集成电路,集成电路CAD,大规模集成电路工艺基础,等离子体物理导论,数据结构与数据库,微电子系列实验(必修)4、毕业论文(8学分) 应用物理学专业指导性学习计划表 一 年 级秋春新课号老课号课程名称学时学分新课号老课号课程名称学时学分PS01001无形势与政策讲座 1PS01003104007马克思主义基本原理40/203PS01002104006中国近现代史纲要402FL01002018502综合英语二级804PS01006104018法律基础知识30/**103B01基础体育选项401PS01007104027大学生思想修养30/大学物理-基础实验综合英语一级804MA01002001513多变量微积分1206PE011**103A01基础体育401MA01003001514线性代数804CS01001210505计算机文化基础10/201PH02003022052电磁学804CS01002210502C语言程序设计40/热学603MA01001001512单变量微积分1206 PH02001022093力学(甲型)804 新开 物理讲坛 新开 物理讲坛 文化素质类课程 小 计( 10+*)门课≥小 计( 8+* )门课≥二 年 级秋春新课号老课号课程名称学时学分新课号老课号课程名称学时学分 军事理论 1 PS01005104009重要思想概论80/806PE013**103D01体育选项(2)401FL01003018503综合英语三级804MA02504017080概率论与数理统计603Ph01702022163大学物理-综合实验原子物理804PE013**103C01体育选项(1)401PH02102022057电动力学804PH02004022391光学804PH01703022164大学物理-现代技术实验理论力学804ES71000004300电子技术基础(2)402MA02501001506数理方程603 MA02505001505复变函数603 ES01000004200电子技术基础(1)402 文化素质类课程 文化素质类课程 小 计( 10+* )门课≥小 计( 7+* )门课≥ 三 年 级秋春新课号老课号课程名称学时学分新课号老课号课程名称学时学分PH02103022148量子力学A(2选1)1206PH02105022060热力学与统计物理804PH02104022059量子力学B(2选1)804PH02204002001固体物理A(2选1)804PH02202022012计算物理A(2选1)603PH02205022118固体物理B(2选1)603PH02203004040计算物理B(2选1)603新开 物理学专业基础实验802ES72002004400电子技术基础(3)603 IN01700210509电子线路基础实验401PH23007002005半导体物理603MA02503001511计算方法(B)402PH23003004109等离子体物理理论804PH01704022165大学物理-研究性实验微机原理与接口60/ PH23001002052结构物性与固化804 00212501半导体模拟集成电路804 文化素质类课程 文化素质类课程 任意选修课 任意选修课 小 计( 6+* )门课≥小 计( 3+* )门课≥9四 年 级秋春PH2300702212701半导体数字集成电路804 毕业论文 8CH23000019080普化实验401 CS01003210503数据结构与数据库60/ ME23000009004机械制图(非机类)603 PH02201022125等离子体物理导论402 PH粒子探测技术804 PH23002004120气体放电原理603 PH23005004006核电子学方法804 PH23006004031核电子学方法实验602 PH23009002058半导体器件物理603 PH23301002070信息功能材料603 PH23302002113凝聚态物理实验方法804 PH23304002050低温物理导论603 PH23305002044固体光学与光谱学603 PH23306002027磁性物理603 PH23307002046发光物理603 PH23308002069固体薄膜物理603 PH23309002129固体表面分析原理603 PH23310002114晶体学603 PH23311002008现代凝聚态理论603 PH23312无纳米材料物理与化学603 PH23313004122等离子体诊断导论603 PH23314004052实验物理中的信号采集处理804 PH23315004125等离子体实验装置概论603 PH23316004124等离子体应用603 PH23317004119电子系统设计603 PH23318004030接口与总线804 PH23320004603快电子学603 PH23321004028计算机在核物理中的应用603 PH23323002816半导体材料603 PH23325002010集成电路CAD603 PH23326002053大规模集成电路工艺基础603 PH23702002047凝聚态物理实验802 PH23703004036等离子体物理实验802 PH23704004063物理电子学信号采集处理实验802 PH23705002115微电子系列实验802 PH23324 半导体数字集成电路603 新开 软件技术基础804 任意选修课 Part 2.研究生课程凝聚态物理专业(专业代码:070205) 一、培养目标本学科培养德、智、体全面发展的、具有坚实和系统的凝聚态物理理论基础与专门知识,掌握现代物理分析技术,了解凝聚态物理发展的前沿和动态,能够适应国家经济、科技、教育发展需要,独立从事本学科前沿领域的科学研究和教学,并能作出创造性成果的高层次人才。 二、研究方向1.强关联体系和低温物理、2.纳米材料与物理、3.凝聚态理论、4.功能薄膜与器件物理、5.光学材料与光谱学 三、学制及学分按照研究生院有关规定。 四、课程设置英语、政治等公共必修课和必修环节按研究生院统一要求。学科基础课和专业课如下所列。 基础课:PH05101 高等量子力学★1(4) PH05102 近代物理进展(4) PH05104 高等电动力学(Ⅱ)★2(4) PH55201 高等固体物理★3(5) PH55202 固体理论★4(4) PH55203 固体物理实验方法(Ⅰ)(4) PH55204 群论及其应用(Ⅰ)(2) PH55205 量子统计理论(上)(3) PH55206 量子统计理论(下)(3) PH55207 凝聚态物理前沿学术讲座及讨论(seminar)(2) PH55208 固体物理实验方法(Ⅱ)(4) 专业课:PH54202 固体表面分析原理(3) PH14202 量子场论(Ⅰ)(4) PH55210 重整化群理论(3) PH55211 超导物理(4) PH55212 低温固态物理(3) PH55213 高等半导体物理(4) PH55214 超导电子学(3) PH55215 固体中的光跃迁(3) PH55216 多体量子理论(4) PH55217 分形原理及其应用(3) PH55218 薄膜生长() PH55219 透射电子显微学() PH55220 X 射线衍射(3) PH55221 物质成分的光谱分析() PH55222 物质结构的波谱能谱分析(3) PH55223 极低温物理(3) PH55224 X 射线基础(3) PH55225 半导体光学(4) PH55226 晶体学(4) PH55227 固体光学与光谱学(3) PH05103 高等电动力学(4) PH56201 高等凝聚态物理(4) PH56202 低温物理实验原理和方法(3) PH56203 光电子学(4) PH56204 计算凝聚态物理(2) PH56205 固体功能材料概论(3) PH56206 材料物理实验方法(4) PH56207 固体的表面与界面(3) PH16207 非线性动力学专题(4) PH16208 复杂系统理论专题(4) 备注:★1 和★2 二门课程研究生可根据导师要求选择其中一门,★3 和★4 二门课程研究生可根据导师要求选择其中一门即可。 五、科研能力要求按照研究生院有关规定。 六、学位论文要求按照研究生院有关规定。微电子学与固体电子学专业(学科代码:080903) 一、培养目标本学科培养德、智、体全面发展的,在半导体器件、超大规模集成电路设计与应用及微电子工艺等领域具有坚实的理论基础和技能,了解本学科发展的前沿和动态,具有独立开展本学科研究工作能力的高级专门人才。学位获得者应能承担高等院校、科研院所及高科技企业的教学科研、技术开发及管理等工作。 二、研究方向1.半导体器件、器件物理和器件模型、2.超大规模集成电路设计与应用、3.专用集成电路设计与应用、4.系统集成芯片SOC 设计与应用、5.光电器件研究与应用、6.电力电子器件与应用 三、学制及学分按照研究生院有关规定。 四、课程设置英语、政治等公共必修课和必修环节按研究生院统一要求。学科基础课和专业课如下所列。 基础课:PH05101 高等量子力学(B)(4) PH05102 近代物理进展(4) ES34201 超大规模集成电路工艺学(3) ES35201 半导体器件原理(3) ES35202 模拟集成电路原理与设计(3) PH55201 高等固体物理(5) PH55213 高等半导体物理(4) 专业课:ES35210 超大规模集成系统导论(3) ES35211 数字集成电路原理与设计(2) ES35212 超大规模集成电路CAD (3) ES35213 专用集成电路ASIC 设计及应用(2) ES35214 可编程逻辑设计与应用(2) ES35701 电子器件与微电子学实验(4 级)(2) ES36201 微电子前沿技术(3) ES36202 现代CMOS 工艺(2) ES36203 SOC 设计技术(2) ES36204 现代半导体器件物理(3)

每个学校不一样,我们校如下(顺序不固定,可自行安排):1.必修课程:93学分全校公共必修课程:30学分课程号 新课号 课程名 周学时 学分 开课学期 03835061 大学英语(一) 4 2 秋季 03835062 大学英语(二) 2 2 春、秋季 03835063 大学英语(三) 2 2 春、秋季 03835064 大学英语(四) 0 2 春、秋季 04030150 思想品德修养 2 2 春、秋季 04030170 毛泽东思想概论 2 2 春、秋季 04031490 马克思主义哲学原理 2 2 春、秋季 04031340 马克思主义政治经济学原理 2 2 春、秋季 04030140 邓小平理论 2 2 春、秋季 00431501 计算概论 3 3 一上 00431520 算法与数据结构 3 3 一下 60730020 军事理论 2 2 ―――― 体育系列课程 - 4 全院必修课程:63 学分课程号 新课号 课程名 学分 建议修读时间 高等数学I、高等数学II 10 一上、一下 线性代数 4 一上 PHY-0-04x系列及PHY-0-05x系列 普通物理(力学、热学、电磁学、光学、近代物理[或原子物理]) 16 一、二年级 PHY-0-06x系列 普通物理实验I、普通物理实验II 4 二年级 PHY-0-071 现代电子电路基础及实验(可由数学类主干基础课代替) 5 二年级 PHY-1-01x系列 数学物理方法 4 二年级 PHY-1-04x系列及PHY-1-05x系列 四大力学(理论力学、热力学统计物理[或平衡态统计物理]、电动力学、量子力学[等])、固体物理(导论) 16 二、三年级 PHY-1-06x系列 近代物理实验I、II等 4 三下、四上 2.选修课程:41学分 本科素质教育通选课:16学分A. 数学与自然科学类:至少2学分B. 社会科学类:至少2学分C. 哲学与心理学类:至少2学分D. 历史学类:至少2学分E. 语言、文学与艺术类:至少4学分,其中至少一门是艺术类课程专业选修课,物理基础类:至少9学分课程号 新课号 课程名 周学时 学分 开课学期 00431214 PHY-0-063 综合物理实验I 4 2 秋季 00431411 PHY-0-101 指导阅读 0 2 春、秋季 00430151 PHY-0-102 现代物理前沿讲座I 2 2 秋季 00432161 PHY-0-111 宇宙概论 2 2 秋季 00432162 PHY-0-311 固体物理导论 2 2 春、秋季 00431549 PHY-0-312 应用物理专题选讲 2 2 春、秋季 00432164 PHY-0-313 生物物理导论 2 2 春、秋季 00432166 PHY-0-411 几何光学与光学仪器 4 2 小学期 00430171 PHY-0-511 人类生存发展与核科学 4 2 小学期 00430181 PHY-0-711 天体物理导论 3 3 春季 00430191 PHY-0-811 大气科学导论 2 2 春、秋季 00432222 PHY-1-063 综合物理实验II 4 2 秋季 00432224 PHY-1-102 现代物理前沿讲座II 2 2 秋季 00432226 PHY-1-111 数学物理方法II 3 3 春季 00432225 PHY-1-112 计算方法 3 3 春季 00230030 PHY-1-113 概率统计 3 3 春季 00431443 PHY-1-121 计算物理学 3 3 秋季 00431444 PHY-1-122 物理数据处理方法 3 3 秋季 00831080 PHY-1-131 微机原理(含实验) 4 3 春季 00432227 PHY-1-132 科研实用软件 4 2 小学期 00432229 PHY-1-151 热力学 4 2 小学期 00432231 PHY-1-152 非平衡态统计物理 2 2 春季 00431445 PHY-1-161 流体物理基础 3 3 秋季 专业选修课,跨学科类:至少0学分专业选修课,物理专业类:至少16学分课程号 新课号 课程名 周学时 学分 开课学期 00432232 PHY-1-211 粒子物理 3 3 秋季 00432233 PHY-1-212 物理宇宙学基础 3 3 春季 00432234 PHY-1-311 半导体物理基础 3 3 秋季 00432235 PHY-1-312 介观物理导论 3 3 春季 00434091 PHY-1-321 纳米科技前沿 2 2 春季 00433520 PHY-1-322 超导物理学 4 4 秋季 00431447 PHY-1-323 应用磁学基础 3 3 秋季 00431449 PHY-1-324 低温物理学 3 3 秋季 00431531 PHY-1-325 密度泛函理论导论 2 2 春、秋季 00431534 PHY-1-326 弱信号检测与数字信号处理 2 2 春季 00432236 PHY-1-411 激光物理 3 3 秋季 00432237 PHY-1-412 现代光学与光电子学 3 3 秋季 00431535 PHY-1-421 光谱学 3 3 春季 00431536 PHY-1-422 激光器件与激光技术 2 2 秋季 00432238 PHY-1-511 核物理与粒子物理导论 3 3 春季 00432223 PHY-1-512 核物理与粒子物理专题实验 4 2 春季 00432239 PHY-1-513 辐射物理 3 3 秋季 00431537 PHY-1-521 现代电子测量与实验 4 3 春季 00431538 PHY-1-522 快电子学及实验 3 3 秋季 00431539 PHY-1-523 核天体物理 3 3 秋季 00432242 PHY-1-611 加速器物理基础 3 3 春季 00431541 PHY-1-612 等离子体和离子束物理 3 3 春季 00431542 PHY-1-621 医学物理导论 3 3 秋季 00434030 PHY-2-201 量子力学III(高等量子力学) 4 4 秋季 00434027 PHY-2-202 群论I 3 3 秋季 00434040 PHY-2-203 量子统计物理 4 4 秋季 00434010 PHY-2-204 量子场论 4 4 秋季 00434028 PHY-2-205 群论II(李群李代数) 3 3 春季 00433689 PHY-2-206 量子规范场论 4 4 春季 00430540 PHY-2-301 固体理论 4 4 春季 00434032 PHY-2-302 固体结构 3 3 春季 00434033 PHY-2-303 宽禁带半导体 3 3 秋季 00434034 PHY-2-304 强关联体系理论 3 3 春、秋季 00434035 PHY-2-305 透射电子显微学 3 3 秋季 00434036 PHY-2-306 计算材料科学 3 3 春、秋季 00433640 PHY-2-307 材料物理 3 3 春季 00433688 PHY-2-308 非线性动力学 4 4 春季 00431412 PHY-3-101 指导研究 2 春、秋季 3.毕业论文:6学分

211高校自考本科艺术和设计,毕业后一年内,数量少尝试,同比增长9豁免,自163网 - 自考本科招生,自政策,自助信息平台。 LZS

应用物理专业导论论文

物理专业导论的,格式内容都正确的

每个学校不一样,我们校如下(顺序不固定,可自行安排):1.必修课程:93学分全校公共必修课程:30学分课程号 新课号 课程名 周学时 学分 开课学期 03835061 大学英语(一) 4 2 秋季 03835062 大学英语(二) 2 2 春、秋季 03835063 大学英语(三) 2 2 春、秋季 03835064 大学英语(四) 0 2 春、秋季 04030150 思想品德修养 2 2 春、秋季 04030170 毛泽东思想概论 2 2 春、秋季 04031490 马克思主义哲学原理 2 2 春、秋季 04031340 马克思主义政治经济学原理 2 2 春、秋季 04030140 邓小平理论 2 2 春、秋季 00431501 计算概论 3 3 一上 00431520 算法与数据结构 3 3 一下 60730020 军事理论 2 2 ―――― 体育系列课程 - 4 全院必修课程:63 学分课程号 新课号 课程名 学分 建议修读时间 高等数学I、高等数学II 10 一上、一下 线性代数 4 一上 PHY-0-04x系列及PHY-0-05x系列 普通物理(力学、热学、电磁学、光学、近代物理[或原子物理]) 16 一、二年级 PHY-0-06x系列 普通物理实验I、普通物理实验II 4 二年级 PHY-0-071 现代电子电路基础及实验(可由数学类主干基础课代替) 5 二年级 PHY-1-01x系列 数学物理方法 4 二年级 PHY-1-04x系列及PHY-1-05x系列 四大力学(理论力学、热力学统计物理[或平衡态统计物理]、电动力学、量子力学[等])、固体物理(导论) 16 二、三年级 PHY-1-06x系列 近代物理实验I、II等 4 三下、四上 2.选修课程:41学分 本科素质教育通选课:16学分A. 数学与自然科学类:至少2学分B. 社会科学类:至少2学分C. 哲学与心理学类:至少2学分D. 历史学类:至少2学分E. 语言、文学与艺术类:至少4学分,其中至少一门是艺术类课程专业选修课,物理基础类:至少9学分课程号 新课号 课程名 周学时 学分 开课学期 00431214 PHY-0-063 综合物理实验I 4 2 秋季 00431411 PHY-0-101 指导阅读 0 2 春、秋季 00430151 PHY-0-102 现代物理前沿讲座I 2 2 秋季 00432161 PHY-0-111 宇宙概论 2 2 秋季 00432162 PHY-0-311 固体物理导论 2 2 春、秋季 00431549 PHY-0-312 应用物理专题选讲 2 2 春、秋季 00432164 PHY-0-313 生物物理导论 2 2 春、秋季 00432166 PHY-0-411 几何光学与光学仪器 4 2 小学期 00430171 PHY-0-511 人类生存发展与核科学 4 2 小学期 00430181 PHY-0-711 天体物理导论 3 3 春季 00430191 PHY-0-811 大气科学导论 2 2 春、秋季 00432222 PHY-1-063 综合物理实验II 4 2 秋季 00432224 PHY-1-102 现代物理前沿讲座II 2 2 秋季 00432226 PHY-1-111 数学物理方法II 3 3 春季 00432225 PHY-1-112 计算方法 3 3 春季 00230030 PHY-1-113 概率统计 3 3 春季 00431443 PHY-1-121 计算物理学 3 3 秋季 00431444 PHY-1-122 物理数据处理方法 3 3 秋季 00831080 PHY-1-131 微机原理(含实验) 4 3 春季 00432227 PHY-1-132 科研实用软件 4 2 小学期 00432229 PHY-1-151 热力学 4 2 小学期 00432231 PHY-1-152 非平衡态统计物理 2 2 春季 00431445 PHY-1-161 流体物理基础 3 3 秋季 专业选修课,跨学科类:至少0学分专业选修课,物理专业类:至少16学分课程号 新课号 课程名 周学时 学分 开课学期 00432232 PHY-1-211 粒子物理 3 3 秋季 00432233 PHY-1-212 物理宇宙学基础 3 3 春季 00432234 PHY-1-311 半导体物理基础 3 3 秋季 00432235 PHY-1-312 介观物理导论 3 3 春季 00434091 PHY-1-321 纳米科技前沿 2 2 春季 00433520 PHY-1-322 超导物理学 4 4 秋季 00431447 PHY-1-323 应用磁学基础 3 3 秋季 00431449 PHY-1-324 低温物理学 3 3 秋季 00431531 PHY-1-325 密度泛函理论导论 2 2 春、秋季 00431534 PHY-1-326 弱信号检测与数字信号处理 2 2 春季 00432236 PHY-1-411 激光物理 3 3 秋季 00432237 PHY-1-412 现代光学与光电子学 3 3 秋季 00431535 PHY-1-421 光谱学 3 3 春季 00431536 PHY-1-422 激光器件与激光技术 2 2 秋季 00432238 PHY-1-511 核物理与粒子物理导论 3 3 春季 00432223 PHY-1-512 核物理与粒子物理专题实验 4 2 春季 00432239 PHY-1-513 辐射物理 3 3 秋季 00431537 PHY-1-521 现代电子测量与实验 4 3 春季 00431538 PHY-1-522 快电子学及实验 3 3 秋季 00431539 PHY-1-523 核天体物理 3 3 秋季 00432242 PHY-1-611 加速器物理基础 3 3 春季 00431541 PHY-1-612 等离子体和离子束物理 3 3 春季 00431542 PHY-1-621 医学物理导论 3 3 秋季 00434030 PHY-2-201 量子力学III(高等量子力学) 4 4 秋季 00434027 PHY-2-202 群论I 3 3 秋季 00434040 PHY-2-203 量子统计物理 4 4 秋季 00434010 PHY-2-204 量子场论 4 4 秋季 00434028 PHY-2-205 群论II(李群李代数) 3 3 春季 00433689 PHY-2-206 量子规范场论 4 4 春季 00430540 PHY-2-301 固体理论 4 4 春季 00434032 PHY-2-302 固体结构 3 3 春季 00434033 PHY-2-303 宽禁带半导体 3 3 秋季 00434034 PHY-2-304 强关联体系理论 3 3 春、秋季 00434035 PHY-2-305 透射电子显微学 3 3 秋季 00434036 PHY-2-306 计算材料科学 3 3 春、秋季 00433640 PHY-2-307 材料物理 3 3 春季 00433688 PHY-2-308 非线性动力学 4 4 春季 00431412 PHY-3-101 指导研究 2 春、秋季 3.毕业论文:6学分

数学:高数,线形代数,概率统计,数理方法物理:力学,电磁学,光学(基础) 电动力学,理论物理,热力统计,量子力学(4大力学) 固体物理 以上8门是各大学物理系几乎都要学的,其他也许还有 学习顺序就是列举顺序

大学物理课程应用论文2000字

液晶材料的分类、应用及其发展状况摘要介绍了液晶材料的种类及其分类性能,论述了液晶材料的应用和发展情况。关键词液晶材料;介晶相;应用1.液晶的简介和分类液晶是一些化合物所具有的介于固态晶体的三维有序和无规液态之间的一种中间相态,又称作介晶相,是一种取向有序流体,既具有液体的易流动性,又有晶体的双折射等各向异性的特征。1888年奥地利植物学家Reinitzer首次发现液晶,但直到1941年Kargin提出液晶态是聚合物体系的一种普遍存在状态,人们才开始了对高分子液晶的研究。近二十多年来液晶材料获得迅速的发展,这是因为液晶材料的光电效应被发现,因此被广泛地应用在需低电压和轻薄短小的显示组件上,因此它一跃成为一热门的科学研究及应用的主题,目前已被广泛使用于电子表、电子计算器和计算机显示屏幕上,液晶逐渐成为显示工业上不可或缺的重要材料,液晶高分子的大规模研究工作起步更晚,但目前已发展为液晶领域中举足轻重的部分。如果说小分子液晶是有机化学和电子学之间的边缘科学,那么液晶高分子则牵涉到高分子科学、材料科学、生物工程等多门科学,而且在高分子材料、生命科学等方面都得到了大量应用。溶致型液晶有些材料在溶剂中,处于一定的浓度区间内会产生液晶,这类液晶我们叫它溶致液晶。如可以利用溶致型液晶聚合物的液晶相的高浓度低黏度特性进行液晶纺丝制备强度高模量的纤维。溶致型液晶材料广泛存在于自然界、生物体中,与生命息息相关,但在显示中尚无应用。热致型液晶热致型液晶分子会随温度上升而伴随一连串相转移,即由固体变成液晶状态,最后变成等向性液体,在这些相变化的过程中液晶分子的物理性质都会随之变化,如折射率、介电异向性、弹性系数和粘度等。在热致型液晶中,又根据液晶分子排列结构分为三大类:近晶相、向列相和胆甾相。近晶型液晶近晶相除有沿分子长轴的取向有序外,有一个沿某一方向的平移有序,近晶型液晶在所有液晶聚合态结构中最接近固体晶体,通常含有C=N或者N=N键及苯环结构,分子是厂棒状。目前各近晶相中的手性近晶C相,即铁电相引起人们广泛兴趣。铁电液晶具备向列相液晶所不具备的高速度(微秒级)和记忆性的优异特征,它们在最近几年得到大量研究。向列型液晶向列相仅有沿分子长轴的取向有序,液晶分子呈棒状形刚性部分平行排列,该种液晶分子运动自由度大,是流动性最好的液晶,此类型液晶的粘度小,应答速度快,是最早被应用的液晶,普遍地使用于液晶电视、笔记本电脑以及各类型显示元件上。胆甾型液晶这类液晶大都是胆甾醇的衍生物,胆甾醇本身无液晶性质,而它的衍生物均具有液晶特性,次类型液晶是由多层相列型液晶堆积所形成,为向列相液晶的一种,也可以称为旋光性的向列相液晶,因分子具有非对称碳中心,所以分子的排列呈螺旋平面状的排列,面和面之间为相互平行,而分子在各平面上为向列相。2.液晶的应用及发展状况液晶材料在显示器的应用回顾液晶的发展史可以发现,尽管液晶早在19世纪60年代已经被发现,然而在相当长一段时间里,虽然液晶的许多有价值的现象早被揭露,但液晶始终只是实验室中的珍品而已。只有当液晶被用于显示器开始,它的研究才有了前所未有的动力。在这最近的几十年时间里液晶显示器有了长足的进步,目前液晶显示器已是整个领域中的佼佼者,只要稍加留意,不难发现市场上用液晶显示器的仪器仪表、计算器、计算机、彩色电视机等不仅品种越来越多,而且显示品质亦越来越高,价格越来越便宜。目前,各种形态的液晶材料基本上都用于开发液晶显示器,现在已开发出的各种向列相液晶、聚合物分散液晶、双(多)稳态液晶、铁电液晶和反铁电液晶显示器等。而在液晶显示中,开发最成功、市场占有量最大、发展最快的是向列相液晶显示器。按照液晶显示模式,常见向列相显示就有T N(扭曲向列相)模式,H T N(高扭曲向列相)模式、S T N(超扭曲向列相)模式、T F T(薄膜晶体管)模式等。其中TFT模式是近10年发展最快的显示模式。

物理学给人类提供了大量的物质财富,同时也提供了精神财富。物理学的高技术和强渗透性也使之成为社会发展的重要推动力。下面是我为大家整理的物理学论文,供大家参考。

摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.

关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理

1引言

物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照教育部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程报告论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.

2物理学是科技创新的源泉

且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=×10-31kg,电子荷电e=×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.

1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现笔记本电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.

20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.

1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.

2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].

2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.

3结语

论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.

参考文献:

〔1〕祝之光.物理学[M].北京:高等教育出版社,.

〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,.

〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.

〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)

〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.

〔6〕姚启钧,光学教程[M].北京;高等教育出版社,.

〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,.

〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,.

一、全息教学在初中物理教学中运用的策略

1.运用全息理论,对初中物理教学课型进行合理选择与搭配

新课改以后,物理课堂教学由传统的讲授内容方面转变到物理的过程方面,其核心是给学生提供机会、创造机会。因此,在物理教学中,教师要善于运用全息教学理论,并根据学生的生活经验和已有的知识背景,对课型合理地选择与搭配,带领学生运用多种方法对物理知识进行重演在现,激励学生发现并提出问题,进而激发学生学习物理的兴趣,培养学生创新和探究能力。例如:在讲静电屏蔽时,首先带领学生对静电屏蔽进行了实验,并得到了正确的结果。突然有一个学生提出问题“:用电吹风吹头时,电吹风其对电视信号有影响,那么是不是静电屏蔽不完全成立?”于是带领学生们又做了如下实验:将一个手机放在一个密闭的纸盒内,用另一部手机呼叫,学生们听到了响声。再让同学思考,如果将手机放在前面做过实验的金属笼内,是否能听到铃声?多数学生根据静电屏蔽原理猜测肯定不能。然而将手机放进铁笼后,仍能听到铃声。学生们都感到疑惑,难道静电平衡理论有误?针对这种现象让大家思考了“静电”二字,然后向学生们解释手机信号是一种电磁波而不是静电,其属一种交变的电磁场,遇到金属网时,金属网会感应出同频率的电磁波,只是强度变小,因此在仍能听到笼中手机铃声,也解释了,也就解释了为什么吹风机对电视信号有影响。这样通过对物理知识重演再现与对比的方式,加深了学生对物理知识的理解,从而提高了教学质量。

2.运用全息理论,根据物理教材和学情选择合适的教学方法

在进行物理教学时,物理教材中的安排的知识点难易程度不同,如果各个知识点都按照相同的教学方法去讲解,容易理解的知识点学生会掌握的相对熟练,而对于相对较难的知识点,就可能会导致学生对其似懂非懂,这样就会不利于学生的学习。这样物理教师在运用全息理论时,不要一味的按照一个教学方法进行讲解要注意对教学方法的改变,使学生能够熟练地掌握知识点。另外,每个学生对于知识点的掌握情况不同,有些学生可能掌握的好一些,有些学生掌握的差一些,因此物理教师要根据学情来选择教学方式,既要照顾那些掌握知识差的同学,也要让掌握较好的同学能够学到更多的知识。例如,在向同学讲解“测量”的知识点时,对与学生来说这个相对知识点相对容易,在日常生活中很容易接触到,因此教师在运用全息教学论时,可以先向学生对所要内容的主旨,主要思路进行讲解,然后对主要知识点进行仔细讲解,经过这样的讲解,学生会很容易对测量知识进行掌握。而在向学生讲解“光学规律”时,学生对其中的规律和容易混淆,如果物理教师还按照讲解“测量”方法向学生进行讲解,学生就很难掌握。因此,教师要改变教学方法,既要向学生进行理论讲解,也要带领学生对个规律进行实验,通过实验加深学生对光学规律的理解,使学生对知识点能够更好地掌握。3.运用全息理论,根据知识内容和特点选择合适的评价方式在物理教学中,物理教师对学生的评价方式非常重要,有的评价方式会激发学生学习物理的知识的兴趣,而有的评价方式可能使学生受到打击,从而失去学习物理的兴趣。因此教师要合理的运用全息理论,并且根据知识内容和特点选择合适的评价方式,激发学生学习物理的兴趣。例如,在课堂上让学生回答问题时,学生回答对了要给与肯定的评价,而如果学生回答错了,要用积极的评价方式去评价,用全息理论去告诉他,其在探讨知识的过程中,没有选择正确的方式方法,让其用正确的方式再去进行探讨,这样既让学生知道了自己了不足,也对学生进行了鼓励学生,这样学生就会乐意去学习,从而大大地提高物理教学质量。

二、结束语

物理小论文摘要:物理是一门历史悠久的自然学科。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域; 物理学存在于物理学家的身边;物理学也存在于同学们身边;在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。关键词:物理 渗入 人类生活 各个领域 存在 物理学家 同学们 身边 科学意识 科学学习方法 科学思维方式物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然界认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理学家科学素质、科学精神以及科学思维的有形体现。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域。例如,光是找找汽车中的光学知识就有以下几点:1. 汽车驾驶室外面的观后镜是一个凸镜 利用凸镜对光线的发散作用和成正立、缩小、虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。 2. 汽车头灯里的反射镜是一个凹镜 它是利用凹镜能把放在其焦点上的光源发出的光反射成为平行光射出的性质做成的。 3. 汽车头灯总要装有横竖条纹的玻璃灯罩汽车头灯由灯泡、反射镜和灯前玻璃罩组成。根据透镜和棱镜的知识,汽车头灯玻璃罩相当于一个透镜和棱镜的组合体。在夜晚行车时,司机不仅要看清前方路面的情况,还要还要看清路边持人、路标、岔路口等。透镜和棱镜对光线有折射作用,所以灯罩通过折射,根据实际需要将光分散到需要的方向上,使光均匀柔和地照亮汽车前进的道路和路边的景物,同时这种散光灯罩还能使一部分光微向上折射,以便照明路标和里程碑,从而确保行车安全。 4. 轿车上装有茶色玻璃后,行人很难看清车中人的面孔茶色玻璃能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔反射足够强的光透射到玻璃外面。由于车内光线较弱,没有足够的光透射出来,所以很难看清乘客的面孔。 5. 除大型客车外,绝大多数汽车的前窗都是倾斜的当汽车的前窗玻璃倾斜时,车内乘客经玻璃反射成的像在国的前上方,而路上的行人是不可能出现在上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,即使前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度,所以司机也不会将乘客在窗外的像与路上的行人相混淆。再如下面一个例子:五香茶鸡蛋是人们爱吃的,尤其是趁热吃味道更美。细心的人会发现,鸡蛋刚从滚开的卤汁里取出来的时候,如果你急于剥壳吃蛋,就难免连壳带“肉”一起剥下来。要解决这个问题,有一个诀窍,就是把刚出锅的鸡蛋先放在凉水中浸一会,然后再剥,蛋壳就容易剥下来。一般的物质(少数几种例外),都具有热胀冷缩的特性。可是,不同的物质受热或冷却的时候,伸缩的速度和幅度各不相同。一般说来,密度小的物质,要比密度大的物质容易发生伸缩,伸缩的幅度也大,传热快的物质,要比传热慢的物质容易伸缩。鸡蛋是硬的蛋壳和软的蛋白、蛋黄组成的,它们的伸缩情况是不一样的。在温度变化不大,或变化比较缓慢均匀的情况下,还显不出什么;一旦温度剧烈变化,蛋壳和蛋白的伸缩步调就不一致了。把煮得滚烫的鸡蛋立即浸入冷水里,蛋壳温度降低,很快收缩,而蛋白仍然是原来的温度,还没有收缩,这时就有一小部分蛋白被蛋壳压挤到蛋的空头处。随后蛋白又因为温度降低而逐渐收缩,而这时蛋壳的收缩已经很缓慢了,这样就使蛋白与蛋壳脱离开来,因此,剥起来就不会连壳带“肉”一起下来了。明白了这个道理,对我们很有用处。凡需要经受较大温度变化的东西,如果它们是用两种不同材料合在一起做的,那么在选择材料的时候,就必须考虑它们的热膨胀性质,两者越接近越好。工程师在设计房屋和桥梁时,都广泛采用钢筋混凝土,就是因为钢材和混凝土的膨胀程度几乎完全一样,尽管春夏秋冬的温度不同,也不会产生有害的作用力,所以钢筋混凝土的建筑十分坚固。另外,有些电器元件却是用两种热膨胀性质差别很大的金属制成的。例如,铜片的热膨胀比铁片大,把铜片和铁片钉在一起的双金属片,在同样情况下受热,就会因膨胀程度不同而发生弯曲。利用这一性质制成了许多自动控制装置和仪表。日光灯的“启动器”里就有小巧的双金属片,它随着温度的变化,能够自动屈伸,起到自动开启日光灯的作用。这样的例子举不胜举,物理是一门实用性很强的科学,与工农业生产、日常生活有着极为密切的联系。物理规律本身就是对自然现象的总结和抽象。谈到物理学,有些同学觉得很难;谈到物理探究,有同学觉得深不可测;谈到物理学家,有同学更是感到他们都不是凡人。诚然,成为物理学家的人的确屈指可数,但只要勤于观察,善于思考,勇于实践,敢于创新,从生活走向物理,你就会发现:其实,物理就在身边。正如马克思说的:“科学就是实验的科学,科学就在于用理性的方法去整理感性材料”。物理不但是我们的一门学科,更重要的,它还是一门科学。物理学存在于物理学家的身边。勤于观察的意大利物理学家伽利略,在比萨大教堂做礼拜时,悬挂在教堂半空中的铜吊灯的摆动引起了他极大的兴趣,后来反复观察,反复研究,发明了摆的等时性;勇于实践的美国物理学家富兰克林,为认清“天神发怒”的本质,在一个电闪雷鸣、风雨交加的日子,冒着生命危险,利用司空见惯的风筝将“上帝之火”请下凡,由此发明了避雷针;敢于创新的英国科学家亨利•阿察尔去邮局办事。当时身旁有位外地人拿出一大版新邮票,准备裁下一枚贴在信封上,苦于没有小刀。找阿察尔借,阿察尔也没有。这位外地人灵机一动,取下西服领带上的别针,在邮票的四周整整齐齐地刺了一圈小孔,然后,很利落地撕下邮票。外地人走了,却给阿察尔留下了一串深深的思考,并由此发明了邮票打孔机,有齿纹的邮票也随之诞生了;古希腊阿基米德发现阿基米德原理;德国物理学家伦琴发现X射线;……研究身边的琐事并有大成就的物理学家的事例不胜枚举。物理学也存在于同学们身边。学了测量的初步知识,同学们纷纷做起了软尺。有位同学别出心裁,用透明胶把制好的牛皮纸软尺包扎好,这样更牢固。然后,用大大卷泡泡糖的包装盒作为软尺的外壳,在盒的中心利用铁丝做一摇柄中心轴,软尺的末端固定在轴上,这样一个可以收拾并反复使用的卷尺诞生了。同时,这位同学受软尺自作的启示,用实验解决了一道习题:用软尺测量物体长度时,若把软尺拉长些,测量值是偏大还是偏小?他做了这样一个模拟实验:在白纸上画一条直线,标上刻度,然后用透明胶粘贴,再扯下来,便做成了“软尺”,用“软尺”不仅找到了上题的答案,而且还清楚地看到分度值变大了,知其然,并知其所以然;学了电学的有关知识后,同学们对蚯蚓能承受的最大电压进行了探究:当给它加上的电压时,蚯蚓迅速分泌粘液,且奋力挣扎,从瓶内跳出瓶外。当给它加上3V的电压时,蚯蚓被电为两截;有同学在测量“、”的小灯泡的功率,并研究其发光情况时,不满足于给灯泡加上的电压,而是用自己早已准备好的小灯泡做破坏性实验,不断加大灯泡两端的电压,直至电压高达9V、灯泡灯丝烧断,才停止探究;有同学在学习蒸发的知识时,不厌其烦地座在桌旁观察相同的两滴水(其中一滴水滩开),进行聚精会神地观察,然后进行分析、对比,得出影响蒸发的因素;……同学们捕捉身边的琐事进行探究的事例屡见不鲜。身边的事物是取之不尽的,对与现实生活联系很紧密的物理学科来说,更是时时会用到的,用身边的事例去解释和总结物理规律,学生听起来熟悉,接受起来也就容易了。只要时时留意,经常总结,就会不断发现有利于物理教学的事物,丰富我们的课堂,活跃教学气氛,简化概念和规律。新课标告诉我们“义务教育阶段的物理课程应贴近学生生活,符合学生认知特点,激发并保持学生的学习兴趣,通过探索物理现象,揭示隐藏其中的物理规律,并将其应用于生产生活实际,培养学生终身的探索乐趣、良好的思维习惯和初步的科学实践能力。”今天,人类所有的令人惊叹不已的科学技术成就,如克隆羊、因特网、核电站、航空技术等,无不是建立在早年的科学家们对身边琐事进行观察并研究的基础上的。在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。

应用心理学专业毕业论文辅导

目前学计算机 还是挺不错的好就业,计算机分很多专业如平面设计,UI设计,互联网营销,电竞,动漫,都是非常好就业的专业哦,选择自己喜欢的专业

学术堂整理了十个新颖的心理学毕业论文题目供大家进行参考:1、女性心理学思潮述评2、建构主义心理学思潮述评3、后现代心理学思潮述评4、超个人心理学思潮述评5、某一心理学大师的人格与学术贡献述评6、用质的方法(如心理传记法、叙事法、访谈法等)研究一个心理问题或一种心理现象7、中国思想史上的人性论对心理学的价值8、建构主义学习理论述评9、人本主义心理学思潮的渊源与背景10、论自我效能感及其培养

自述主要包括选题的背景、选题的意义;该课题已经被研究的情况;本研究的假设(预期的到什么样的结论);拟采用的研究方法;本研究的创新点。

做一份问卷调查吧,会比较有说服力,做一个spss相关分析。

物理研究与应用方面的课程论文

物理小论文摘要:物理是一门历史悠久的自然学科。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域; 物理学存在于物理学家的身边;物理学也存在于同学们身边;在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。关键词:物理 渗入 人类生活 各个领域 存在 物理学家 同学们 身边 科学意识 科学学习方法 科学思维方式物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然界认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理学家科学素质、科学精神以及科学思维的有形体现。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域。例如,光是找找汽车中的光学知识就有以下几点:1. 汽车驾驶室外面的观后镜是一个凸镜 利用凸镜对光线的发散作用和成正立、缩小、虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。 2. 汽车头灯里的反射镜是一个凹镜 它是利用凹镜能把放在其焦点上的光源发出的光反射成为平行光射出的性质做成的。 3. 汽车头灯总要装有横竖条纹的玻璃灯罩汽车头灯由灯泡、反射镜和灯前玻璃罩组成。根据透镜和棱镜的知识,汽车头灯玻璃罩相当于一个透镜和棱镜的组合体。在夜晚行车时,司机不仅要看清前方路面的情况,还要还要看清路边持人、路标、岔路口等。透镜和棱镜对光线有折射作用,所以灯罩通过折射,根据实际需要将光分散到需要的方向上,使光均匀柔和地照亮汽车前进的道路和路边的景物,同时这种散光灯罩还能使一部分光微向上折射,以便照明路标和里程碑,从而确保行车安全。 4. 轿车上装有茶色玻璃后,行人很难看清车中人的面孔茶色玻璃能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔反射足够强的光透射到玻璃外面。由于车内光线较弱,没有足够的光透射出来,所以很难看清乘客的面孔。 5. 除大型客车外,绝大多数汽车的前窗都是倾斜的当汽车的前窗玻璃倾斜时,车内乘客经玻璃反射成的像在国的前上方,而路上的行人是不可能出现在上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,即使前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度,所以司机也不会将乘客在窗外的像与路上的行人相混淆。再如下面一个例子:五香茶鸡蛋是人们爱吃的,尤其是趁热吃味道更美。细心的人会发现,鸡蛋刚从滚开的卤汁里取出来的时候,如果你急于剥壳吃蛋,就难免连壳带“肉”一起剥下来。要解决这个问题,有一个诀窍,就是把刚出锅的鸡蛋先放在凉水中浸一会,然后再剥,蛋壳就容易剥下来。一般的物质(少数几种例外),都具有热胀冷缩的特性。可是,不同的物质受热或冷却的时候,伸缩的速度和幅度各不相同。一般说来,密度小的物质,要比密度大的物质容易发生伸缩,伸缩的幅度也大,传热快的物质,要比传热慢的物质容易伸缩。鸡蛋是硬的蛋壳和软的蛋白、蛋黄组成的,它们的伸缩情况是不一样的。在温度变化不大,或变化比较缓慢均匀的情况下,还显不出什么;一旦温度剧烈变化,蛋壳和蛋白的伸缩步调就不一致了。把煮得滚烫的鸡蛋立即浸入冷水里,蛋壳温度降低,很快收缩,而蛋白仍然是原来的温度,还没有收缩,这时就有一小部分蛋白被蛋壳压挤到蛋的空头处。随后蛋白又因为温度降低而逐渐收缩,而这时蛋壳的收缩已经很缓慢了,这样就使蛋白与蛋壳脱离开来,因此,剥起来就不会连壳带“肉”一起下来了。明白了这个道理,对我们很有用处。凡需要经受较大温度变化的东西,如果它们是用两种不同材料合在一起做的,那么在选择材料的时候,就必须考虑它们的热膨胀性质,两者越接近越好。工程师在设计房屋和桥梁时,都广泛采用钢筋混凝土,就是因为钢材和混凝土的膨胀程度几乎完全一样,尽管春夏秋冬的温度不同,也不会产生有害的作用力,所以钢筋混凝土的建筑十分坚固。另外,有些电器元件却是用两种热膨胀性质差别很大的金属制成的。例如,铜片的热膨胀比铁片大,把铜片和铁片钉在一起的双金属片,在同样情况下受热,就会因膨胀程度不同而发生弯曲。利用这一性质制成了许多自动控制装置和仪表。日光灯的“启动器”里就有小巧的双金属片,它随着温度的变化,能够自动屈伸,起到自动开启日光灯的作用。这样的例子举不胜举,物理是一门实用性很强的科学,与工农业生产、日常生活有着极为密切的联系。物理规律本身就是对自然现象的总结和抽象。谈到物理学,有些同学觉得很难;谈到物理探究,有同学觉得深不可测;谈到物理学家,有同学更是感到他们都不是凡人。诚然,成为物理学家的人的确屈指可数,但只要勤于观察,善于思考,勇于实践,敢于创新,从生活走向物理,你就会发现:其实,物理就在身边。正如马克思说的:“科学就是实验的科学,科学就在于用理性的方法去整理感性材料”。物理不但是我们的一门学科,更重要的,它还是一门科学。物理学存在于物理学家的身边。勤于观察的意大利物理学家伽利略,在比萨大教堂做礼拜时,悬挂在教堂半空中的铜吊灯的摆动引起了他极大的兴趣,后来反复观察,反复研究,发明了摆的等时性;勇于实践的美国物理学家富兰克林,为认清“天神发怒”的本质,在一个电闪雷鸣、风雨交加的日子,冒着生命危险,利用司空见惯的风筝将“上帝之火”请下凡,由此发明了避雷针;敢于创新的英国科学家亨利•阿察尔去邮局办事。当时身旁有位外地人拿出一大版新邮票,准备裁下一枚贴在信封上,苦于没有小刀。找阿察尔借,阿察尔也没有。这位外地人灵机一动,取下西服领带上的别针,在邮票的四周整整齐齐地刺了一圈小孔,然后,很利落地撕下邮票。外地人走了,却给阿察尔留下了一串深深的思考,并由此发明了邮票打孔机,有齿纹的邮票也随之诞生了;古希腊阿基米德发现阿基米德原理;德国物理学家伦琴发现X射线;……研究身边的琐事并有大成就的物理学家的事例不胜枚举。物理学也存在于同学们身边。学了测量的初步知识,同学们纷纷做起了软尺。有位同学别出心裁,用透明胶把制好的牛皮纸软尺包扎好,这样更牢固。然后,用大大卷泡泡糖的包装盒作为软尺的外壳,在盒的中心利用铁丝做一摇柄中心轴,软尺的末端固定在轴上,这样一个可以收拾并反复使用的卷尺诞生了。同时,这位同学受软尺自作的启示,用实验解决了一道习题:用软尺测量物体长度时,若把软尺拉长些,测量值是偏大还是偏小?他做了这样一个模拟实验:在白纸上画一条直线,标上刻度,然后用透明胶粘贴,再扯下来,便做成了“软尺”,用“软尺”不仅找到了上题的答案,而且还清楚地看到分度值变大了,知其然,并知其所以然;学了电学的有关知识后,同学们对蚯蚓能承受的最大电压进行了探究:当给它加上的电压时,蚯蚓迅速分泌粘液,且奋力挣扎,从瓶内跳出瓶外。当给它加上3V的电压时,蚯蚓被电为两截;有同学在测量“、”的小灯泡的功率,并研究其发光情况时,不满足于给灯泡加上的电压,而是用自己早已准备好的小灯泡做破坏性实验,不断加大灯泡两端的电压,直至电压高达9V、灯泡灯丝烧断,才停止探究;有同学在学习蒸发的知识时,不厌其烦地座在桌旁观察相同的两滴水(其中一滴水滩开),进行聚精会神地观察,然后进行分析、对比,得出影响蒸发的因素;……同学们捕捉身边的琐事进行探究的事例屡见不鲜。身边的事物是取之不尽的,对与现实生活联系很紧密的物理学科来说,更是时时会用到的,用身边的事例去解释和总结物理规律,学生听起来熟悉,接受起来也就容易了。只要时时留意,经常总结,就会不断发现有利于物理教学的事物,丰富我们的课堂,活跃教学气氛,简化概念和规律。新课标告诉我们“义务教育阶段的物理课程应贴近学生生活,符合学生认知特点,激发并保持学生的学习兴趣,通过探索物理现象,揭示隐藏其中的物理规律,并将其应用于生产生活实际,培养学生终身的探索乐趣、良好的思维习惯和初步的科学实践能力。”今天,人类所有的令人惊叹不已的科学技术成就,如克隆羊、因特网、核电站、航空技术等,无不是建立在早年的科学家们对身边琐事进行观察并研究的基础上的。在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。

(只能作为参考)《新课标下物理知识在实际生活中的应用》新课改给我们带来了全新的课程理念,新课程要求课堂教学能够激发学生强烈的学习需要与兴趣,使学生形成积极主动的学习态度,而物理知识来源于实践,特别是来源于各种实际现象,与现实生活及高新技术有着密切的联系。因此,物理教学必须加强物理课程内容与学生生活以及现代社会和科技发展的联系,关注学生的兴趣和身心发展。国家《课程改革纲要》指出:“只有能够激发学生强烈的学习需要与兴趣的教学,只有那些能够激发学生强烈的学习需要与兴趣的教学,只有那些能够带给学生理智的挑战的教学,那些在教学内容上能够切入并丰富学生经验系统的教学,只有那些能够给学生足够自主的空间、足够活动的机会的教学,那些真正做到‘以参与求体验,以创新求发展的教学’,才能一些的增进学生的发展。”这说明只有的学习任务,学习情景与学生的心理需要和实际现象可持续性相似匹配的条件下,才能实施自主合作和探究的学习。而高考,长期以来一直是指引我们进行中学教育的指挥棒,我们在平时的教学中,强调的是系统知识的传授解题方法的指导、严密思维的训练,教师学生都为应付高考而机械的忙碌,缺乏激情和生气,难以唤起学生学习热情和智慧活动的积极性,不能把所学知识应用到实际生活中去,对学生身心发展造成了极大的压力。本文就如何充分发掘课程资源,利用所学知识,解决实际生活问题,使学生在净化心灵、陶冶情操的同时高效的掌握物理知识技能等方面谈谈自己的感想。一通过从自然、生活到物理的认识过程,激发学生的求知欲,让学生领略自然现象中的美妙与和谐,培养学生的探索兴趣。物理新课改的目的在于引导学生主动学习,努力减轻学生的精神负担,激发学生的创新兴趣与创新精神。教师的主要责任是使用各种不同的教学手段与方法,给学生创造最佳的学习状态和积极在学习气氛,充分调动学生在学习积极性,培养学生主动参与意识,从而促进学生的智力发展和综合素质的提高以及创新潜能的开发。在新的课程标准中确立了全新的物理教学理念,它明确规定在物理教学中教师应“注重全体学生的发展,改变学科本位的观念;从生活走向物理,从物理走向生活”。物理学研究的是自然界最基本的运动规律,而自然界中的物理现象蕴藏着无穷奥秘。让学生从身边熟悉的生活,现象中探究并认识物理规律,同时将学生认识的物理知识和科学研究方法和社会实践用其应用结合起来。让他们体会到物理学在生产生活中的应用,这不仅可以增加学生学习物理的乐趣,而且还将培养学生良好的思维习惯和科学探究能力。从生活中获取经验,学生感受比较深。根据学生的这种心理特点,在物理教学过程中,把学到的物理学规律,力求使之贴近生活,去解释日常生活中的现象,把物理规律同学生的生活经验对号入座。这样即可以加深学生对所学规律的理解,又会使学生觉得物理知识非常有用,从而激发也对物理学的浓厚兴趣。比如在讲授重心这一物理概念时,由于比较抽象,大多数学生都以为在重力场中只需要重力这个物理量就足够了,重心没什么用处,针对这一问题,我在引导学生了解了重心的概念之后,给同学们留了一道思考题:让同学们用这一节课学过的知识解释为什么滴水马桶要在滴水一定时间之后才能听见倒水的声音,他们看不见它的内部结构,他们只能根据听到的声音结合实际生活进行联想,这样就激发了他们的学习兴趣。结果有好多同学在经过思考之后出色的完成了任务,还有几个同学的模型设计方案相当科学。对于设计不合理的同学我让其他同学帮忙解决这样又培养了学生之间的合作能力表达能力。不难想象,学生“从自然、生活到物理认识”的过程学习物理,必定会在“物理知识就在身边”的体验中激发出极大的求知欲望。 二 针对学生的思想实际,结合物理知识,对学生进行人文教育新课标、新课程需要新的教学课堂,需要教师帮助学生装进行研究式学习、体验式学习和研究体验式学习的课堂,使学生的身心得到健康发展。物理知识蕴含着严谨、求实、崇尚真理、自由探索等丰富的价值观念,它同样具有人文主义的性质,物理教学应该而且必须体现教育的真善美,新教材展示了大量体现科学精神和人文精神相结合的教学素材,为构建新型课堂提供了丰富的资源和相关链接;包含着丰富的辩证唯物主义思想,我们可以针对学生的思想实际,结合物理知识,灵活运用辩证唯物主义观点进行阐述、发挥,促进学生形成正确的人生观,指导学生的生活:另一方面也深化、巩固所学的物理知识。这样的学习不只是在学习物理知识,也是在学习思想、学习生活。

  • 索引序列
  • 应用物理学专业导论课程论文
  • 应用物理专业导论论文
  • 大学物理课程应用论文2000字
  • 应用心理学专业毕业论文辅导
  • 物理研究与应用方面的课程论文
  • 返回顶部