首页 > 期刊论文知识库 > 丙二醇反应的研究论文下载

丙二醇反应的研究论文下载

发布时间:

丙二醇反应的研究论文下载

以硝酸铜、硝酸锰、硝酸铝和碳酸钠为原料,通过共沉淀法制备了不同Mn含量的Cu-Mn-Al催化剂。采用BET,XRD,SEM,TEM,H2-TPR和NH3-TPD等对催化剂进行了表征,在固定床反应器上考察了催化剂对丙二醇单甲醚直接脱氢制备甲氧基丙酮反应活性的影响。结果表明:Mn含量对Cu-Mn-Al催化剂理化性质有较大影响。适量添加Mn能够促进Cu的分散,改变催化剂还原性能,降低催化剂表面酸性。当n(Cu):n(Mn):n(Al)=时,Cu-Mn-Al催化剂表面酸量低,具有较低还原温度。在反应温度260℃、常压、进料组成为含5%(质量分数)水的丙二醇单甲醚溶液、液时空速为的条件下,该催化剂上丙二醇单甲醚转化率可达,甲氧基丙酮选择性可达,且副产物丙酮选择性低,为。

改革开放以来,我国化工行业发展迅速,为国民经济发展做出了重要贡献。同时,我国化工行业经营环境也日趋复杂,面临的风险和安全隐患也越来越大。下面是我为大家推荐的化工类 毕业 论文,供大家参考。

化工类毕业论文 范文 一:化学工程学科集群分析

一、我国化学工程与技术专业学科集群现象

经过调查统计,我国共有100多所高校招有化学工程与技术专业硕士研究生,该专业研究方向过多,一个专业出现87个研究方向。研究方向的划分有的甚至是跨学科的。如化学工程与技术专业是属于工学的,应用化学专业是属于理学,可应用化学居然是化学工程与技术专业的一个研究方向。同属于一个研究方向,研究方向的名称也是多样化的,缺乏统一标准,如安徽大学、南昌大学的绿色化学工程,上海大学就称为绿色化学与工艺。为了解决上述问题,我们请教了化工领域的专家,给这87个研究方向做一个归类,分为9个大的方向(表1)。由表1可以发现我国化学工程与技术专业是存在学科集群现象的,表现在:专业的学科建设,已经不单是化学工程的问题,而涉及到了化学化工研究的所有领域,包括应用化学、环境化工、工业催化、资源与材料工程、新能源技术、生物工程与技术、过程系统工程、油气加工及石油化工等。我国化学工程与技术专业学科集群的力度较大,表现在:各个高校的研究方向基本上都比较多,如清华大学、中国矿业大学、北京工业大学、北京理工大学、华南理工大学、华东理工大学、上海大学等高校,其研究方向都是传统与现代并存,传统化学化工的研究方向所占比例较大,如化学工程,包含的研究方向较多。部分代表21世纪化学化工发展方向的研究方向,在很多学校都受到重视,如资源与材料工程,研究方向也比较多。

二、化学工程与技术专业学科集群的创新及竞争优势

本文选择山西省高校做研究,分析其师资力量情况,以分析化学工程与技术专业集群的创新及竞争优势。山西省作为我国化工3大生产基地,化学化工产业是山西省的支柱产业,化学化工专业是山西省高校、特别是工科院校的学科优势之一。选择山西大学、中北大学、太原理工大学的化学化工学院为样本(见表2),按照前文对学科集群的认识,这些学院都有9个以上相关专业和研究方向,已经形成了一定的学科集群规模。其中论文指该学院教师被SCI、EI、ISTP3大检索刊物收录的论文数。中北大学的数据包含了CA论文。山西大学的数据不包括ISTP论文。专著指该学院教师出版的学术专著数,不包括教材。项目及奖项指该学院教师申请的省部级以上项目、经费及省部级以上奖项。发明专利指:该学院教师申请并且授权的发明专利。3所高校的化学化工学院拥有一定数量的教授和博士生导师,博士学位的教师也占到了较大比例。3所学院教师的科研成果也较为可观,被3大检索刊物收录的论文数量较多,出版了一定数量的专著,申请了一定数量的国家自然科学基金项目。山西大学化学化工学院承担了国家自然科学基金的重大攻关项目,以及“863”项目,甚至获得了国家科技进步奖和国家技术发明奖二等奖各1项。中北大学化学与环境学院承担过“973”项目,获得过国家技术发明二等奖1项,三等奖2项,国防科学技术一等奖2项。中北大学和山西大学还拥有发明专利十几项。从师资力量来看,应该说学科集群让山西省高校化学化工领域的创新取得了一定的成就,使得山西省高校化学化工专业在全国具有了一定的竞争优势和影响力。

三、化学工程与技术专业学科集群的协同创新模式

山西大学至今已与国内20余所高校、科研院所建立了学术交流与合作关系;与日本岩手大学、香港浸会大学等国家和地区的高校及科研单位签订协议,开展交流。在校企合作方面,与山西三维集团股份有限公司、太原钢铁(集团)公司、天脊集团等大型企业,在产品研发、岗位培训等多方面进行了良好的合作。太原理工大学与山西化工研究所建立了山西省化学工程技术中心,还与山西焦化集团公司等6个企业建立了长期稳定的产学研合作关系。中北大学安全工程系与航天一院、航天三院、北京理工大学、南京理工大学、第二炮兵工程学院、西安近代化学研究所等科研机构和相关生产企业进行了卓有成效的科研项目合作。从产学研合作角度来看,三所高校都与国内外相关院校、科研院所和企业建立了良好的产学研合作关系。从企业合作的视角来看,在研发方面,与山西省的产业集群密切相关,合作领域主要为新能源技术、环境化工、生物工程与技术。3所高校的化学工程与技术学科集群与山西省的产业集群具有一定的协同关系,构建了学科集群与产业集群协同创新的模式,围绕着山西省的产业特色,为山西省地方经济服务。

四、我国化学工程与技术专业集群的路径

从以上3所高校的情况来看,基本上已经完成了单个高校某个学科的集群,在3所高校内部相关专业之间建立了学科集群,集群的方式是建立化学化工学院,统筹化学化工各个专业,从多学科、多专业、多研究方向的角度,进行学科集群。关于区域性学科集群,即单个高校与该高校所在地高校、研究所和企业之间的集群,3所高校都作出了一定的努力,也取得了一定的实效。集群的方式是产学研合作,与山西省高校、科研院所和企业建立合作关系,从而服务地方经济。关于跨区域性学科集群,即单个高校与该高校所在地之外高校、研究所和企业之间的集群,中北大学有一定的建树,却没有进一步深入。中北大学之所以能够有一定建树的原因是该校原来是部属院校,与其他部属院校具有一定的合作关系。因此,中北大学的跨区域学科集群,仅仅局限于与兄弟院校的合作,还没有进一步深入到与其他省份企业的合作上。

五、结论

第一,我国高校化学工程与技术专业有87个研究方向,扩散性较强,涉及到了化学化工的各个领域,表明该专业的建设具有学科集群现象,并且已经以建院的形式,完成了单个高校某个学科的集群。第二,学科集群有利于团队建设,从而能够产生一定的创新成果,与产业集群一样,使得高校学科建设具有一定的竞争优势和影响力。第三,学科集群与高校所在地产业集群存在一定的协同关系,也就是说,学科集群首先必须与高校所在地经济发展特色密切相关。只有这样,才能实现产学研结合,服务地方经济。第四,从学科集群的路径来看,单个高校某个学科的集群已经完成,区域性学科集群也具有了一定的规模,跨区域性学科集群还有待于进一步发展。当然,我们相信,在区域性学科集群发展到一定程度后,必然会走向跨区域性学科集群。

化工类毕业论文范文二:生物质化学人才培训思考

一、生物质化学工程人才的需求分析

能源是人类社会赖以生存和发展的基础。随着经济的飞速发展,我国能源消耗快速增长,已跃居世界第二大能源消费国。我国能源总量和人均占有量却严重不足,石油供需约缺口1亿吨,天然气供需约缺口400亿标准立方米。而且,由于清洁利用的技术难度较大,化石能源在使用过程中引发了诸多的环境问题。生物质能是第四大一次能源,又是唯一可存储和运输的可再生能源。发展生物质能将缓解能源紧缺的现状和减少化石能源造成的环境污染。我国幅员辽阔,又是农业大国,生物质资源十分丰富。据测算,我国目前可供开发利用的生物质能源约折合亿吨标准煤。国家“十一五”发展规划明确提出“加快发展生物质能”。同时,随着化石资源日益枯竭,化学工业的原料也将逐步由石油等碳氢化合物向以生物质为代表的碳水化合物过渡。目前,世界各国纷纷把发展生物质经济作为可持续发展的重要战略之一。以生物质资源替代化石资源,转化为能源和化工原料的研究受到普遍重视。政府、科研机构和道化学、杜邦、中石油、中石化、中粮等大型企业争相研发和储备相关技术,并取得了一系列重大进展。海南正和生物能源公司、四川古杉油脂化工公司和龙岩卓越新能源发展有限公司,依托我国自主知识产权的生物柴油生产技术,相继建成规模超过万吨的生产线,产品达到了国外同类产品的质量标准,各项性能与0#轻质柴油相当,经济效益和社会效益俱佳。我国对以生物质为原料生产化学品(即生物基化学品)极为重视,已列入科技攻关的重点。例如,生物柴油生产过程中大量副产的甘油是一种极具吸引力的非化石来源的绿色化工基础原料。从甘油出发生产1,2-丙二醇、1,3-丙二醇和环氧氯丙烷等大宗化工产品,已经实现或接近产业化。新兴产业的发展,最根本的是靠科技的力量,最关键的是要大幅度提高自主创新能力,其核心是人才的竞争。浙江是经济大省和能源小省,能源资源低于全国平均水平,一次能源消费自给率仅为5%;而气候条件优越,是我国高产综合农业区,森林覆盖率达60%,生物质资源居全国前列。浙江省乃至全国的生物质能源产业和生物质化学工业的蓬勃发展,对生物质化学工程人才的需求十分迫切。

二、生物质化学工程人才的知识结构

生物质化学工程(专业)模块是一个新生事物,并未包含在《全国普通高等学校本科专业目录》之中。在《专业目录》中与之接近的是生物工程专业。生物工程专业培养掌握现代工业生物技术基础理论及其产业化的原理、技术 方法 、生物过程工程、工程设计和生物产品开发等知识与能力的高级专业人才。生物工程专业重点关注围绕生物技术进行的工程应用,而生物质化学工程重点关注通过化学工程技术(包括生物化工技术)对生物质资源进行加工利用的工业过程。可见,生物质化学工程(专业)模块与生物工程专业的人才培养目标和知识体系存在着明显差异,其人才培养模式仍处于探索之中。生物质的组织结构与常规化石资源相似,加工利用化石资源的化学工程技术无需做大的改动,即可应用于生物质资源。但是,生物质的种类繁多,分别具有不同的特点和属性,利用技术远比化石资源复杂与多样。可见,生物质化学工程人才必须具有扎实的化学工程基础,并熟悉各类生物质资源的特点、用途和转化利用方式。因此,浙江工业大学将生物质化学工程人才的培养目标定位为:既能把握和解决各种化工过程的共性问题,胜任化工、医药、环保和能源等多个领域的科学研究、工艺开发、装置设计和生产管理等工作;又能将化学工程的基础知识灵活运用于生物质资源的转化利用和生物质化工产品的生产开发等领域,胜任生物质能源和生物质化工等新兴行业的工作。

三、生物质化学工程人才培养的探索与实践

(一)组织高水平学术会议,营造人才培养氛围

2007年4月,浙江工业大学与中国工程院化工、冶金与材料工程学部和浙江省科技厅共同主办了“浙江省生物质能源与化工论坛”。中国工程院学部工作局李仁涵副局长分析了我国能源技术的发展状况,强调了发展生物质能需注意工艺过程的绿色化。浙江省科技厅寿剑刚副厅长介绍了浙江省能源消费状况和新能源技术研发动态,鼓励省内外的科技工作者为改善浙江省能源紧缺现状而努力工作。浙江工业大学党委书记汪晓村回顾了浙江工业大学的发展历程,介绍了浙江工业大学化学工程学科在生物质能源领域的科学研究特色和人才培养思路。浙江工业大学的计建炳教授和石油化工科学研究院的蒋福康教授主持了学术交流与讨论。闵恩泽、李大东、舒兴田、岑可法、沈寅初、汪燮卿等六位院士分别从我国发展生物能源的机遇与挑战、我国生物质能源产业发展状况、生物质燃料(清洁汽柴油、生物柴油)利用技术、生物柴油联生产物利用技术和以生物质为原料进行化工生产等几个方面进行了精辟论述。2009年4月,浙江工业大学承办了“中国工程院工程科技论坛第84场———生产生物质燃料的原料与技术”。浙江工业大学副校长马淳安教授在开幕式上致辞,介绍了浙江工业大学化学工程学科在生物质能源领域开展的科学研究和人才培养工作。浙江省可再生能源利用技术重大科技专项咨询专家组组长、浙江工业大学化工与材料学院生物质能源工程研究中心主任计建炳教授主持了学术交流与讨论。国家最高科学技术奖获得者、两院院士闵恩泽做了题为“21世纪崛起的生物柴油产业”的 报告 ,重点阐释了我国发展生物能源和生物质化工的机遇与挑战。在两次会议上,来自石油化工研究院、清华大学、浙江大学、浙江工业大学、浙江省农业科学院、中国林业科学研究院和中粮集团等单位的专家学者分别介绍了生物质原料植物的选育、生物质原料的收储运物流供应体系、生物质原料的梯级利用、生物质液体燃料的制取技术、生物柴油的生产实践及其副产物综合利用和生产生物柴油的反应器技术等方面的研究进展。会议期间,闵恩泽院士等人应邀参加了浙江工业大学化学工程与工艺专业建设暨生物质化学工程专业方向建设研讨会。闵恩泽院士指出,迈入21世纪以来,针对日趋严峻的能源危机和环境危机,国家高度重视能源替代战略的发展和部署,新能源代替传统能源、优势能源代替稀缺能源、可再生资源代替非可再生资源是大势所趋;因此,化学工程与工艺专业根据国家发展需求调整学科设置、进一步促进交叉学科的发展也势在必行。闵恩泽院士认为,在降低能耗和保护环境的时代背景下,生物质能源和生物质化工的产业发展为生物质化学工程人才提供了广阔的发展空间,生物质化学工程(专业)方向的建设思路符合当今化工产业的发展趋势。近距离接触学术泰斗,聆听专业领域的前沿进展,极大地激发了学生们的学习兴趣。通过组织高水平学术会议,浙江工业大学营造了培养生物质化学工程人才的良好氛围。

(二)理论与实验课程体系

根据人才培养目标定位,浙江工业大学将生物质化学工程(专业)模块的主干学科确定为化学工程与技术,针对生物质资源加工利用过程的特点,对化工原理、化学反应工程、化工热力学、化学工艺学、化工设计、分离工程和化工过程分析与合成等主干课程的教学内容进行了梳理。此外,增设了生物质化学与工艺学和生物质工程两门专业课程。生物质化学与工艺学重点讲授糖类、淀粉、油脂、纤维素、木质素、甲壳素、蛋白质、氨基酸等生物质的结构、性质、用途,以及加工转化为化工产品的生产工艺。生物质工程从原料工程学、转化过程工程学和产品工程学等角度出发,为学生讲授生物质资源转化利用过程中的工程原理、工程技术和生产实例。化学工程与工艺国家特色专业综合实验室在中央与地方共建高等学校共建专项资金的资助下,为生物质化学工程(专业)方向增设了酯交换法制备生物柴油和生物质热解制备生物原油两个实验,并在积极筹备开设生物柴油品质测定、淀粉基两性天然高分子改性絮凝剂的制备和易降解型纤维素-聚乙烯复合材料的制备等实验。

(三)实习、实践和毕业环节

生物质化学工程模块依托化学工程省级重点学科和生物质能源工程研究中心建设,师资力量雄厚,拥有专职教师14人。其中,正高职称5人,副高职称7人,11人具有博士学位,7人具有海外 留学 经历。生物质化学工程模块教师的科研成果成功实现产业转化,与企业建立了良好的合作关系。生物质化学工程模块不断加强产学研合作,与宁波杰森绿色能源科技有限公司、温州中科新能源科技有限公司等企业签订了共建大学生创新实践基地的合作协议,设立了企业专项奖助学金,拓展了实习实践 渠道 ;还依托化工过程模拟基地,引入计算机模拟实习、沙盘模拟等方式,丰富了生产实习环节的教学手段。同时,生物质化学工程模块修订完善生产实习教学大纲和教学计划,根据实习厂和仿真软件编写实习手册,强化对实习的质量监控与反馈,建立科学合理的考评体系;增加“内培外引”师资的力量,加快实习指导师资队伍建设;从实习方式、实习内容、考核办法和师资队伍等多个角度出发,确保生产实习教学质量的全面提高,强化学生的工程意识和实践能力,培养学生的创新意识和创新能力。生物质化学工程模块教师承担了国家自然科学基金、浙江省自然科学基金、浙江省科技厅重大招标项目、浙江省科技计划项目和企业委托开发项目数十项。从这些科研和工程开发项目中选取的毕业环节课题,更加贴近科学研究、工程设计或工业生产的实际情况,能够全面检验学生所学的理论知识及其综合运用能力,全方位增强学生结合工程实际,发现问题、分析问题和解决问题的能力,为学生步入工作岗位打下良好基础。依托实践教学平台,从“产品工程”的理念出发,选取若干个恰当的产品,串联实验、课程设计、实习、毕业环节和课外科技活动等教学内容,帮助学生理顺知识体系,建立起绿色化学和节能环保的基本理念。以生物柴油为例,核心反应是酯交换反应,可以采用水力空化等技术强化反应过程;产物需要采用精馏方法分离,生产废水需要采用电渗析等方法加以分离;生产过程中还涉及流体流动和传热等问题;生物柴油这一产品可以将多个实验内容组合成一个有机整体,有效降低实验原料的消耗。教学可以选取其中部分内容作为单元设备设计进行,可以将生物柴油生产车间作为化工设计的教学内容,可以选取部分内容作为学科课外科技项目或毕业环节的研究内容,还可以将生物柴油生产作为创业大赛的竞赛内容。学生可以到生物柴油生产企业进行实习,将工艺革新、过程强化和产品工程融为一体,并通过实验室规模与工业化规模的对比,强化工程意识。

丙二醇中的杂质 - 相关论文(共528篇) - 百度学术酯交换法联产的1,2-丙二醇中微量杂质的气相色谱-质谱...1,2 丙二醇是重要的化工原料,具有优良的杀菌性、湿润性、溶剂性,广泛用作香料、食品、化妆品、医药等的

研究论文二抗反应

最近,苏州大学材料与化学化工学部的汪胜教授发表了一篇题为“钯纳米粒子修饰纳米多孔碳作为高效的氢气传感器”的论文。在这项研究中,汪胜教授和他的团队使用钯纳米粒子修饰纳米多孔碳,并将其用于制造高效的氢气传感器。这种传感器可以快速且准确地检测到氢气,具有高灵敏度和较低的检测限值。与传统的氢气传感器相比,这种传感器具有更快的响应时间和更高的稳定性。据研究人员介绍,这种高效的氢气传感器具有广泛的潜在应用,例如工业生产中的氢气检测、水处理、化学反应等领域。此外,在环境保护和能源领域中,这种传感器也有很好的发展前景。汪胜教授的研究成果得到了国内外同行的高度评价,有望为氢气传感器的研发和应用提供重要的参考和指导。

“二抗”是指次级抗体,通常用于检测特定的原始抗体。在实验室中,二抗通常与一种已知的原始抗体结合,并通过化学反应来检测样本中是否存在该原始抗体。“抗鼠会”是一种试剂盒,其中包含了针对小鼠免疫球蛋白(IgG)的二级抗体。如果你使用这个试剂盒进行实验,则需要将待检样品加入到试剂盒中,并观察是否有相应的信号产生。总之,“二抗”和“抗鼠会”都是用于实验室科研工作中的试剂或技术手段,并不直接涉及到人类或动物样本反应问题。但在操作过程中仍需注意安全规范和标准操作程序以保证结果可靠性和数据质量。

最近,苏州大学材料与化学化工学部的汪胜研究团队在Advanced Materials和Biomaterials Science上分别发表了两篇论文。这些论文的主题集中在新型纳米材料在生物医学领域的应用。在Advanced Materials上发表的论文中,研究团队设计了一种基于层状双氧水钙钛矿纳米晶体的纳米药物载体。他们发现,这种载体可以有效地抑制癌细胞的增殖和扩散,并对正常细胞没有毒性。在Biomaterials Science上发表的论文中,研究团队探索了一种基于羟基磷灰石的生物活性材料,并将其应用于骨修复。他们发现,这种材料可以促进骨细胞的增殖和分化,从而加速骨的再生和修复。这些研究成果有望为生物医学领域提供新的治疗方法和技术,具有重要的应用价值。

浙江工业大学化工学院贾义霞课题组近年来一直致力于手性合成与不对称催化领域的研究工作,取得较好的研究成果,在.、.等国际重要学术期刊上发表一系列研究论文。江工业大学化学工程与材料学院设有化学工程、应用化学、工业催化、化学工艺、材料学、农药学、化学等7个学科,其中工业催化为国家重点学科(培育),应用化学、工业催化、新材料及加工工程为浙江在职研究生重中之重学科,化学工程、材料学为浙江省重点学科。最近,浙江工业大学化工学院贾义霞课题组在不对称傅克反应研究中取得重要进展,在国际顶级期刊《德国应用化学》(Angew. Chem. Int. Ed.)上以“Dual Catalysis for the Redox Annulation of Nitroalkynes with Indoles: Enantioselective Construction of Indolin-3-ones Bearing Quaternary Stereocenters”为题发表研究论文,首次报道以硝酮为烷基化试剂的不对称傅克烷基化反应,并利用三氯化金/手性磷酸组合催化剂,实现了邻硝基苯乙炔与吲哚的环化/烷基化反应的高效串联,高选择性地构筑含有2-位季碳手性中心的吲哚酮类化合物,为含有该类结构的重要天然产物和生物活性分子的合成提供了快速有效的方法。该研究主要由浙江工业大学刘人荣老师和叶仕春硕士完成,二年级本科生陈净标同学参与了最优催化剂¬——五氟苯基手性磷酸的合成。这一工作是该课题组在不对称傅克反应领域继J. Am. Chem. Soc. 2013, 135, 2983后报道的第二个重要研究结果。研究受到国家自然科学基金、教育部新世纪优秀人才支持计划以及浙江省自然科学杰出青年基金等在职研究生项目的大力支持。考研政策不清晰?同等学力在职申硕有困惑?院校专业不好选?点击底部官网,有专业老师为你答疑解惑,211/985名校研究生硕士/博士开放网申报名中:

二酮盐的性能研究论文下载

化学名称:β-二酮。硬脂酰苯甲酰甲烷。分子量:。产品名称:PVC用助热稳定剂。国外名称:RHODIASTAB – 50,FAFAR HS-50。物化性质:外观—白色或淡黄色粉末。熔点—54 ~ 58℃、假比量— ~ 克/立方厘米、溶解性—可溶于三氯甲烷、甲苯、丙酮、乙酸乙酯等、毒性—LD50>10000mg/Kg (小白鼠急性毒性试验)、β-二酮配位化合物。性质:含β-二酮配位体的配位化合物。β-二酮是二齿配位体,与金属离子形成六元环的螯合物。如[Cu(acac)2](Hacac=乙酰丙酮,acac乙酰丙酮根)。β-二酮与其烯醇式互为异构体:形成的配位化合物可表示为内配位盐(a),也可以离域大π键表示(b)(图暂缺)。在一些二聚体中,其中的acac是O—键合又是C—键合,如二(乙酰丙酮基三甲基合铂)[PtMe3(acac)]2。大多数金属离子在适当的条件下直接与β-二酮形成配位化合物。多数溶于有机溶剂。是一类重要化学试剂,是许多物质(如双氮配合物,金属有机等)。合成和金属膜沉积前驱体,可用作许多反应(如丁二烯聚合)催化剂。也用于稀土分离。有的是液晶材料,有的是非线性光学材料,有的β-酮稀土配合物是发光材料,在光、电、磁特性功能材料研究中具有重要意义。β-二酮类高分子螯合剂性质: 指氧配位原子以β-二酮形式(—COCH2CO—)存在的高分子螯合剂,两个相隔三个碳原子的氧原子与金属离子络合后形成六元环稳定结构,因此络合能力较强,是二配位基团。能与ZrO4+,UO22+,Cr3+,Ce3+,Cu2+,等金属离子络合,形成稳定的高分子螯合物。上述高分子螯合物还具有催化活性,如二价铜离子螯合物具有分解过氧化氢催化能力。

据美国最新一期《环境观察》杂志报道,一种广泛存在于塑料玩具、奶瓶、化妆品和其他塑料消费品中的人工合成化学物质--邻苯二甲酸盐,可能危害男婴的生殖器官,影响孩子的性征发育,甚至引起生殖系统的癌症。几乎在同时,一份发表在《内分泌月刊》上的论文指出,酚甲烷,也是一种在塑料制品中常用的化学物质,可能导致女性患上乳腺癌。 两项研究证明塑料危害大 在第一项研究中,研究人员对孕妇进行了尿液采样,分别测量其中所含邻苯二甲酸盐的水平,并将数据与各自所生的婴儿的生理指标进行对比。结果显示,尿液中邻苯二甲酸盐浓度越高的准妈妈,她们所生的婴儿就越有可能出现阴茎短小、隐睾症、尿道下裂等生殖发育异常现象。罗切斯特大学药物和牙科学院的教授沙娜·斯万是这个研究的主持人,论文发表在美国国家环境健康科学研究院主办的月刊《环境观察》杂志上。 研究小组指出,这与早前的动物实验结果是相似的,邻苯二甲酸盐能够干扰母鼠怀孕期间睾丸酮(一种雄性激素)的分泌,产生“邻苯二甲酸盐综合征”,导致其诞下的雄性幼鼠精子活动能力降低或死精,并有雌性化倾向。研究还证明,人类可能比老鼠更容易受到这种物质的侵害。 第二项研究则是针对老鼠进行的,由俄亥俄州的辛辛那提大学的分子内分泌专家索海·克汉主持,研究者发现,暴露于酚甲烷中的老鼠,很容易患上乳腺癌。研究者认为,动物体内酚甲烷浓度水平过高,可能导致乳腺组织对雌激素更加敏感,从而容易发生癌症。 两种化学合成物广泛存在 “这个结果可谓石破天惊,而且隐忧重重,因为塑料制品的使用太广泛了,在很多人的身体内,上述化学物质的浓度和试验中的水平一致”。哈佛大学公共健康学院教授鲁斯·豪瑟说。沙娜·斯万指出,邻苯二甲酸盐进入人体的一个重要途径就是人类食用塑料包装袋包裹的食物。此外,接触各类含邻苯二甲酸盐的制品,包括塑料玩具、奶瓶和化妆品,都能导致孕妇或婴儿体内邻苯二甲酸盐浓度升高。 而酚甲烷自从1950年以来就被广泛地用于塑料制品中,还有牙科填充材料、食品罐头的密封剂中也含有酚甲烷。近年来专家们才发现酚甲烷有类激素的作用。 这些化学物质可能被禁 其实,各国关于邻苯二甲酸盐的讨论已经持续了十几年,由于担心其潜在危险,欧盟在1999年就明令禁止在儿童玩具中添加邻苯二甲酸盐,以防孩子吮吸、啃食。但对其他更多的产品中邻苯二甲酸盐的含量,众多国家并没有认定标准。而此次的研究发现,即使孩子不接触这一类化学物质,仅仅是孕妇接触,也可能会对孩子造成深远的危害。 针对第二项研究,研究者指出,酚甲烷对女性乳腺组织的危害到底有多大,需要对女性群体进行长达50年的跟踪调查才能得出明确结论。研究者指出,“难道我们能够等待50年吗?”据悉,美国加利福尼亚州已经开始考虑禁止在儿童玩具中添加酚甲烷。 别用塑料袋装饭菜 山东省职业卫生与职业病防治研究院毒理室主任王蕊多年一直从事有毒化学物质的研究。王主任说,邻苯二甲酸、酚甲烷这一类的物质统称为环境内分泌干扰物,起到类似激素的作用,对人体的内分泌系统造成影响。人体的内分泌系统是一个稳定的平衡系统,各种激素在体内达到一种平衡。类激素物质进入体内,就会打破原有的平衡,导致人体内分泌系统失调,产生各种病症。王主任还强调,邻苯二甲酸类物质使用很广泛,该类物质分解、降解后,是否会污染水源,通过饮用水进入体内,目前还没有相关的研究。王主任特别指出,尽管目前对于上述两种化学物质多大剂量才产生危害并没有定论,但一些特殊人群,比如孕妇,还是应该尽量避免使用含有此类物质的香水和化妆品。对于儿童来说,也要审慎接触塑料玩具。此外,邻苯二甲酸类衍生物中,很多是酯类,不易溶于水,但能溶于加温过的或者脂肪性食品。如果用作食物包装材料,使用时要特别小心,尽量不要用它们来装饭菜等食物,也不要用塑料袋盛装热食物。

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

二甲基苯甲酸的研究论文下载

最佳回答:酯化的速度的大小排序:苯甲酸,邻甲基苯甲酸,2,6-二甲基苯甲酸。原因是甲基是电子基团,导致羧基电离度降低,酸性弱。

找了一篇专利描述,不知道对你有没有些微帮助。

--------------------------------------------------------------------

一种利用固体核磁碳谱检测煤结构参数的定量分析方法与流程

文档序号:11197378

导航: X技术> 最新专利>测量装置的制造及其应用技术

本发明涉及固体核磁碳谱分析技术领域,特别涉及一种利用固体核磁碳谱检测煤结构参数的定量分析方法。

背景技术:

煤是一种由多种官能团、多种化学键组成的复杂有机大分子。了解煤大分子结构模型对认识煤的物理化学性质有重要意义。从煤有机分子的碳结构角度,可以揭示煤液化产物的碳结构变化,为推导煤液化反应机理奠定良好的基础。对煤组成结构深入研究,与工艺性能相结合,能更好的指导工业生产,实现煤炭清洁高效的利用。

煤中只有少部分是可溶于各种溶剂的小分子化合物,其余的大部分是不能被溶解的大分子骨架结构。运用固体核磁共振技术可以在对煤进行非破坏性研究情况下,直接检测煤样,得到煤碳结构参数。由于13C核天然丰度低,13C的NMR信号弱、探测灵敏度低,而且由于外磁场中核的各种相互作用以及固体中化学位移各向异性,磁核之间的直接偶极相互作用引起了谱线增宽、不对称线型,分辨率下降情况。直到70年代中期,随着固体核磁交叉极化(CP)和魔角旋转(MAS)等技术发展,固体13C-NMR逐渐应用于煤的研究中。CP技术增强了稀核信号,提高灵敏度,解决碳原子的纵向弛豫时间(T1)太长的问题;而MAS技术则消除化学位移的各向异性;边带压制技术(TOSS)消除样品快速旋转时使得某些原子核的共振谱线产生较大的旋转边带。所以为了窄化谱线、增加灵敏度,得到高分辨率的固体13C-NMR图谱时通常联合使CP、MAS和TOSS等几种技术,这已成为当今研究煤分子结构的普遍方法。

80年代固体核磁技术在常规固体高分辨核磁共振谱的基础上又发展了偶极相移技术,可以区分质子化碳和非质子化碳,提供芳碳率、芳氢率及脂碳率等新的结构信息。到了90年代,利用常规固体技术和偶极相移技术结合谱图分段积分方法得到更为详细的碳结构参数,但是偶极相移技术操作较复杂,需要多次实验,耗时甚多。1996年Koh Kidena等人运用CP和SPE 13C-NMR测试PM煤碳结构,通过分峰拟合(拟合软件为MacAlice)的方法将碳信号分为11类含碳官能团信号,如表1所示。

表1 13C NMR中不同类型碳对应的化学位移

如今基于不同类型碳的不同化学位移归属,结合计算机辅助技术—分峰拟合技术能够直观、精细和快速的得到多种不同类型碳的含量,得到不同碳材料的结构参数。

由于13C CP/TOSS/MAS NMR中CP技术将丰核(1H)较大的自旋状态极化转移给较弱的稀核(13C),使稀核(13C)极化而迅速恢复平衡,缩短了测试时间,但在对氢去耦过程中增强了碳原子能量,使得碳谱谱线增强。简而言之,当分子内两个磁核之间空间位置相近时,对氢核去耦时达到饱和的氢核会将能量转移到碳核上,从而使得碳谱谱线增强,该现象称为碳核Overhause效应(NOE)。因此13C CP/TOSS/MAS NMR谱图中碳原子谱线的强度并不能定量的反映分子内不同化学环境下碳原子的相对数量,交叉极化实验中,接触时间的不足、射频场的不均匀性、NOE效应的存在都使得固体核磁定量不准确,与理论碳结构参数存在误差,不能准确进行碳材料的定量研究。液体核磁中运用门控去耦技术已消除了核Overhause效应,可以很好的进行碳结构定量。而固体核磁定量大多是通过对谱仪硬件的提升以及脉冲序列的巧妙设计,以达到定量效果,但还未见到快速、有效方便的定量方法。90年代Robert 等在研究中就表明CP技术的运用主要使季碳芳香碳的磁化比例比质子化碳低,所测得的芳香度要偏低。所以对于大量不带质子碳原子的高成熟煤样,如无烟煤测出的误差要相对小一些,而对于大量带质子碳原子的低阶煤中误差就比较大。所以煤结构分析中煤固体核磁碳结构参数定量分析就显得尤为重要。

煤的组成结构模型一直是煤化学研究的核心问题之一。在煤结构方面,中国专利CN 104091504A蔺华林等人通过对煤样固体核磁表征以及对煤液化油气质联用分析构建了煤大分子模型。通过固体核磁碳谱测试表征煤的详细碳结构参数,能够为煤结构模型准确构建奠定坚实的基础,所以获得固体核磁碳结构参数的准确合理性就显得尤为重要。由于核Overhause效应等因素的存在,运用13C CP/TOSS/MAS NMR测试结果对碳材料直接分析,表征碳结构参数不够准确,测定的参数存在一定的误差。

技术实现要素:

本发明的目的在于修正煤中固体核磁碳谱测定碳结构参数的误差,得到相对准确的碳结构参数,提供了一种利用固体核磁碳谱检测煤结构参数的定量分析方法。

所述方法包括如下步骤:

S1)选取模型化合物;

所述模型化合物包括一系列带脂肪侧链和/或含杂原子官能团的固体芳香化合物,各所述模型化合物的芳香度不同,所述芳香度为不饱和碳原子数与总碳原子数之比;

S2)测定各模型化合物的固体核磁碳谱;

S3)建立校正固体核磁碳谱测试误差的回归曲线方程;

根据不同类型碳原子位移归属和步骤S2测定的固体核磁碳谱,运用分峰拟合方法拟合得到各模型化合物的不同类型碳原子含量拟合值,求和分别计算出各模型化合物的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%;

再将各模型化合物的饱和碳原子含量拟合值X%分别与各模型化合物的饱和碳原子含量理论值进行回归分析,获得饱和碳校正固体核磁测试误差的回归曲线方程(Ⅰ),

X’=f(X) (Ⅰ);

将各模型化合物的不饱和碳原子含量拟合值Y%分别与各模型化合物的不饱和碳原子含量理论值进行回归分析,获得不饱和碳校正固体核磁测试误差的回归曲线方程(Ⅱ),

Y’=f(Y) (Ⅱ);

其中X’、Y’分别为与X和Y对应的修正值;

S4)验证回归曲线方程准确性;

将已知结构的验证化合物按照步骤S2相同的测试条件测定固体核磁碳谱,所述验证化合物也为带脂肪侧链和/或含杂原子官能团的固体芳香化合物;同样通过分峰拟合得到验证化合物的不同类型碳原子含量拟合值,求和分别计算出验证化合物的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归曲线方程(Ⅰ)和(Ⅱ)得到对应的修正值X’和Y’,再将修正值与验证化合物的理论值比较,验证回归曲线方程的准确性;若验证化合物的饱和碳原子含量和不饱和碳原子含量的修正值与理论值相对误差大于10%,说明准确性不高,重新调整模型化合物的种类和数量,重复步骤S1~S3,直到验证化合物的饱和碳原子含量和不饱和碳原子含量的修正值与理论值相对误差小于10%;

S5)待测煤样碳结构参数的测定及修正;

将待测煤样按照步骤S2中相同的测试条件进行固体核磁碳谱测试,同样通过分峰拟合得到待测煤样的不同类型碳原子含量拟合值,求和分别计算出待测煤样的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归方程(Ⅰ)和(Ⅱ)得到待测煤样对应的修正值X’和Y’,再根据X’和待测煤样的各个类型的饱和碳原子含量拟合值等比例计算出各个类型的饱和碳原子含量的修正值,根据Y’和待测煤样的各个类型的不饱和碳原子含量拟合值等比例计算出各个类型的不饱和碳原子含量的修正值。上述修正值即为修正后的待测煤样碳结构参数。

所述饱和碳原子含量指饱和碳原子(本文中又称脂肪碳)在总的碳原子中的占比,不饱和碳原子含量指不饱和碳原子(本文中又称芳香碳)在总的碳原子中的占比,下同。

优选的,所述模型化合物选自苯系、萘系和蒽菲系化合物中的至少三种化合物,各化合物纯度大于98%,其中芳香度最低的为30~40%,最高的为90~95%。

优选的,所述模型化合物包括:3,4-二甲基苯甲酸、十二烷基苯磺酸钠、2-萘乙酸、2-甲基萘和9-甲基蒽。

优选的,所述验证化合物也选自苯系、萘系和蒽菲系化合物。

优选的,所述验证化合物为9,10-二甲基蒽。

优选的,步骤S2、S4和S5中,模型化合物、验证化合物及待测煤样在测定固体核磁碳谱前,粉碎研磨至80目以下并在65℃下真空干燥24h。

优选的,步骤S2、S4和S5中,固体核磁碳谱测试条件为:脉冲序列为CP/TOSS,13C共振频率与仪器相匹配,交叉极化接触时间为1~5ms,循环延迟时间为1~10s,魔角转速为3~7k Hz,转子外径为4~7mm。

优选的,步骤S3中,选用Origin软件进行模型化合物非性回归分析,曲线的相关系数R2大于后得到相应的回归曲线方程。

本发明的一些较佳实施例中,回归曲线方程(Ⅰ)和(Ⅱ)均为非线性二次函数,通式如下:

X’=a1+b1X+c1X2

Y’=a2+b2Y+c2Y2

式中:a1,b1,c1,a2,b2,c2为曲线回归系数。

本发明具有以下优点和有益效果:

本发明的所述方法以一系列带脂肪侧链和/或含杂原子官能团的苯系、萘系和蒽菲系化合物作为模型化合物,通过测定模型化合物的固体核磁碳谱,确定不同模型化合物碳结构参数误差,将模型化合物碳谱分峰拟合的脂肪碳和芳香碳拟合值与样品碳结构的理论值进行回归分析,得到脂肪碳和芳香碳的校正固体核磁碳谱测试误差回归曲线方程,同时再运用已知结构的模型化合物验证回归方程的准确性;通过对不同模型化合物的固体核磁测定及回归分析,利用回归曲线方程对待测煤样的拟合参数进行修正,可有效解决固体核磁碳谱测试中碳结构参数的误差,实现固体核磁碳谱定量分析。本发明的所述方法为13C CP/TOSS/MAS NMR技术与非线性回归方程相结合,能够快速方便的获得相对准确的不同类型碳结构参数,为煤中碳结构分析提供了新的技术保障,提供了一种简便易行的结构参数修正方法。应用所述方法能够相对准确的测定煤结构参数,从而可以从有机碳角度更好的了解煤的结构和性质,为煤结构的解析提供新的技术支撑,对煤的高效转化和利用起指导作用。

所述的方法不仅适用于煤中碳结构的分析,同样适用于油页岩矿产类含碳固体物质及生物质类含碳固体物质中的固体核磁碳谱的分析。

附图说明

图1为不同模型化合物脂肪碳拟合值与理论值回归曲线图;

图2为不同模型化合物芳香碳拟合值与理论值回归曲线图;

图3为淖毛湖褐煤的分峰拟合图;

图4为小龙潭褐煤的分峰拟合图;

图5为黑山次烟煤的分峰拟合图。

具体实施方式

以下结合具体实施例,对本发明作进一步说明。应理解,以下实施例仅用于本发明而非用于限定本发明的范围。

实施例1新疆淖毛湖褐煤(NMH)碳结构参数的分析

S1)样品及预处理

待测煤样:新疆淖毛湖褐煤。

模型化合物:3,4-二甲基苯甲酸、十二烷基苯磺酸钠、2-萘乙酸、2-甲基萘、9-甲基蒽;如表2所示,其中十二烷基苯磺酸钠的芳香度最低为%,9-甲基蒽的芳香度最高为%,其余的间于两者之间。

验证化合物:9,10-二甲基蒽,芳香度为%。

预处理:将上述待测煤样、模型化合物和验证化合物分别粉碎研磨至80目以下,煤样在65℃下真空干燥24h,干燥、均匀稳定的样品能保证样品在高速旋转或受到强电磁辐射时不爆炸。

S2)测定各模型化合物的固体核磁碳谱

分别将约150mg研磨均匀后的3,4-二甲基苯甲酸、十二烷基苯磺酸钠、2-萘乙酸、2-甲基萘、9-甲基蒽分别装入4mm ZrO2转子中,在BrukerAVANCEIII500型核磁共振波谱仪上选用脉冲序列为CP/TOSS进行固体核磁碳谱测试,选用4mm固体高分辨率魔角旋转探头。测试条件为:13C共振频率,交叉极化接触时间为1ms,循环延迟时间为3s,魔角转速为 Hz,转速为5600r/s。

S3)建立校正固体核磁碳谱测试误差的回归曲线方程

根据表1所示的不同类型碳位移归属和步骤S2测定的固体核磁碳谱,运用分峰拟合方法拟合得到各模型化合物的各个类型碳原子含量的拟合值(X3%,Xa%,X2%,X1+X*%,XO%,YH%,YB%,YS%,YO%,YCC1%,YCC2%),求和分别计算出各模型化合物的脂肪碳含量拟合值X%和芳香碳含量拟合值Y%,

X=X3+Xa+X2+X1+X*+XO,Y=YH+YB+YS+YO+YCC1+YCC2。

将各模型化合物的芳香碳和脂肪碳的拟合值与其理论值进行误差比较,结果见表2所示。

表2不同模型化合物碳结构理论值与实测值误差

由表2可知,通过上述常规的测定固定核磁碳谱以及分峰拟合的方法测得的碳结构拟合值与理论值误差较大,原因就是由于核Overhause效应等因素使得芳香碳和脂肪碳谱线强度增量不一致。

将步骤S2)中分峰拟合得到的各模型化合物的脂肪碳和芳香碳含量拟合值与各模型化合物的脂肪碳和芳香碳含量理论值进行回归分析,分析结果见图1和图2,相应的,得到脂肪碳校正固体核磁碳谱测试误差非线性回归曲线方程:

X’=(R2=,n=2) (Ⅰa)

以及芳香碳校正固体核磁碳谱测试误差非线性回归曲线方程:

Y’=(R2=,n=2) (Ⅱa)

式中X’、Y’分别为与X和Y对应的修正值。

脂肪碳的理论值与拟合值以及芳香碳的理论值和拟合值有良好的相关性,相关系数R2=;换言之固体核磁碳谱测试误差可以用响应非线性二次函数进行修正。。

S4)回归曲线方程准确性验证

将9,10-二甲基蒽按照步骤S2中相同的测试条件测定固体核磁碳谱,分峰拟合得到9,10-二甲基蒽的不同类型碳原子含量拟合值,求和分别计算出9,10-二甲基蒽的饱和碳原子含量和饱和不碳原子含量的拟合值X和Y,然后分别代入回归曲线方程(Ⅰa)和(Ⅱa)得到的X’和Y’为修正值,将9,10-二甲基蒽的饱和碳原子含量和不饱和碳原子含量修正前后的拟合值与理论值比较,结果见表3,修正后脂肪碳和芳香碳与其理论值相对误差均在10%以内,故运用非线性回归方法可以很好的修正固体核磁碳谱测试中的脂肪碳和芳香碳含量误差,可以得到较为准确的结构参数。

表3 9,10-二甲基蒽中碳结构实测值和理论值误差

S5)淖毛湖褐煤(NMH)结构参数的测定及修正

将淖毛湖褐煤煤样按照步骤S2中相同的测试条件进行固体核磁碳谱测试,同样通过分峰拟合得到淖毛湖褐煤煤样的不同类型碳原子含量拟合值,求和分别计算出淖毛湖褐煤煤样的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归方程(Ⅰa)和(Ⅱa)得到淖毛湖褐煤煤样对应的修正值X’和Y’,再根据X’和淖毛湖褐煤煤样的各个类型的饱和碳原子含量拟合值等比例计算出各个类型的饱和碳原子含量的修正值,结果见表4,根据Y’和待测煤样的各个类型的不饱和碳原子含量拟合值等比例计算出各个类型的不饱和碳原子含量的修正值,结果见表5。

表4修正前后淖毛湖褐煤不同类型脂肪碳分布

表5修正前后淖毛湖褐煤不同类型芳香碳分布

同时对煤样作元素分析,元素分析结果如表6所示。

以H/C作为对比参数,煤结构中氢原子以脂肪氢和芳香氢的形式存在,其中脂肪氢部分包括甲基、次甲基以及亚甲基形式,而芳香氢中则主要以质子化氢以及羧基中的氢存在,不考虑酚类,则煤的H/C原子比可根据公式估算:H/C=(YH+(1-Y)×)/100。修正前后淖毛湖褐煤H/C原子比及芳香度(芳香碳含量)见表6。

表6修正前后淖毛湖褐煤H/C及芳香度

由表6可知,运用非线性回归曲线方程对NMH煤修正后的不同结构参数估算的H/C原子比与元素分析结果具有一致性。对NMH煤的不同类型碳结构参数修正可靠,非线性回归曲线方程修正后能够得到相对准确的碳结构参数。

实施例2小龙潭褐煤(XLT)碳结构参数的分析

按照实施例1的分析步骤对小龙潭褐煤进行分析

步骤S5中,将小龙潭褐煤煤样按照步骤S2中相同的测试条件进行固体核磁碳谱测试,同样通过分峰拟合得到小龙潭褐煤煤样的不同类型碳原子含量拟合值,求和分别计算出小龙潭褐煤煤样的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归方程(Ⅰa)和(Ⅱa)得到小龙潭褐煤煤样对应的修正值X’和Y’,再根据X’和小龙潭褐煤煤样的各个类型的饱和碳原子含量拟合值等比例计算出各个类型的饱和碳原子含量的修正值,结果见表7,根据Y’和小龙潭褐煤煤样的各个类型的不饱和碳原子含量拟合值等比例计算出各个类型的不饱和碳原子含量的修正值,结果见表8。

表7修正前后小龙潭煤不同类型脂肪碳分布

表8修正前后小龙潭煤不同类型芳香碳分布

同样对小龙潭褐煤进行元素分析,元素分析结果以及修正前后小龙潭煤的H/C原子比及芳香度(芳香碳含量)见表9。

表9修正前后小龙潭煤H/C及芳香度

由表9可知,运用非线性回归曲线方程对XLT煤修正后的不同结构参数估算的H/C原子比与元素分析结果具有一致性。对XLT煤的不同类型碳结构参数修正可靠,非线性回归曲线方程修正后能够得到相对准确的碳结构参数。

实施例3黑山次烟煤(HS)碳结构参数的分析

按照实施例1的分析步骤对黑山次烟煤进行分析

步骤S5中,将黑山次烟煤煤样按照步骤S2中相同的测试条件进行固体核磁碳谱测试,同样通过分峰拟合得到黑山次烟煤煤样的不同类型碳原子含量拟合值,求和分别计算出黑山次烟煤煤样的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归方程(Ⅰa)和(Ⅱa)得到黑山次烟煤煤样对应的修正值X’和Y’,再根据X’和黑山次烟煤煤样的各个类型的饱和碳原子含量拟合值等比例计算出各个类型的饱和碳原子含量的修正值,结果见表10,根据Y’和黑山次烟煤煤样的各个类型的不饱和碳原子含量拟合值等比例计算出各个类型的不饱和碳原子含量的修正值,结果见表11。

表10修正前后黑山次烟煤不同类型脂肪碳分布

表11修正前后黑山次烟煤不同类型芳香碳分布

同样对黑山次烟煤煤进行元素分析,元素分析结果以及修正前后黑山次烟煤的H/C原子比及芳香度(芳香碳含量)见表12。

表12修正前后黑山次烟煤H/C及芳香度

由表12可知,运用非线性回归曲线方程对HS煤修正后的不同结构参数估算的H/C原子比与元素分析结果具有一致性。对HS煤的不同类型碳结构参数修正可靠,非线性回归曲线方程修正后能够得到相对准确的碳结构参数。

综上所述,本发明通过测定不同模型化合物固体核磁碳谱测试误差,将不同模型化合物碳谱分峰拟合的脂肪碳和芳香碳测试值与样品碳结构的理论值进行回归分析,得到脂肪碳和芳香碳的校正固体核磁碳谱测试误差的回归曲线方程,同时再运用已知结构的模型化合物验证回归方程的准确性;通过对不同模型化合物的固体核磁测定及回归分析,解决了由于核Overhause效应等因素引起的碳结构参数的误差,13C CP/TOSS/MAS NMR技术与回归曲线方程相结合能够快速方便的获得相对准确的不同类型碳结构参数,为煤碳结构分析提供了新的技术保障,提供了一种简便易行的结构参数修正方法。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

更正,应是二甲氧基苯甲酸,昨天查了资料,用硫酸二甲酯故今天决定放弃。多谢大家。

2-甲基苯甲酸无臭。2-甲基苯甲酸大多为白色颗粒,无臭或微带安息香气味,味微甜,有收敛性,易溶于水,白色结晶粉未,熔点173-177℃,医药中间体。邻甲基苯甲酸是一种化学品,分子式是C8H8O2,用于农药、医药及有机化工原料的合成,是生产除草剂稻无草的主要原料。

二甘醇残液萃取芳烃的研究论文

摘要:研究了运用固相微萃取/GC/ECD直接萃取溅定水中的三种氯酚的方法,得到了分析三种氯酚的SHE最佳萃取条件;选取聚丙烯酸酯(PA)萃取头,水溶液调pH=2,并用NaCl饱和,室温下在持续磁力搅拌下直接萃取40min,纤维萃取头在260℃脱附5min。所建立的方法适于快速、方便地测定水中三种氯酚,无须浓缩和预处理。 1 引言 固相微萃取是九十年代发展起来的一种快速、省时、高效、操作简便的样品前处理技术。它克服了以往预处理方祛的诸多不足,集采集、浓缩于一体,简单、方便、无溶剂,不会造成二次污染,是一种有利于环保的很有应用前景的预处理方法。萃取装置使用涂有色谱固定相或吸附剂的熔融石英纤维管(简称为萃取头),和外套不锈钢管加以保护,形状像一支色谱进样针,可方便地与气相色谱、液相色谱、色谱/质谱等仪器联用。它携带方便,可以直接从液体和气体中取样然后分析,已广泛用于环境样品的分析中[4][5][6][7]。氯酚类化合物是环境(水和土壤)中重要的污染物,其中2,4-氯苯酚(以下简称DCP)、2,4,6三氯苯酚(以下简称TCP)和五氯苯酚(以下简称PCP)已被我国列为水体中优先控制污染物。目前,对酚类化合物的分析主要是采用液-液萃取法,如美国EPA方法中的604[8]和[9],以及后来发展起来的固相萃取法(SPE)。液-液萃取的主要缺点是多步、费时,而且需要大量价格较高并对健康有害的高纯有机溶剂。SPE方法尽管同液-液萃取相比有了很大的改进,但仍是多步过程,且对半挥发性化合物的萃取受到方法本身的限制。本研究利用固相微萃/GC/ECD方法对水中这三种氯酚进行了分析,并讨论了各种实验条件对分析结果的影响,结果表明该方法快速、简单、准确,适合水中上述三种氯酚的分析。 2 实验部分 仪器与试剂惠普5890型气相色谱仪(配电子捕获检测器);固相微萃取装置(加拿大Supelco公司,萃取头为85μm膜厚的聚丙烯酸酯固相涂层针头)2,4-二氯苯酚、2,4,6-三氯苯酚、五氯苯酚色谱纯晶(购于PureChemical Analysis .);:氯化钠(分析纯);甲醇(色谱纯);无酚水(500ml蒸馏水加入5ml10%的NaOH和少量KMn04加热蒸馏,取馏出液。) 色谱条件色谱柱:HP公司HP-5MS 31m××μm石英毛细管柱;进样口温度:260℃;柱温:60℃(4min)—260℃(3min),升温速率8℃/min;ECD检测器温度:280℃;载气流速:高纯氮,/min;无分流进样。 固相微萃取条件与过程在100ml容量瓶中预先加入的HCl,再加入定量的氯酚标准溶液,并用无酚水稀释至刻度。取10ml(总容积约为12ml)洁净顶空瓶(带铝封盖和内衬聚四氟乙烯膜的密封垫),加入过量固体NaCl(约4g)和磁力棒,再加入配制好的标准待测样品,立即加盖密封压紧,将顶空瓶置于磁力搅拌仪上,启动搅拌,然后在常温下从瓶盖上方直接插入针管(注意针管套不要接触瓶内液面),推下手柄活塞杆,使萃取头完全浸入溶液中,保持40min。 萃取时间到达后,取出针管,立即插入气相色谱进样口进行热解析5min。 3 结果与讨论 测定结果 萃取涂层的选择 目前应用较多的三种多聚物涂层百非极性的聚二甲基硅氧烷(PDMS)和极性的聚丙烯酸酯(PA)或聚乙二醇(PEG)[4]。PDMS涂层通常用于非极性化合物的分析,PA涂层通常用于中极性化合物的分析,我们比较了同一氯酚混标样在PDMS和PA两种不同萃取头作用下的测定结果(见图3),结果表明PA萃—取头对酚类的萃取效果更好[9]。 萃取平衡时间对萃取量的影响由于待测物分子从溶液中向固相涂层的传质速度比较慢[3],所以直接萃取要求的时间要相对长一些。表1所示为三种氯酚在不同萃取时间下萃取量的影响。实验表明,平衡时间越长,SPME萃取量越大,40min以后萃取量基本上不随时间的延长而增大,表明萃取过程达到了平衡,故本实验取平衡时间为40min。 酸度对萃取量的影响三种氯酚均属于弱酸,其离解常数pka如下:2,4-DCP(pka =),2,4,6-TCP(pka=),PCP(pka=),在pH为中性的溶液中,氯酚都有离解,能形成离子状态,不利于萃取。降低pH值,能使它们的电离受到抑制,以保持氯酚的分子状态,使其在固相涂层上有更大的亲和力,从而增加萃取量,同时也提高了回收率。文献[10]中反映,当pH低于2时,萃取平衡时间将大大延长,pH=1时,PCP甚至在4h后才能达到平衡,考虑到实际应用,实验中我们测定了同一氯酚混标样在pH=2至pH=6值时的萃取效果(见图4),结果表明,pH值取2时,三种氯酚的萃取效果最佳。 盐加入量对萃取量的影响向待测样品中加入一定量的盐类,能产生所谓的“盐析”效应,可以降低氯酚在水中的溶解度,迫使氯酚进入SPME固相涂层中[11]。实验中,加入饱和的NaCl能明显提高氯酚的萃取量(见表2)。然而,PCP属于例外,因为它的离解常数(pka=)相对较高,中性溶液中其分子状态较少,以离子状态为主[2],当加入N幻后,由于溶液的离子强度增加,加速了PCP的高解反而使萃取量降低。当加NaCl的同时调节溶液的酸度(pH=2)时,PCP的离解降低,又能使PCP的萃取量恢复至未加NaCI的水平。实验表明,投加饱和NaCl应与调节溶液pH值同时采用方能保证三种氯酚的萃取量的提高。 方法的精密度、准确度及检出限表3 方法的线性范围、精密度、回收率情况 Table 3 Linear range,Precision and Recovery of the method 线性范围() RSD(%)(n=10) 平均回收率%(n=10) 2,4-DCP ~10 93 2,4,6-TCP ~20 90 PCP ~5 92 随着苯酚上的取代氯的增加,方法的最低检出限逐步提升,2,4-DCP为 ,2,4,6-TCP为·Lt-1,PCP为·L-1。表3结果表明,三种氯酚采用SPME方法线性范围宽,适用范围广。 4 结论 本研究表明同时测定三种氯酚的SPME最佳化条件是:采用PA萃取头,调节pH=2,以NaCl饱和,常温磁力搅拌下直接萃取40min,260℃下脱附5min。 SPME是一种快速、简便和非常有应用前景的样品预处理手段,用来分析水体中的三种氯酚化合物具有简便、快捷、高效的特点。

二甘醇(Diethylene glycol)(Diglycol)又称乙二醇醚或二乙二醇醚,分子结构式HO-CH2-CH2-O-CH2-CH2-OH,分子量C4H10O3 ,其具有无色、无臭、透明、吸湿性的粘稠液体,有着辛辣的甜味,无腐蚀性,低毒。沸点245℃,熔点℃,凝固点℃,闪点,折射率,相对密度,粘度泊,易溶于水、醇、丙酮、乙醚、乙二醇等其它极性溶剂,化学性质与乙二醇相似。主要可用作各种用途的溶剂、天然气脱水干燥剂、芳烃分离萃取剂、纺织品润滑剂、软化剂、整理剂,以及硝酸纤维素、树脂、油脂和印刷油墨等溶剂,也用作刹车液、压缩机润滑油中的防冻剂组份,还可用于配制清洗剂,并在油墨等其它日用化学品中作分散性溶剂。 二甘醇分子结构中含有醚键和 羟基两种官能团,使它具有独特的物理性能和化学性能。因此,以二甘醇为原料,可制取醚、酸、酯、胺、等多种化工产品,其主要产品有吗啉及其衍生物,1,4一二恶烷(1,4一二氧环已烯),二甘醇单(双)醚,二甘醇酯类(饱和酯和不饱和酯)等,被广泛应用于石油化工、橡胶、塑料、纺织、涂料、粘合剂、制药等行业,用途十分广泛。 二、二甘醇原料来源 二甘醇主要来自于环氧乙烷(EO)水合生产乙二醇(EG)的副产物,在副产物中二乙二醇(二甘醇)含量约占8~9%、三乙二醇(三甘醇)占~1%、其余为更高分子量的聚乙二醇,而副产物生成量随着环氧乙烷和水的配比的变化而变化。近年来,随着国内大型乙二醇生产装置的相继建成投产,目前我国乙二醇生产能力已高达104~105万吨/年,那么二甘醇的产量增长就很快,估计约可达10万吨/年左右。随着即将建成投产的南海石化的32万吨/年乙二醇装置和不久上海石化的38万吨/年乙二醇装置也将建成,届时全国和上海地区的二甘醇产量将会进一步增长。因此,开发二甘醇的下游产品,做好二甘醇的综合利用,是极具有经济价值和市场潜力的项目。 三、二甘醇主要下游产品的应用 以二甘醇与相应的醇或卤代烷为原料,可制得二甘醇单(双)甲醚、二甘醇单(双)丁醚,广泛用作油墨、油漆、树脂、涂料及染料等的溶剂,也用作有机合成的溶剂及汽车燃料的防冻添加剂。 二甘醇与氨反应,可合成吗啉,用于制造橡胶硫化助剂、纺织助剂、医药、农药及其他精细化工品。 二甘醇与甲胺反应可生产N-甲基吗啉,用作聚氨酯塑料发泡剂、有机全盛的溶剂,也作某些合成医药的催化剂。 由二甘醇 和脂肪酸可生产脂肪酸二甘醇增塑剂,作为聚氯乙烯增塑剂,具有良好的加工性和耐寒性,可代替DBS、DOS,在与DOP、DBP等复配时,可改善塑料制品的耐用低温性能。该产品工艺成熟,北京燕山前进化工厂和哈尔滨动力化工厂都分别建有C7-9脂肪酸二甘醇酸酯及C5-9脂肪酸二甘醇生产装置。 由二甘醇与苯甲酸为原料可合成二苯甲酸二甘醇酯,可代替DOP、DBP、DOS作PVC树脂的增塑剂,用于PVC制品、PVC人造革、PVC地板的生产。 二甘醇在质子酸或强酸性离子交换树脂催化作用下可合成1,4一二恶烷。该产品为优良的溶剂、反应介质及萃取溶剂,用于医药、农药的提取、石油产品脱蜡以及纺织、涂料、合成树脂等的生产,也用作低毒含氯溶剂1,1,1一三氯乙烷的稳定剂,以及用于代替聚氨酯合成革历来使用的二甲基甲酰胺、四氢呋喃等价格昂贵的溶剂。 此外,以二甘醇和丙烯醇为原料合成的二甘醇双烯丙基碳酸酯可作生产透镜的原料;由二甘醇和甲基丙烯酸合成的二甘醇双甲基丙烯酸酯则广泛用于制造压敏胶粘剂和光固化涂料的交联剂;二甘醇还用来制取聚酯多元醇,用作聚氨酯树脂的生产原料;二甘醇还用于生产不饱和树脂、二甘醇胺、三甘醇等重要产品。 四、二甘醇下游衍生产品项目 1.吗啉或N-甲基吗啉产品 吗啉(1,4-氧氮杂环己烷)是工业用重要环胺之一,由于具有氮氧杂环的特点,吗啉在化工生产上占重要的位置,是许多精细化工产品用途广泛的重要有机原料及化学中间体,可用于橡胶加工工业生产的橡胶助剂(如硫化促进剂NOBS、硫化剂DTDM、防老剂CTOS、抗氧剂等);在纺织工业中用于制织物整理剂、柔软剂、增白剂等染织助剂;医药工业方面用于生产病毒灵、布洛芬、咳必定等多种重要药物。也被用作塑料助剂、防锈剂、表面活性剂、清罐剂、配制缓蚀剂、光学抛光剂、增亮剂、聚氨酸发泡剂、水处理剂、防腐剂等。另外,吗啉还是一种重要的有机溶剂。 据《中国化工报》报道,目前国外吗啉消费结构为:用于生产橡胶助剂占5%,生产缓蚀剂占20%,生产光学抛光剂助剂占20%,用于生产其他吗啉衍生物及出口占10%。国内当前吗啉消费情况与国外略有不同,用于生产橡胶硫化助剂需2800吨,占70%,用于医药行业需600吨,占15%,用于生产染料、农药需400吨,占10%,其他应用为200吨,占5%。 吗啉的生产,目前主要采取以二甘醇和氨为原料。在加氢催化剂的作用下,同时完成氨解和脱水反应,制得的粗吗啉经精馏制得纯度>(重量 )的精吗啉。根据操作压力不同,该技术分为高压液相法、低压气相接触法和常压气相法三种合成工艺。自1980年美国空气制品及化学品公司开发成功低压新技术以来,当前已有数家公司拥有万吨级吗啉生产装置。并且日本等国也在竞相发展,但吗啉价格仍居高不下。 八十年代末,我国只有上海、沈阳等地有几套小型吗啉生产装置,且属于以二乙醇胺为原料的强酸脱水法旧工艺路线,成本高,经济效益低。近年来发展较快,90年代以后,国内有多家科研院所开发二甘醇催化氨解环化法,其中:①抚顺石油化工研究院在辽宁清源化工厂进行500t/a工业性放大试验,获得成功。②北京石油化工科学研究院在低压范围内及连续流动固定床反应器上,进行二甘醇催化氨解环化合成研究,并将其研制的合成催化剂用到山东平度化工总厂投产。③南京化工二厂利用二甘醇常压催化合成吗啉,是国内首创。④南京金陵石化公司承包漂水化肥厂500吨/年装置,1993年建成投产。⑤辽源电影胶片厂利用吉化公司研究院二甘醇氨化法合成吗啉的500吨/年装置。目前该技术已建成了3套500吨/年装置,吨产品消耗二甘醇量小于吨,产品质量达到国内先进水平,并符合BASF公司标准。以二甘醇为原料的新生产装置在山东、吉林、安徽、江苏等地相继建成投产,但是中小企业较多,规模最大为800吨/年,有的规模仅为100吨/年,生产技术和产品品质参差不齐。 以2002年我国吗啉的总设计产能已经达到8,700吨/年,但因技术因素,有3家处于停产或半停产状态,因此2002年我国吗啉的实际产量只有5,000多吨,每年吗啉的进口量都在2,000吨以上。 据2002年底我国市场统计,橡胶助剂:防焦剂、硫化剂和促进剂,迟效促进剂,需求量达到3,500吨/年以上;医药合成:合成吗啉胍(病毒灵)、布洛芬、奈普生等,需求量达1,500吨/年以上;防腐添加剂:用于铁、钢、铜、锌、铅等金属的有效腐蚀抑制剂,需求量达500吨/年;其它方面:用作溶剂、合成表面活性剂、萤光增白剂、纺织助剂、催化系列,需求量达500~800吨/年;石油方面约500吨;新型农药方面300~500吨。2002年我国吗啉总需求量达7,000吨以上。 近年来,随着科学技术的不断进步,吗啉的新用途不断出现,如新型农药和医药品种已得到不断的开发和生产,烷基吗啉用作化纤行业用溶剂正处在研究开发阶段。 N-甲基吗啉国内生产极少,且工艺落后,成本高。国外主要以二甘醇和甲胺在催化剂作用下合成的新工艺方法生产。国内目前也已研究开发成功。N-甲基吗啉是聚氨酯塑料的发泡催化剂,也是一种性能优良的溶剂、乳化剂、腐蚀抑制剂,还是合成医药氨基苄氰毒素必不可少吗啉,可用作"溶剂法制造人造纤维新工艺"的溶剂。 N-甲基氧化吗啉(NMMO)是由吗啉与甲醛反应,再与过氧化氢反应制得的粗品经分离,重结晶精制制得产品。它是制造Lyocell纤维(以木浆粕为原料,经纺丝而成的一种人造纤维)的十分理想的溶剂,也可用于玻璃纸,食用肠衣的生产。而烯酰吗啉是以吗啉,邻苯二酚,硫酸二甲酯等为原料,经三步反应而得。烯酰吗啉可用作杀菌剂及蒸汽锅炉的缓蚀剂和防垢剂。此外,还有N-氨丙基吗啉,N-苯基吗啉等吗啉系列产品。 吗啉在医药工业主要用于生产传统药物,市场需求不可能成长太快,预计2005年对吗啉的需求量约为1,700吨。 吗啉可作为金属腐蚀抑制剂,我国刚刚处于起步阶段,预计今后将有较好的发展。吗啉在橡胶方面主要用于合成橡胶硫化促进剂(NOBS、DS、OTOS、26)等。若2005年以前我国禁止使用促进剂NOBS,将会影响吗啉在橡胶助剂领域的需求量,目前许多国家已禁用有毒促进剂,吗啉也出现不同程度的过剩现象,不会从我国进口。因此预计该领域对吗啉的需求量不会有太大成长。综合预计2005年我国对吗啉的需求量为9,000吨。 2.二甘醇醚类产品 二甘醇醚类产品,包括二甘醇的单醚和双醚。其中重要品种有二甘醇单甲醚,由于它的毒性小,沸点高。因此,特别适用于作印刷油墨、染料、合成树脂、硝化纤维、圆珠笔油、纺织印花、涂料、高固体油漆等的高沸点溶剂;它也用作有机合成溶剂和工业清洗剂;由于它热稳定性好、冰点低、粘度小,还可用作合成刹车油,液压控制系统用的液压油组分;也可用作汽车、飞机燃料的防水添加剂。而二甘醇双甲醚除了可用作高沸点溶剂外,还用于阴离子类物质的溶剂及多种气体的吸收剂。 由二甘醇合成二甘醇单甲醚主要采用威廉逊(.)醚合成法,即将二甘醇制成单醇钠后与氯甲烷反应或将二甘醇一个 羟基被氯原子取代后与甲醇钠反应,再由甲醇和二甘醇在催化剂作用下脱水也可制得二甘醇单甲醚。 3. 二苯甲酸二甘醇酯产品 二甘醇酯类产品包括二甘醇饱和酯和二甘醇不饱和酯。其主要品种有二甘醇二丙酸酯,二甘醇二硝酸酯,二甘醇二乙酸酯等饱和酯,以及二苯甲酸二甘醇酯及二甘醇双碳酸烯丙酯等不饱和酯。二苯甲酸二甘醇酯具有较低的熔融温度,树脂溶剂化迅速,可以缩短加工时间,混炼时挥发性低,稳定性高,与树脂的相容性好,使用配方中可加入更多的无机填料以增强制品的抗张强度和降低成本。制品耐溶剂性、耐油类抽出性优良,可代替DOP、DBP用作聚氯乙烯人造革、地板胶、聚氨酯弹性体、聚醋酸乙烯、酚醛树脂等聚全物的增塑剂。其性能优于苯酐类增塑剂且价格低廉。此外它还可用作醋酸纤维素的添加剂、粘合剂的添加剂,醋酸纤维的拨染剂及丙烯酸乳胶的增塑剂等。其可替代DOP,PBP,DOS作为PVC树脂的增塑剂,用于PVC制品,PVC人造革,PVC地板的生产。其合成方法主要有二甘醇和苯甲酸在催化剂作用下酯化而得,或者由二甘醇与苯甲酸甲酯进行酯交换反应而得。 酯类产品的生产装置通常比较简单,投资小,而且设备的通用性好,市场适应性强。 4.二甘醇合成二甘酸及开发不饱和聚酯树脂新产品 二甘酸是一种重要的精细化工原料,其用途很广。用二甘酸为原料合成的二甘酸二酯类化合物是聚氯乙烯的优良增塑剂、二甘酸的钠盐则是优良 的洗涤剂组份。由二甘酸、二甘醇、苯酐、苯乙烯等合成的不同牌号不饱和聚酯树脂可分别用于制作玻璃钢制品、电绝缘品、胶粘带和原子灰产品,具有良好的性能和使用效果。由二甘酸还可用作植物助长剂等。 二甘酸生产工艺比较简单,由二醇生产二甘酸有两种合成路线,即以20浓度的硝酸作氧化剂,进行氧化反应,或以铂/活性碳为催化剂,用空气或氧气作氧化剂,将二甘醇氧化成二甘酸,水溶液经浓缩结晶,得二甘酸产品。 二甘酸的合成及应用,国外研究较多,美国、德国已建有生产装置。国内方面正处开发阶段,1991年燕山石化公司及大连理工大学化工学院已成功合成二甘酸及系列不饱和聚酯树产品,该项目很有开发前景。5.1,4-二 恶烷产品1,4-二 恶烷(1,4二氧六环)具有醚类的一般特性,主要用作医药和有机合成中的萃取剂,油漆的剥离剂,染料溶剂和分散剂,以及在聚氨脂合成革中代替四氢呋喃等。 制备1,4-二恶烷可用环氧乙烷、乙二醇、二甘醇等做原料,在质子酸催化剂作用下进行。从经济效益分析,以二甘醇做原料是最适宜的,因为二甘醇是生产乙二醇的联产物,价格便宜。从操作过程来看,用二甘醇作原料操作简单安全。合成1,4-二恶烷可用多种类型质子酸催化剂,80年代前主要用H2SO4作催化剂进行液相反应,该工艺路线对设备腐蚀和环境污染严重。我们开发新工艺是采用抗水高硅ZSM-5沸石分子筛做催化剂进行气固相催化反应,工艺特点是催化剂转化率高,选择性好,寿命长,工艺简单,操作环境污染和三废少,居世界先进水平。 二甘醇在质子酸作用下进行分子内脱水环化生成二恶烷。该技术包括两部分,即反应和分离。反应物和载气在250~300℃下进行气固相催化反应,反应产物经气液分离,载气循环,产物二恶烷与水分离采用共沸精镏,产物与少量副产物和未反应原料的分离采用减压精镏催化剂采用空气烧焦的方法,再生后催化剂可重复使用。

作用:

1、主要用作气体脱水剂和芳烃萃取溶剂。也用作硝酸纤维素、树脂、油脂、印刷油墨等的溶剂,纺织品的软化剂、整理剂,以及从煤焦油中萃取香豆酮和茚等。

此外,二甘醇还用作刹车油配合剂、赛璐珞柔软剂、防冻剂和乳液聚合时的稀释剂等。还用于橡胶及树脂增塑剂;聚酯树脂;纤维玻璃;氨基甲酸酯泡沫;润滑油粘度改进剂等产品的生产。用作合成不饱和聚酯树脂等。

2、用作合成不饱和聚酯树脂、增塑剂等。还用于防冻剂、气体脱水剂、增塑剂、溶剂、芳烃抽提剂、卷烟吸湿剂、纺织品润滑剂及整理剂、糨糊及各种胶的防干剂、还原染料吸湿助溶剂等。是油脂、树脂、硝化纤维素等的常用溶剂。

扩展资料:

二甘醇无色、无臭、透明,具有吸湿性的粘稠液体。有辛辣的甜味。 与溶解性能与乙二醇相似,但对烃类的溶解能力较强。

二甘醇能与水、乙醇、乙二醇、丙酮、氯仿、糠醛等混溶。与乙醚、四氯化碳、二硫化碳、直链脂肪烃、芳香烃等不混溶。松香、虫胶、醋酸纤维素和大多数油脂不溶于二甘醇,但能溶解硝酸纤维素、醇酸树脂、聚酯树脂、聚氨基甲酸乙酯和大多数染料。易燃,低毒。具有醇、醚的一般化学性质。

工艺流程:

用直接水合法 将环氧乙烷与水按1:8混合送入混合反应器,在150℃MPa下,反应40-60min,生成脱水塔进一步脱水;塔底的乙二醇混合液送入乙二醇塔,塔顶可得以上的乙二醇。

塔底液送入一缩精馏塔,在塔顶温度135-140℃,压力下,从塔顶得到一缩二乙二醇。继续分离,可得二缩三乙二醇、三缩四乙二醇。

参考资料来源:百度百科——二甘醇

  • 索引序列
  • 丙二醇反应的研究论文下载
  • 研究论文二抗反应
  • 二酮盐的性能研究论文下载
  • 二甲基苯甲酸的研究论文下载
  • 二甘醇残液萃取芳烃的研究论文
  • 返回顶部