首页 > 期刊论文知识库 > 微生物发酵制药工艺研究论文

微生物发酵制药工艺研究论文

发布时间:

微生物发酵制药工艺研究论文

发酵工程的前景 2007-08-14 10:36:17 本文已公布到博客频道校园·教育分类 关于发酵工程的个人观点:1 该学科前途无量,需要发展:发酵工程作为最早从事微生物学的研究领域,在过去的3个世纪中为人类的生活、生存、社会的发展作出了重大的贡献。但这些都是过去的成就。发酵工程与现在的生物工程(基因工程)相比,是处于劣势,因为其是个老学科,在很多人看来,其没有什么大的学问,通过一些操作过程的控制和菌种的筛选难以达到基因工程那样迅捷的效果。但目前发酵工程不断在发展自己,不断整合其他学科的优点来发展自己:1 上游方面:在菌种选育方面与基因工程相结合,从源头上来发展自己的优势。但这一方面存在很大的问题,因为搞基因的人对发酵不很熟悉,使得许多基因工程菌难以发酵生产产品,而且基因工程菌发酵的乙酸问题到现在还没有解决;另一方面,基因工程领域的专家对发酵工业具有很大应用价值的菌种还没有做深入研究(我指的是国内情况),国内还没有哪个基因中心对工业微生物进行基因测序,据我知道,华中农业大学已经在农业微生物方面已经与基因中心在进行农业微生物的测序工作,而工业微生物还没有第一个吃螃蟹的人,主要是因为工业微生物这个菌种生产上不行了,换个就是了,舍不得花钱。当然哦,测序的费用也很大,需要基因工程进一步提高技术降低测序成本。2工艺方面: 在过程控制中,与微生物学、微生物生理学、计算机工程、控制工程、化工工程等学科相结合,将过程操作变数与微生物生理状态结合起来。基于微生物反应原理的培养基组成优化;基于微生物代谢特性的分阶段培养策略;基于代谢通量分析的发酵优化策略。等等策略的利用,华东理工大学的多尺度控制策略(叶勤教授等)就是将化工领域的策略运用到微生物学领域的典型范例,并取得很大的成就(华北制药等等)。3 下游方面:也是我个人认为最薄弱、最需要发展的方面。从我所知道的情况,目前我们很多产品都能通过发酵工程发酵生产出来,但我们没有办法将其从发酵液中拿出来,这是我们发酵工程最需要解决的问题。为什么会出现这样的问题呢?因为搞发酵工程的人大多是搞微生物学或者食品方向的,缺乏化学工程的学术背景,而发酵产品提取需要化工背景的人来做,但我们国家化学工程方面的人不屑于做这些事情,一方面是发酵工程方面的人搞不定产品的提取,一方面是化工背景的人不屑于做这样的事情,才导致我们国家很多发酵产品虽然能发酵出来,但不能提出出来进入市场。2 该学科在积极拓展自己的领域:最明显的例子是交叉学科的出现,如发酵工程与环境工程的交叉形成了环境生物技术,与化工交叉的生物化工,与纺织工业交叉的纺织生物工程等的等。

这不是正大老师布置的论文作业们 哈哈哈啊哈哈

药剂学的毕业论文

一段充实而忙碌的大学生活即将结束,我们都知道毕业前要通过毕业论文,毕业论文是一种有准备、有计划的检验大学学习成果的形式,写毕业论文需要注意哪些格式呢?下面是我收集整理的药剂学的毕业论文,仅供参考,大家一起来看看吧。

[摘要]

近年来,微生物在药学研究中被广泛应用,展现出良好的发展前景。通过查阅相关的医学文献资料,了解到微生物与药学之间有密切的关系,通过对微生物进行转化和发酵,将其应用到药学研究及生产工作中,展现出微生物在药学中的应用价值及广阔的发展前景。

[关键词]

微生物;药学;发酵

一、微生物与药学的关系

(1)微生物与药学存在着密切的关系,许多抗生素是微生物的代谢产物或合成的类似物,在小剂量情况下,能够有效抑制微生物的存活及生长,不会对宿主产生严重的毒性。在临床应用过程中,抗生素起到了抑制病原菌生长的目的,被广泛应用于细菌感染性疾病的治疗中。除了具备抗感染作用外,一些抗生素自身还具备较强的抗肿瘤活性,被应用于肿瘤化学治疗中。

(2)微生物在医药卫生方面被广泛应用,维生素及辅酶被大量应用。

(3)近年来,人们在微生物学检验的.基础上加大了对药品卫生行业的

关注力量,加大对药品卫生质量进行控制。

(4)药品及生物制剂被广泛应用于生物工程技术生产中,采用工程菌生产胰岛素、生长因子及干扰素等[1]。

二、微生物在药学中的应用

(一)微生物转化在药学中的应用

1、在手性药物合成中的应用

不同的化合物光学活性不同,自身展现出了不同的生物学活性。现阶段,手性药物拥有广阔的发展前景,拆分及不对称合成手性药物成为热点研究问题。在生物体系中,酶展现出了高度的立体选择性,通过利用及筛选微生物或酶的过程,能够产生活性较高及立体结构专一的化合物,是一种可行性和有效性较高的方法。例如,将氯—酮丁酸甲酯及乙酯作为底物,将酮基还原为羟基时,展现出较高的立体选择性。通过生物转化的过程,不仅能够得到立体结构专一的手性化合物,同时也完成了对手性化合物的拆分。微生物转化中的合成手性化合物被广泛应用于制药工业中。

2、在药物代谢中的应用

药物在动物体内代谢是较为复杂的过程,展现出生物学活性功能,会生成有毒性的气体和不良反应的产物,在药学中占有重要位置。现阶段,微生物转化主要是利用产生的代谢产物,将其作为制备代谢产物的标准样品,应用在鉴别哺乳动物代谢产物中,完成对毒理学及药理学的研究。甾体羟基化在哺乳动物体内展现出了较强的生理学特性,是引发外源性甾体药物中毒的主要原因,转化成的相关模型是哺乳动物代谢有用信息的来源,产生的代谢产物对人类的孕激素受体具有较强的亲和能力,对人的糖皮质激素及盐皮质激素受体产生了一定的亲和性,对雄性激素产生了较弱的亲和性。黄腐酚作为一种化合物,被广泛应用于骨质疏松治疗中,通过利用真菌模型来寻找哺乳动物产生的代谢产物,为代谢产物及黄腐酚在哺乳动物体内的生物学活性研究提供了方向。

3、在天然药物中的应用

天然活性药物自身具有资源有限、含量低、结构复杂等特点,增加了药物的开发难度,利用生物转化方法合成有活性的天然产物,为开发新药提供了有效途径。羟基喜树碱是从自然植物中分离和提取出来的,毒性较低,拥有良好的治疗效果,被广泛应用于抗癌治疗中。主要是利用微生物对喜树碱来完成转化。青蒿素具有溶解度低、复燃性高等特点,是一种有效的抗疟药物。加大对其结构的改造,寻找合适的青蒿素衍生物,成为现阶段的重点研究课题。通过微生物转化方法,能够快速寻找到新的青蒿素衍生物[2]。

(二)微生物发酵在药学中的应用

近年来,微生物学基础理论及实验技术发现迅速,微生物学的应用范围越来越广阔。主要是利用微生物发酵来制备各种药物,在医药领域形成了一门独立的微生物药物学科。目前,医学上常见的微生物发酵制品有维生素、抗生素、氨基酸及酶抑制剂等。

生物发酵工艺多种多样,包括菌种的选育、培养及培植。培植出合适的菌种,是发酵工程的前提,菌种需要从自然界中找,但是该种方法寻找到的菌种产量相对较低。到了20世纪40年代,微生物学家开始使用激光、紫外线及化学诱变剂等处理方法来寻找菌种,使筛选出来的菌种更加优良,科学家通过构建工程菌,对其进行发酵,生产出一般微生物不能生产出来的产品。医用抗生素自身的特点包括:

(1)差异独立较大。差异毒力由抗生素的作用机制所决定,被广泛应用于临床抗感染中,抗生素的差异毒力越大,临床应用效果越好。

(2)抗菌活性强。抗生素自身展现出了杀灭微生物及药物抑制等能力,极微量的抗生素就能够展现出抗菌活性作用,抗生素的抗菌活性强弱主要是运用最低抑菌浓度来衡量,最低抑菌浓度是指抗生素能抑制微生物生长的最低浓度,值越小,说明抗生素作用越强。

(3)不良反应及副作用小。抗生素在使用过程中,对人体的毒性较小,对病原菌具有较强的杀伤力,这主要是针对理想的抗生素,一般的抗生素都或多或少会对人体产生一些不良反应及副作用。

综上所述,本文通过对微生物与药学的关系,微生物转化及发酵在药学中的应用进行分析,印证了微生物在药学中的应用可行性及应用价值。因此,制药行业在未来的发展中,需要进一步对微生物进行研究和分析,了解微生物内存在的药学价值,促使其在药学中的价值最大化,提升药物工业生产效果。

参考文献:

[1]张孝林,马世堂,俞浩.浅谈药学专业《微生物学》教学中创新型应用人才培养[J].中国科技信息,2012(7):229.

[2]任春萍.抗微生物药物的临床应用调查结果分析与药学研究[J].中国医药指南,2015,13(18):143-145.

纳米生物发酵工艺研究论文

浅谈纳米技术及其在机械工业中的应用摘要:主要介绍了纳米技术的内涵、主要内容及纳米技术在微机械和包装、食品机械工业中的应用,并研究预测了纳米技术在未来机械工业中的发展前景。关键词:纳米技术;微机械;机械工业;发展前景1纳米技术的内涵纳米是长度单位,原称“毫微米”,就是10-9(10亿分之一)米。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1~100纳米范围内材料的性质和应用。纳米科技与众多学科密切相关,它是一门体现多学科交叉性质的前沿领域。若以研究对象或工作性质来区分,纳米科技包括三个研究领域:纳米材料、纳米器件、纳米尺度的检测与表征。其中纳米材料是纳米科技的基础;纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志;纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础。纳米科技的最终目的是以原子、分子为起点,去设计制造具有特殊功能的产品。2纳米技术的主要内容(1)纳米材料包括制备和表征。在纳米尺度下,物质中电子的放性(量子力学学性质)和原子的相互作用将受到尺度大小的影响,如能得到纳米尺度的结构,就可能控制材料的基本性质如熔点、磁性、电容甚至颜色。而不改变物质的化学成份。(2)纳米动力学主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。MEMS使用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。(3)纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间相互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。(4)纳米电子学包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。“更快”是指响应速度要快。“更冷”是指单个器件的功耗要小。但是“更小”并非没有限度。3纳米技术在机械工业中的应用3.1纳米技术在微机械领域中的应用随着纳米技术应用途径的不断拓宽,微机械的开发在全世界方兴未艾。例如,进入人体的医疗机械和管道自动检测装置所需的微型齿轮、电机、传感器和控制电路等。制造这些具有特定功能的纳米产品,其技术路线可分为两种:一是通过微加工和固态技术,不断将产品微型化;二是以原子、分子为基本单元,根据人们的意愿进行设计和组装,从而构筑成具有特定功能的产品。3.1.1采用微加工技术制造纳米机械(1)微细加工。日本发那科公司开发的能进行车、铣、磨和电火花加工的多功能微型精密加工车床(FANUCROBO nano Ui型),可实现5轴控制,数控系统最小设定单位是1nm(10-3μm)。该机床设有编码器半闭环控制,还有激光全息式直线移动的全闭环控制。编码器与电机直联,具有每周6 400万个脉冲的分辨率,每个脉冲相当于坐标轴移动0.2 nm,编码器反馈单位为1/3 nm,故跟踪误差在±1/3 nm以内。直线分辨率为1 nm,跟踪误差在±3 nm以内。CNC装置采用FANUC-16i,实现AInano轮廓控制。并用FANUCSERVOMOTORαi伺服电机装上高分辨率检测装置及αi系列伺服放大器,实现了微细加工。(2)微型机器人。在工业制造领域,微型机器人可以适应精密微细操作,尤其在电子元器件的制造方面。美国迈特公司的研究人员最近设计出一种用于组装纳米制造系统的微型机器人,这种机器人的长度约为5mm。研究人员称,假设能利用纳米制造技术使这种机器人的体积不断缩小,其最终的体积不会超过灰尘的微粒。日本三菱公司也开发了一种微型工业机器人,该机器人采用了5节闭式连杆机构,以实现手臂的轻量化与高刚性,其动作速度及精度完全可以赶上专用机器人。往复上下方向25 mm,水平方向100 mm的拾取动作,所需时间缩短到0.28 s。另外,通过采用闭式连杆机构与高刚性减速机,实现了比以往机器人高10%的位置重复精度(±5 nm),可适用于精密微细操作。我国在微型机器人的研制方面也取得了可喜的成绩。据媒体报道,由哈尔滨工业大学研制的机器人,其操作精度达到了纳米级,可以应用于分子生物学基因操作,能够对细胞和染色体进行“手术”,并能在微电子、精密加工等精度要求较高的领域一显身手。(3)微型电机。美国俄亥俄州克利夫西卡塞大学已建立了一所纳米级微型电机实验室,专门研究纳米技术及其超微机电系统。美国加利福尼亚大学伯克利分校研制的微型电动机,小到只能在显微镜下才能看得见。德国汽车零件制造商博士公司正在研制纳米技术传感器,这种传感器将为人们提供关于汽车上每个零部件在三维空间中运动的精确信息。当微型传感器探测到速度骤减时,就会自动释放安全气囊。3.1.2采用自组装技术制造纳米机械(1)生物器件。以分子自组装为基础制造的生物分子器件是一种完全抛弃以硅半导体为基础的电子器件。将一种蛋白质选作生物芯片,利用蛋白质可制成各种生物分子器件,如开关器件、逻辑电路、存储器、传感器以及蛋白质集成电路等。美国密歇根韦思大学医学院生物分子信息小组,利用细菌视紫红质(简称BR蛋白质)和发光染料分子研制具有电子功能的蛋白质分子集成膜,这是一种可使分子周围的势场得到控制的新型逻辑元件。美国锡拉丘兹大学也利用BR蛋白质研制模拟人脑联想能力的中心网络和联想式存储装置。(2)纳米分子电动机。美国IBM公司瑞士苏黎士实验室与瑞士巴塞尔大学的研究人员发现DNA能够被用来弯曲直径不及头发丝的五十分之一的硅原子构成的“悬臂”。上下弯曲,顶端则粘有单股DNA链。DNA自然形成双螺旋结构,双链被分开后,它们会力图重新组合。当研究人员将带有单股DNA链的“悬臂”置于含有与之对应的单股DNA链的溶液中,这两个链就会自动配对结合在一起,小“悬臂”在这种力的作用下开始弯曲。研究人员利用这种生物力学技术制造带有纳米级阀门的微型胶囊(纳米分子电动机)。通过控制这种驱动力来控制阀门的开合,可以将精确剂量的药物传送到身体的需要部位来达到治疗的目的。3.2纳米技术在包装机械领域中的应用采用纳米材科技术对包装机关键零部件(如轴承、齿轮、弹簧等)进行金属表面纳米粉涂层处理,可以提高设备的耐磨性、硬度和寿命。碳纳米管还具有较高的机械强度和较高的热导率。由于具有非常大的长度—直径比,可以制造出任何复杂形状的零件,是复合材料理想的增强纤维。目前,用价格低廉的纳米塑料制成的齿轮、陶瓷轴承、纳米陶瓷蚊辊、电雕辊等印刷包装机械零件已走进企业,开始代替金属材料。现代胶印机上应用着很多传感器.如控制飞达纸堆的自动升降、气泵供气时间检测、合压时间检测、空张检测、墨量控制等。纳米陶瓷具有良好的耐磨性、较高的强度及较强的韧性可用于制造刀具、包装和食品机械的密封环、轴承等以提高其耐磨性和耐蚀性,也可用于制作输送机械和沸腾干燥床关健部件的表面涂层。3.3纳米技术在食品机械领域中的应用纳米SiC、Si3N4在较宽的波长范围内对红外线有较强的吸收作用,可用作红外吸波和透波材料,做成功能性薄膜或纤维。纳米Si3N4非晶块具有从黄光到近红外光的选择性吸收,也可用于特殊窗口材料,以纳米SiO2做成的光纤对600 nm以上波长光的传输损耗小于10 dB/km,以纳米SiO2和纳米TiO2制成的微米级厚的多层干涉膜,透光性好而反射红外线能力强,与传统的卤素灯相比,可节省15%的电能。经研究证明,将30~40 nm的TiO2分散到树脂中制成薄膜,成为对400 nm波长以下的光有强烈吸收能力的紫外线吸收材料,可作为食品杀菌袋和保鲜袋最佳原料。纳米SiO2光催化降解有机物水处理技术无二次污染,除净度高,其优点是:①具有很大的比表面积,可将有机物最大限度地吸附在其表面;②具有更强的紫外线吸收能力,因而具有更强的光催化降解能力,可快速将吸附在其表面的有机物分解掉。这为污水处理量较大的食品企业提供了有力的技术支持。介孔固体和介孔复合体是近年来纳米材料科学领域较引人注目的研究对象,由于这种材料较高的孔隙率(孔洞尺寸为2~50 nm)和较高的比表面,因而在吸附、过滤和催化等方面有良好的应用前景。对纯净水、软饮料等膜过滤和杀菌设备又提供了一个广阔的发展空间。橡胶和塑料是包装和食品机械应用较多的原材料。但通常的橡胶是靠加入炭黑来提高其强度、耐磨性和抗老化性,制品为黑色,不适宜用在食品机械上。纳米材料的问世使这一问题迎刃而解。新的纳米改性橡胶各项指标均有大幅度提高,尤其抗老化性能提高3倍,使用寿命长达30年以上,且色彩艳丽,保色效果优异。普通塑料产量大、应用广、价格低,但性能逊于工程塑料,而工程塑料虽性能优越,但价格高,限制了它在包装和食品机械上的大范围应用。用纳米材料对普通塑料聚丙烯进行改性,达到工程塑料尼龙-6的性能指标,且工艺性能好、成本低,可大量采用。4纳米技术在机械行业中的发展前景(1)机械及汽车工业的滑配原件如:轴承、滑轨上应用纳米陶瓷镀膜能产生超底的磨擦界面,大大减低磨损并能提高负载。(2)塑胶流道的低粘应用:例如T型模、拉丝模、套筒和热胶道,可有效减少积料碳化的产生几率。(3)射出成型时发生的粘模、包封短射、镜面雾化及拖痕均具有革命性的改善,尤其是在滑块及顶针上所展现的干式润滑,更是任何金属所无法表现的优异性。(4)IC封装胶、橡胶及发泡塑料由于具有极高的粘着性,因此必须借助大量脱模剂来帮助脱模,纳米陶瓷的荷叶效应可减少脱模剂的使用及模具清理时间。(5)纳米陶瓷的低摩擦、低沾粘特性使塑胶在模具内的流动性大幅提升,特别是高精度模具例如薄光板、塑胶镜片、汽车聚光灯罩等模具应用后对产品的不良率上均有明显的改善。5结语综上所述,纳米技术是近十多年来逐步发展起来的一门前沿性与综合性交叉的新学科,是现代科学和现代技术相结合的产物,它的迅猛发展将引发21世纪新的工业革命。美国商业通讯公司研究报告称,未来五年,用于橡胶产品和油墨生产的碳黑填充料将继续高居纳米材料需求榜首。今后几年,全球纳米材料的需求将以2.7%年增长速度增长,到2010年将达到1 030万t,所以纳米包装具有较大的市场发展潜力。过去,我国机械包装工业的一些先进设备、先进技术,大多是依靠进口。纳米技术的出现,将对我国机械包装行业的技术创新带来新的发展机遇。相信在不远的将来,纳米技术将广泛应用于机械工业的各个领域,它给机械工业带来的变化将是巨大的。参考文献1向春礼.纳米科技及其发展前景[J].新材料产业,2001(4)2王新林.金属功能材料的几个最新发展动向[J].新材料产业,2001(4)3唐苏亚.纳米技术在微机械领域中的应用[J].微电机,2002(5)4万乃建.21世纪数控技术新面貌[J].机械制造,2001(20)5杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000

二○○七年五月纳米科技带给我们的哲学思考摘要:纳米技术是指在纳米尺度下对物质进行制备、研究和工陶瓷材料公司业化,以及利用纳米尺度物质进行交叉研究和工业化的一门综合性技术体系。纳米科技的发展拓展了人类认识微观世界的能力,可以在微观尺度探索人类和世界的奥秘。但另一方面,我们也应看到纳米技术的不当应用带来的灾难,本文在总结纳米科技的成就基础上运用哲学辨证法思考纳米科技的危害。关键词:纳米科技 哲学反思 解决之道正文1纳米科技及其成就1.1什么是纳米纳米是英文namometer的译音,是一个物理学上的度量单位,1纳米是1米的十亿分之一;相当于45个原子排列起来的长度。通俗一点说,相当于万分之一头发丝粗细。就像毫米、微米一样,纳米是一个尺度概念,并没有物理内涵。当物质到纳米尺度以后,大约是在1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。纳米尺度范围的性能表现在小尺寸效应、比表面效应、量子尺寸效应等。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。1.2 &nbs工艺陶瓷模具p; 纳米科技纳米科技是指在至100nm纳米材料是究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。4纳米产业发展趋势(1)信息产业中的纳米技术:信息产业不仅在国外,在我国也占有举足轻重的地位。2000年,中国的信息产业创造了gdp5800亿人民币。纳米技术在信息产业中应用主要表现在3我眼中的纳米的论文个方面:①网络通讯、宽频带的网络通讯、纳米结构器件、芯片技术以及高清晰度数字显示技术。因为不管通讯、集成还是显示器件,都要原器件,美国已经着手研制,现在有了单电子器件、隧穿电子器件、自旋电子器件,这种器件已经在实验室研制成功,而且可能在2001年进入市场。②光电子器件、分子电子器件、巨磁电子器件,这方面我国还很落后,但是这些原器件转为商品进入市场也还要10年时间,所以,中国要超前15年到20年对这些方面进行研究。③网络通讯的关键纳米器件,如网络通讯中激光、过滤器、谐振器、微电容、微电极等方面,我国的研究水平不落后,在安徽省就有。④压敏电阻、非线性电阻等,可添加氧化锌纳米材料改性。(2)环境产业中的纳米技术:纳米技术对空气中20纳米以及水中的200纳米污染物的降解是不可替代的技术。要净化环境,必须用纳米技术。我们现在已经制备成功了一种对甲醛、氮氧化物、一氧化碳能够降解的设备,可使空气中的大于10ppm的有害气体降低到,该设备已进入实用化生产阶段;利用多孔小球组合光催化纳米材料,已成功用于污水中有机物的降解,对苯酚等其它传统技术难以降解的有机污染物,有很好的降解效果。近年来,不少公司致力于把光催化等纳米技术移植到水处理产业,用于提高水的质量,已初见成效;采用稀土氧化铈和贵金属纳米组合技术对汽车尾气处理器件的改造效果也很明显;治理淡水湖内藻类引起的污染,最近已在实验室初步研究成功。(3)能源环保中的纳米技术:合理利用传统能源和开发新能源是我国当前和今后的一项重要任务。在合理利用传统能源方面,现在主要是净化剂、助燃剂,它们能使煤充分燃烧,燃烧当中自循环,使硫减少排放,不再需要辅助装置。另外,利用纳米改进汽油、柴油的添加剂已经有了,实际上它是一种液态小分子可燃烧的团簇物质,有助燃、净化作用。在开发新能源方面国外进展较快,就是把非可燃气体变成可燃气体。现在国际上主要研发能量转化材料,我国也在做,它包括将太阳能转化成电能、热能转化为电能、化学能转化为电能等。(4)纳米生物医药:这是我国进入wto以后一个最有潜力的领域。目前,国际医药行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医药就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法。在提取精华后,用一种很少的骨架,比如人体可吸收的糖、淀粉,使其高效缓释和靶向药物。对传统药物的改进,采用纳米技术可以提高一个档次。(5)纳米新材料:虽然纳米新材料不是最终产品,但是很重要。据美国测算,到21世纪30年代,汽车上40%钢铁和金属材料要被轻质高强材料所代替,这样可以节省汽油40%,减少co2,排放40%,就这一项,每年就可给美国创造社会效益1000亿美元。此外,还有各种功能材料,玻璃透明度好但份量重,用纳米改进它,使它变轻,使这种材料不仅有力学性能,而且还具有其他功能,还有光的变色、贮光,反射各种紫外线、红外线,光的吸收、贮藏等功能。(6)纳米技术对传统产业改造:对于中国来说,当前是纳米技术切入传统产业、将纳米技术和各个领域技术相结合的最好机遇。首先是家电、轻工、电子行业。合肥美菱集团从1996开始研制纳米冰箱,可折叠的pvc磁性冰箱门封不发霉,用的是抗菌涂料,里面的果盘都采用纳米材料,发展轻工、电子和家用电器可以带动涂料、材料、电子原器件等行业发展;其次是纺织。人造纤维是化纤和纺织行业发展的趋势,中国纺织要在进入WTO后能占据有利地位,现在就必须全方位应用纳米技术、纳米材料。去年关于保温被、保温衣的电视宣传,提到应用了纳米技术,特殊功能的有防静电的、阻燃的等等,把纳米的导电材料组装到里面,可以在11万伏的高压下,把人体屏蔽,在这一方面,纺织行业应用纳米技术形势看好;第三是电力工业。利用纳米技术改造20万伏和11万伏的变压输电瓷瓶,可以全方位提高11万伏的瓷瓶耐电冲击的性能,而且釉不结霜,其它综合性能都很好;第四是建材工业中的油漆和涂料,包括各种陶瓷的釉料、油墨,纳米技术的介入,可以使产品性能升级。纳米科技的发展和纳米材料的不断研制,给我们的生活带来了翻天覆地的变化,极大地改变着我们的生活,但是纳米材料的安全性问题引起人们的关注。对纳米科技的反思从“纳米牙膏”到“纳米护肤霜”,全球目前已有300多种号称使用纳米技术的产品上市了。纳米技术开始走进人们的生活圈。但与此同时,人们对纳米材料可能的、潜在的安全性问题却一直心有余悸。早在3年前,就有几份报告让人对“纳米”这个极具发展前景的新兴技术感到迷惑。在2003年美国化学学会年会上,有3个研究小组发表了纳米材料具有特殊毒性的报告。美国宇航局的研究小组发现碳纳米管会进入小鼠肺泡,形成肉芽瘤,这是肺结核病的典型特征。杜邦公司的一个研究小组也发现了类似的结果。纽约罗切斯特大学的研究者让老鼠在含有直径为20纳米聚四氟乙烯颗粒的空气中待15分钟,大多数实验鼠在随后4小时内死亡,而另一组大鼠暴露在含直径为120纳米颗粒的空气中,则安然无恙。该研究小组在另一项实验中还发现纳米颗粒能够进入大鼠的嗅球,并迁移到大脑。目前,人们关注的纳米技术安全性问题主要集中在:纳米微粒对人类健康的潜在风险和对环境的负面影响。尽管纳米材料毒理的问题现在还说不清楚,但专家都同意需要对纳米科技的潜在风险及其负面影响进行专门研究。纳米技术这个名词的发明者———美国麻省理工学院的埃里克·德雷斯勒早在1986年出版的《创造的引擎》一书中,就详尽描述了操作原子大小物质的各种纳米技术的现状、未来发展潜力和危险。这样他既激起了人们对纳米技术的兴趣,也让许多人对纳米技术的未来忧心忡忡。“纳米技术的危险性远远高出它的益处。”整个90年代,这种论点一直在科学界中广泛存在。2000年底,《发现》杂志曾评出21世纪20大危险,纳米技术与行星撞地球及全球疫病一道,并列为其中之一。那么,在科学家眼中,纳米技术的危险又在哪里呢?这还得从德雷斯勒说起。在他的书中,德雷斯勒设想过一种叫做“装配工”的纳米机械通过原子的抓取和放置,这种人造的分子大小的纳米机械能够像人体内的蛋白质和酶一样,制造出任何东西,比如电视机和电脑———当然,也包括它们自己。科学家们由此开始担心:这些装配工如果能够听从人的善意指挥,固然是一件好事,但如果控制程序出现错误或被人恶意利用,是否会像计算机蠕虫病毒那样无限度自我复制下去,从而覆盖并毁灭整个地球?相关阅读:新型建筑材料有哪些+碳纳米管化学纪事ChroniclesofCarbonNa...发表于2007-12-1800:41|碳纳米管化学佛山世界现代设计史论文陶瓷模具纪事八发信人:...新型建筑材料有哪些&科学家展望未来世界关键字:发展世界国家成为人类创新科技人们未来服饰未来世界的食品低热量低胆固醇随着现代科技的迅猛发展...新型建筑材料有哪些!人文科技走进科学科学知识科学新闻科学论文研究纳米技术的科陶瓷材料学家都有这样的感觉:他们实际上是在——探寻宇宙万物的最终秘密它不是小尺寸的...科技新闻::孩子们眼中的纳米爸爸$新型建筑材料有哪些今年刚40岁的王中林博士是美国佐治亚理工学院材料科学系教授,佐治亚理工学纳米科氧化物基金属陶瓷学和...新型建筑材料有哪些&科学家展望未来世界关键字:发展世界国家成为人类创新科技人们未来服饰未来世界的食品低热量低胆固醇随着现代科技的迅猛发展...新型建筑材料有哪些科学家展望未来世界关键字:发展世界国家成为人类创新科技人们未来服饰未来世界的食品低热量低胆固醇随着现代科技的迅猛发展...

我觉得~~你还是自己去看下(纳米技术)吧~自己找下这样的论文多参考参考

微生物发酵杂志

你好,这方面的核心期刊有:中国生物工程杂志,微生物学报,生物工程学报,一般每刊里面都有几篇关于微生物发酵的,看目录就很容易找到,我就是学发酵的,另外,江南大学和华东理工大学、华南理工等在发酵方面很牛的学校的学报也有这方面的刊物,希望你能满意--

图样图森破,征稿都是关系户的

微生物学杂志是核心期刊。

《微生物学杂志》创办于1978年,是由辽宁省科学技术厅主管,中国微生物学会、辽宁省微生物学会、辽宁省微生物科学研究院主办的综合性期刊。

《微生物学杂志》的主要栏目有“大家专版”、“研究报告”、“专题论述”、“研究简报”、“技术与方法”、“教学与研究”、“专题译述”、“论文摘要”、“产品推广”、“技术讲座”、“成果与产品信息”及“会议简讯”等刊。

《微生物学杂志》的读者对象为中国国内外科研人员、大中专院校师生、企业人士、医生及生物学爱好者。

《微生物学杂志》为中国科学引文数据库来源期刊、中国科技论文统计源期刊中国科技核心期刊、中国生物学核心期刊、中国核心期刊(遴选)数据库统计源期刊、中国学术期刊综合评价数据库统计源期刊、万方数据-数字化期刊群上网期刊、中国期刊全文数据库等收录期刊。

被《化学文摘》(CA)、《英联邦农业文摘》(CAB)、日本科学技术振兴机构数据库、《中国生物学文摘》等中国国内外检索刊物摘引和收录。

Current Opinion in Microbiology 《微生物学新见》英国 ISSN: 1369-5274, 1998年创刊,全年6期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。著名微生物学权威专业性学术期刊,刊载本学科的研究成果、新进展评论、重要参考资料评注和文献题录。 Enzyme and Microbial Technology《酶与微生物技术》美国 ISSN:0141-0229,1979年创刊,全年14期,Elsevier Science出版社,SCI、EI收录期刊,SCI 2005年影响因子,2005年EI收录227篇。刊载生物技术的基础与应用方面的研究论文、评论、专利和文献摘要。报道相关的经济、规章和法律信息。 Food Chemistry《食品化学》英国 ISSN:0308-8146,1976年创刊,全年16期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。发表原始论文,内容包括食品化学分析,化学添加剂与毒素,与微生物、感觉、营养、生理有关的食品化学,食物加工与贮藏中分子结构的变化,农药对食品的影响,食品工程与技术的化学质量等。 Food Microbiology《食品微生物学》英国 ISSN:0740-0020,1983年创刊,全年6期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载食品微生物学方面的论文、评论、会议报告、简讯和书评,涉及食品中微生物检验的新方法、食品中微生物的发生学与生物化学、食品防腐剂、食品包装系统、食品损坏与安全、发酵食品、食品佐料和食品酶等。 International Journal of Food Microbiology《国际食品微生物学杂志》荷兰 ISSN:0168-1605,1984年创刊,全年24期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。国际微生物学会联合会和国际食品微生物学与卫生委员会机关刊物。刊载食品微生物学及相关领域的研究论文、快报、述评及书评,涉及食品微生物学和安全性、食品质量和可接受性,以及相关的细菌学、免疫学、真菌学、寄生虫学、病毒学等。 Journal of Bioscience and Bioengineering《生物学与生物工程杂志》荷兰 ISSN:1389-1723,1923年创刊,全年12期,Elsevier Science出版社,SCI、EI收录期刊,SCI 2005年影响因子, 2005年EI收录211篇。1998年前刊名为Journal of Fermentation and Bioengineering,原为日本发酵技术学会出版的《发酵学和生物工程杂志》。1999年该学会改名后,刊物随之改名。刊载生物科学与技术以及相关生物化学工程、食品技术和微生物学的基础与应用研究论文、札记、评论和文摘。 Journal of Fermentation and Bioengineering《发酵和生物工程杂志》荷兰 ISSN:1389-1723,1923年创刊,全年12期,Elsevier Science出版社,1998年后名为Journal of Bioscience and Bioengineering,原为日本发酵技术学会出版的《发酵学和生物工程杂志》。1999年该学会改名后,刊物随之改名。SCI、EI收录期刊,SCI 2005年影响因子,2005年EI收录211篇。刊载生物科学与技术以及相关生物化学工程、食品技术和微生物学的基础与应用研究论文、札记、评论和文摘。 Journal of Microbiological Methods《微生物学方法杂志》荷兰 ISSN:0167-7012,1983年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载微生物学研究与测定方法方面的研究论文和评论。内容涉及微生物的遗传学、生理学及新陈代谢,食品微生物学,生物技术,环境与应用生物学,工业微生物学,真菌学,原生动物学,藻类学,医学与兽医微生物学等(病毒学与免疫学除外)。 Microbes and Infection《微生物与感染》法国 ISSN:1286-4579,1999年创刊,全年15期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。主要刊载分子和细胞生物学、微生物之间的相互作用主机(病毒、细菌、寄生虫、真菌; 还朊病毒);当地感染的器官和组织的反应,包括本地及免疫病理;传染性疾病动物模型,包括防微生物非哺乳动物生物体;疫苗开发;临床和流行病学研究等方面的论文。 Microbial Pathogenesis《微生物病原学》英国 ISSN:0882-4010,1986年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。发表人和动物传染病细胞与分子生物学方面的原始论文、评论和札记,涉及病原学、毒性因素、寄生感染与抵抗、免疫机理学、遗传学、病原体、原核膜机体、原生动物等。 Process Biochemistry《生化工艺》英国 ISSN:0032-9592,1966年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载微生物应用于工业、农业、食品、医药、能源、污染处理等方面的研究论文,报道新产品、新设备、新技术和国际会议的消息。 Research in Microbiology《微生物学研究》法国 ISSN:0923-2508,1886年创刊,全年10期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。历史悠久的专业性学术期刊,刊载有关基础微生物学、生理学和微生物遗传学、生态学、应用微生物学、工业微生物学、细菌学和医学真菌学等微生物学领域的研究论文。不包括病毒学和免疫学方面的内容。 Toxicon《毒素》英国 ISSN:0041-0101,1962年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载动植物组织和微生物肌体衍生毒素方面的研究论文。 Trends in Microbiology《微生物学趋势》英国 ISSN:0966-842X,1992年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载传染病毒研究的讨论、评论及进展新闻和书评,涉及细胞生物学、免疫学、病毒学生物技术和进化论等领域。 Veterinary Microbiology《兽医微生物学》荷兰 ISSN:0378-1135,1976年创刊,全年28期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载家畜和家禽等动物微生物疾病的病源、病因、免疫、传染、预防、治疗、控制和药物应用等方面的研究论文、简讯和书评

微生物制药论文

提供小小的 对你有所启示2月5日,《美国国家科学院院刊》(《PNAS》)网络版发表了中英两国5个机构联合完成的有关人类元基因组与健康的研究成果,在国际上引起较大反响,美国合众国际社及国内多家媒体纷纷进行了报道。人类元基因组其实是人类微生物组的另一种说法。近年来,对该领域研究的逐渐升温——包括人类元基因组计划的酝酿启动、有关元基因组重要研究论文的陆续发表,促使更多科研人员给予关注。日前,记者就相关问题采访了参加“人类微生物组国际研究联盟(IHMC)”筹备工作的上海交通大学系统生物医学研究院赵立平教授。 ▲作用重要的“小不点儿” “人体内共生的微生物多达1000多种,它们的基因总和叫‘微生物组’,也被称为‘人类元基因组’。”赵立平教授如数家珍地告诉记者:“人们一直认为,一个生物,不管是单细胞细菌还是像人类这样的高等生物,都是由基因信息控制其生老病死。”但是,越来越多的研究表明,人体的生理代谢和生长发育除受自身基因控制外,人体里共生的大量微生物的遗传信息也发挥着重要作用,它们所编码的基因数量是人体自身基因数量的50~100倍,相当于人体的“第二个基因组”。 正是这些共生在人体内、肉眼不可见的“小不点儿”们,对人体的免疫、营养和代谢等起着至关重要的作用。一方面,人体的健康状况发生变化,体内共生微生物的组成就会发生变化;反之,体内微生物组成的变化,也会导致人体健康状况的改变。因此,人体共生微生物的组成可以真实而准确地反映人体的健康状况。 鉴于了解到人类元基因组对人体健康的重要性,科学界积极开展了相关研究。如欧盟、美国和日本的科研人员相继启动了人类元基因组研究计划。赵立平教授特别提到,去年12月9~10日,英、美、法、中等国科学家在美酝酿成立“人类微生物组国际研究联盟(IHMC)”,计划今年4月联合启动“人类元基因组计划”,开始对人类元基因组的全面研究。这项被称为“第二人类基因组计划”的项目将对人体内所有共生的微生物群落进行测序和功能分析,其序列测定工作量至少相当于10个人类基因组计划,并有可能发现超过100万个新的基因,最终在新药研发、药物毒性控制和个体化用药等方面实现突破性进展。 ▲关注慢性全身性代谢性疾病 去年12月美国《科学》杂志预测:人类共生微生物的研究将可能是国际科学研究在2008年取得突破的7个重要领域之一。赵立平教授谈到,当前对人类元基因组研究发现,肠道菌群结构的改变与失衡除会导致肠道疾病外,还与很多慢性全身性的代谢性疾病,如糖尿病、肥胖,甚至是癌症的发生有着密切关系。 过去一些找不到确切病原菌的肠道疾病,即非感染性肠道疾病(如肠易激综合征等),现在研究认为,肠道内微生物群落结构失调可能与其发生有重大关系。因而在治疗上,就可以选择一些改善肠道菌群失调的微生态制剂。 糖尿病原来仅仅被认为是糖代谢异常,现在研究却发现,菌群失调可能是造成糖尿病发生的一个影响因素。赵立平教授领导的研究小组发现,糖尿病模型动物肠道中的一些特定菌的数量有所变化——两种乳酸菌数量明显下降。国外也有研究报道,补充乳酸菌制剂能缓解模型动物的糖尿病症状。这“一减一加”的事实说明,肠道内某些种类的乳酸菌可能参与了糖尿病的发生发展过程。菌群的变化不仅是糖尿病的后果,也可能是糖尿病的诱因。 尽管肥胖受一定的遗传因素影响,但环境因素也对其产生重要作用。赵立平教授强调,菌群就是其中之一,即饮食结构改变产生的菌群结构异常可导致肥胖。美国学者Gordon及其同事近年来在肥胖与菌群关系的一系列研究上取得了突破性进展。他们发现,遗传性肥胖小鼠和瘦型小鼠肠道菌群的组成有明显差异,且肥胖表型可以随菌群在不同个体间发生转移;他们对人体的研究也获得了相似的结果。更令人兴奋的发现是,肠道菌群可以直接调节宿主脂肪存储组织的基因表达活性,使宿主增加脂肪的积累。这些研究有力地支持了肠道菌群在人类这样的“超级生物体”生理代谢中的地位。这从另一个角度证明,肥胖是人的基因和微生物基因共同作用的结果,甚至在某种程度上,后者的作用可能更大。 ▲“中国舞”应能独领风骚 在世界各国对人类元基因组研究相继加大研究力度的同时,我国学者也不甘示弱。目前,围绕肠道菌群与感染性疾病的关系,由浙江大学第一附属医院牵头的国家“973”计划项目已经启动;在科技部和上海市的支持下,由上海交通大学系统生物医学研究院、中科院营养科学研究所和国家人类基因组南方中心等单位承担的中法肠道元基因组国际合作项目也已顺利启动;在上海市疾病控制中心(CDC)、闸北区CDC和卢湾区CDC的大力配合下,已经完成了1000多人的上海常住居民“营养、菌群与肥胖的病例对照研究”的现场体检和血液、尿液和粪便样品的采集工作,这是目前国际上规模最大的人类元基因组人群研究项目,备受国际同行关注。 但从整体来讲,我国的人类元基因组研究还处于起步阶段。如何充分利用我国的特有优势参与国际竞争,加快人类元基因组研究步伐,是需要我们认真思考的问题。在采访中,赵立平教授多次强调,我国目前具有多方面的优势,如果组织得当,在国际人类元基因组研究的大舞台上,应该能跳出一支支漂亮的“中国舞”。微生物与人类的关系 ———姓名.所在单位. 摘要: 小到肉眼看不见的微生物对人类却起着难以想象的巨大作用。有时危害人类,给我们带来灾难。但在某些方面,它又是我们人类的好朋友,帮助我们解决问题和灾难。 关键词:微生物,应用,危害,人类. The relation between microorganism and mankind --Zhang Jingjing (20044274) living creature engineering of the life science college of the University of Heilongjiang 3 class Abstract: I am small to arrive the naked eye unseen microorganism to the mankind but have the huge function of hard endanger mankind, bring us a in some aspects, it is our mankind's good friend again, helping us to solve problem with disaster. Keywords: Microorganism, applied, endanger, mankind. 什么是微生物?微生物是泛指肉眼看不到或看不清楚的微小生物。它们体积微小,结构简单。它与人类关系密切,它既能造福于人类,也能给人类带来毁灭性的灾难。 微生物学在解决当代重大社会问题中起着重要作用。例如微生物采油技术中,它发挥令人难以想象的巨大作用。它可降低原油的黏度,增加原油的流动性,从而大大提高了原油的采收率。此种技术成本低,设备简单,不伤害地层,不污染环境,而且效益显著。1995~2000 年,斯诺克尔石油技术公司实施该技术且获得很好的效益[1]。而日本则把光合菌、乳酸菌、酵母菌、发酵丝状菌、放线菌等功能各异的80 多种微生物组成的一种活菌制剂。这些微生物组合在一个统一体中,互相促进,共同构成一个复杂而稳定的具有多元功能的微生态系统,可抑制有害微生物,尤其是病原菌和腐败细菌的活动,促进植物生长。该技术在自然农法中广泛应用。随着国民经济的发展,微生物的应用也越来越广泛。在生物制药、能源、环保、食品、工业等方面,微生物都扮演着重要的角色。 然而,微生物在给人类提供诸多好处的同时,也带来了许多不可忽视的负面影响。我们用的化妆品含有多种营养成分,为微生物的生长提供了适宜的环境,在生产、储藏和使用过程中极易受到微生物的污染。化妆品中常见细菌主要以芽胞杆菌属、假单胞菌属、葡萄球菌属为主,这几个属的细菌在自然界分布广泛,对环境抵抗力较强,污染机会较多[2]。真菌主要有木霉属、曲霉属、根霉属、脉孢菌属、短梗霉属、假丝酵母属和红酵母属等,这些菌也是自然环境中常见的霉菌和酵母[3]。受到微生物污染的化妆品不但产品腐败变质,更重要的是致病微生物污染会对人体健康产生危害。别外饮水机污染也已成为不可忽视的卫生问题,有的饮水水质量已经远远达不到合格饮用水的卫生质量,所谓的纯净水、矿泉水等已不能直接饮用,主要是被大肠杆菌等微生物污染。这种状况很可能加重夏秋季肠道病的流行。研究人员还指出,室内空气也存在着微生物污染,它可引起人体出现眼刺激感、哮喘、过敏性皮炎、过敏性肺炎和传染性疾病,重者甚至因感染而死亡。室内建筑材料和家用电器是室内空气的主要污染源,它不仅能释放出对人体有害的化学物质,同时也为微生物的孳生提供了有利的条件。 由此可见,微生物与人类的关系非常密切,它不仅造福与人类,也会伤害人类。因此我们应该正确地认识微生物,并利用它保护环境、造福人类,这是我们的期望也是我们每个人义不容辞的责任。 参考文献: [ 1 ] 谢明杰,谢正,邹翠霞,曹文伟.微生物降解原油提高原油采收率的研究[J].抚顺石油学院学报,1999,(2). [ 2 ] 东秀珠,蔡妙英. 常见细菌系统鉴定手册[ M] . 北京:科学出版 社,2001. [ 3 ] 魏景超. 真菌鉴定手册[ M] . 北京:科学出版社,1979. (收稿日期:2003 -08 -12) [ 4 ] 金京德. 有效微生物研究会·EM活用技术事例集·EM研究所·2004年·人类与微生物可持续发展的关系1,土壤中的分解者——真菌、. 微生物和土壤动物分解死去的动物和 植物,清除有机垃圾,给人类创造一个洁净的环境; 2,微生物给人类在衣、食、住、行、医药、美学和科学进步等等方面提供的用场太丰富了; 3,微生物可以形成完整的食物网,同时它们又是他动物的食物,通过捕食与被捕食的关系把动植物,微生物联系起来,形成一个复杂的关系网。 4,现代人类是由人类、各种各样的微生物、其它生物种类在其所分享的不断变化的大自然的胁迫中进化而来。这种共同进化的过程受多方面的影响,诸如:环境的变迁、人类的迁徙、人类行为的变化、其它物种数量的增加和减少以及微生物命运的不断变更。 5,保持一直处于人体与病原微生物间的最大程度上的微妙平衡可以使生态安全得到加强。现代人类和多种多样的微生物随着时间的前移而共同进化,这种关系大可用“和平共处”来描述。这种“和平”来自于人类对于病原微生物的经验发展而得来的对免疫性的认识。

建议你多多参考下(微生物前沿)

现代生物技术制药研究及展望生物技术药物(biotech drugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。现在,世界生物制药技术的产业化已进入投资收获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、生产和改造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一。有些学者认为,20世纪的科学技术是以物理学和化学的成就占主导地位,而21世纪的科学技术是以生物学的成就占主导地位。无论这种说法是否得到普遍的认同,生物技术是当今高技术中发展最快的领域似乎是不争的事实。 科学家预测,生命科学到2015年会取得革命性进展。这些进展可以帮助人类解决很多目前无法医治的疾病的治疗问题,彻底消除营养不良,改善食品的生产方式,消除各种污染,延长人类寿命,提高生命质量,为社会安全和刑侦提供新的手段。有些成果还可以帮助人类加速植物和动物的人工进化以及改善生态环境对人类的影响等。产生新的有机生命的研究也会取得进展。1.生物制药现状目前生物制药主要集中在以下几个方向:1 肿瘤 在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的患者为100万,死于肿瘤者达万。用于肿瘤的治疗费用1020亿美元。肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综合手段治疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑制肿瘤,应用导向IL-2受体的融合毒素治疗CTCL肿瘤,应用基因治疗法治疗肿瘤(如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白酶抑制剂(TNMPs)可抑制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂有可能成为广谱抗肿瘤治疗剂,已有3种化合物进入临床试验。2 神经退化性疾病 老年痴呆症、帕金森氏病、脑中风及脊椎外伤的生物技术药物治疗,胰岛素生长因子rhIGF-1已进入Ⅲ期临床。神经生长因子(NGF)和BDNF(脑源神经营养因子)用于治疗末稍神经炎,肌萎缩硬化症,均已进入Ⅲ期临床。美国每年有中风患者60万,死于中风的人数达15万。中风症的有效防治药物不多,尤其是可治疗不可逆脑损伤的药物更少,Cerestal已证明对中风患者的脑力能有明显改善和稳定作用,现已进入Ⅲ期临床。Genentech的溶栓活性酶(Activase重组tPA)用于中风患者治疗,可以消除症状30%。3 自身免疫性疾病 许多炎症由自身免疫缺陷引起,如哮喘、风湿性关节炎、多发性硬化症、红斑狼疮等。风湿性关节炎患者多于4000万,每年医疗费达上千亿美元,一些制药公司正在积极攻克这类疾病。如 Genentech公司研究一种人源化单克隆抗体免疫球蛋白E用于治疗哮喘,已进入Ⅱ期临床;Cetor′s公司研制一种TNF-α抗体用于治疗风湿性关节炎,有效率达80%。Chiron公司的β-干扰素用于治疗多发性硬化病。还有的公司在应用基因疗法治疗糖尿病,如将胰岛素基因导入患者的皮肤细胞,再将细胞注入人体,使工程细胞产生全程胰岛素供应。4 冠心病 美国有100万人死于冠心病,每年治疗费用高于1 170亿美元。今后10年,防治冠心病的药物将是制药工业的重要增长点。Centocor′s Reopro公司应用单克隆抗体治疗冠心病的心绞痛和恢复心脏功能取得成功,这标志着一种新型冠心病治疗药物的延生。基因组科学的建立与基因操作技术的日益成熟,使基因治疗与基因测序技术的商业化成为可能,正在达到未来治疗学的新高度。转基因技术用于构造转基因植物和转基因动物,已逐渐进入产业阶段,用转基因绵羊生产蛋白酶抑制剂ATT,用于治疗肺气肿和囊性纤维变性,已进入Ⅱ,Ⅲ期临床。大量的研究成果表明转基因动、植物将成为未来制药工业的另一个重要发展领域。2.生物制药展望今后10年生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成新领域。目前热门的药物生物技术如下:表1 热门药物生物技术疫苗 62 组织纤溶酶原激活剂 4基因治疗 28 凝血因子 3白介素 11 集落细胞刺激因子 3干扰素 10 促红细胞生成素 2生长因子 10 SOD 1重组可溶性受体 6 其他 56反义药物 6 总数 284生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面的进展正在加快。除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。除了解决传统的细菌和病毒问题之外,人们正在开发解决化学不平衡和化学成分积累的新疗法。例如,正在开发之中的抗体可以攻击体内的可卡因,将来可以用于治疗成瘾问题。这种方法不仅有助于改善瘾君子的状况,而且对于解决全球性非法毒品贸易问题具有重大影响。各种新技术的出现有助于新药物的开发。计算机模拟和分子图像处理技术(例如原子力显微镜、质量分光仪和扫描探测显微镜)相结合可以继续提高设计具有特定功能特性的分子的能力,成为药物研究和药物设计的得力工具。药物与使用该药物的生物系统相互作用的模拟在理解药效和药物安全方面会成为越来越有用的工具。例如,美国食品药物管理局(FDA)在药物审批的过程中利用Dennis Noble的虚拟心脏模拟系统了解心脏药物的机理和临床试验观测结果的意义。这种方法到2015年可能会成为心脏等系统临床药物试验的主流方法,而复杂系统(例如大脑)的药物临床试验需要对这些系统的功能和生物学进行更为深入的研究。到下世纪初生物技术药物的种类数目尚不会超过一般药物的总数,但生物技术制药公司总数将超过前10年的6倍。目前主要生物技术公司多分布在美国,如Amgen,Genetics institute,Genzyme,Genentech和Chiron,还有Biogen也发展较快。1987年尚没有一种重组DNA药物进入世界药品销售额排名前列表,但到1996年已有多种生物工程药物榜上有名。经上市的生物技术药物主要含3大类,即重组治疗蛋白质、重组疫苗和诊断或治疗用的单克隆抗体。药物的研究开发成本目前已经高到难以为继的程度,每种药物投放市场前的平均成本大约为6亿美元。这样高的成本会迫使医药工业对技术的进步进行巨大的投资,以增强医药工业的长期生存能力。综合利用遗传图谱、基于表现型的定制药物开发、化学模拟程序和工程程序以及药物试验模拟等技术已经使药物开发从尝试型方法转变为定制型开发,即根据服药群体对药物反应的深入了解会设计、试验和使用新的药物。这种方法还可以挽救过去在临床试验中被少数患者排斥但有可能被多数患者接受的药物。这种方法可以改善成功率、降低试验成本、为适用范围较窄的药物开辟新的市场、使药物更加适合适用对症群体的需要。如果这种技术趋于成熟,可以对制药工业和健康保险业产生重大影响。值得注意的是,制药工业的知识产权保护在世界各地是不平衡的。某些地区(例如亚洲)会继续以生产专利过期药物为主,有些地区(如美国和欧洲)除了继续生产低利润的药物外会不断开发新的药物。总之,综合多学科的努力,通过新技术的创立可以大大拓宽发明新药的空间,增加发明新药的机遇与速度。因为这些手段可以寻找快速鉴定药物作用的靶,更有效地发现更多新的先导物化学实体,从而为发明新药提供更加广阔的前景。仅供参考,请自借鉴希望对您有帮助

海洋生物来源药物先导化合物的研究进展【摘要】海洋生物中活性物质丰富,本篇文章对国内外近3年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了归纳,并对其研究趋势进行了展望。这些新发现的萜类化合物广泛分布于海藻、珊瑚、海绵以及一些海洋真菌等海洋生物中,主要以单萜、倍半萜、二萜、三萜结构型式存在;而糖苷类化合物在海藻、海绵、海参、海星等海洋生物中发现大部分以糖苷脂、甾体糖苷、萜类糖苷型式存在。【关键词】海洋生物萜类化合物糖苷类生物活性【Abstract】.【Keywords】Marineorganism;terpenoid;glycoside;bioactivity海洋是生命之源,由于海洋环境的特殊性,具有高压、低营养、低温(特别是深海)、无光照以及局部高温、高盐等生命极限环境,海洋生物适应了海洋独特的生活环境,必然造就了海洋生物具有独特的代谢途径和遗传背景,必定也会有新的、在许多陆地生物中未曾发现过的新结构类型和特殊生物活性的化合物。萜类物质是一类天然的烃类物质,其分子中具有异戊二烯(C5H8)的基本单位。故凡由异戊二烯衍生的化合物,其分子式符合(C5H8)n通式的均称萜类化合物(terpenoids)或异戊二烯类化合物(isopenoids)。但有些情况下,在分子合成过程中由于正碳离子引起的甲基迁移或碳架重排以及烷基化、降解等原因,分子的某一片断会不完全遵照异戊二烯规律产生出一些变形碳架,它们仍属于萜类化合物。海洋生物中萜类化合物主要以单萜、倍半萜、二萜、二倍半萜为主,三萜和四萜种类和数量都较少,且大部分以糖苷形式存在。萜类化合物是海洋生物活性物质的重要组成部分,广泛分布于海藻、珊瑚、海绵、软体动物等海洋生物中,具有细胞毒性、抗肿瘤活性、杀菌止痛等活性作用。糖苷的分类有多种方法,按照在生物体内是原生的还是次生的可将其分为原生糖苷和次生糖苷(从原生糖苷中脱掉一个以上的苷称为次生苷或次级苷);按照糖苷中含有的单糖基的个数可将糖苷分为单糖苷、双糖苷、三糖苷等;按照糖苷的某些特殊化学性质或生理活性可将糖苷分为皂苷、强心苷等;按照苷元化学结构类型可分为黄酮糖苷、蒽醌糖苷、生物碱糖苷、三萜糖苷等,海洋类的糖苷大部分是按照此特点分类的,主要包括鞘脂类糖苷、甾体糖苷、萜类糖苷和大环内酯糖苷等,在很多海洋生物如海藻、珊瑚、海参、海绵等中均发现有糖苷类化合物存在。已有的研究表明海洋糖苷类成分大都具有抗肿瘤、抗病毒、抗炎、抗菌、增强免疫力等生物活性。抗白血病和艾氏癌药物阿糖胞苷Ara-C(D-arabinosylcytosine)1、抗病毒药物的Ara-A2以及Ara-C的N4-C16-19饱和脂肪酰基化衍生物3是海洋糖苷类药物成功开发的典范〔1〕。本篇文章对国内外自2005年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了总结。1萜类化合物单萜2005年等人〔2〕对从红藻Plo

布洛芬药物制药工艺研究论文

1 方法名称:布洛芬口服溶液-布洛芬-高效液相色谱法。2 应用范围:该方法采用高效液相色谱法测定布洛芬口服溶液中布洛芬的含量。该方法适用于布洛芬口服溶液。3 方法原理:供试品经甲醇定量稀释,进入高效液相色谱仪进行色谱分离,用紫外吸收检测器,于波长263nm处检测布洛芬的峰面积,计算出其含量。4 试剂: 乙腈 甲醇 醋酸钠缓冲液5 仪器设备: 仪器 高效液相色谱仪 色谱柱十八烷基硅烷键合硅胶为填充剂,理论塔板数按布洛芬峰计算应不低于2500。 紫外吸收检测器 色谱条件 流动相:醋酸钠缓冲液 乙腈=40 检测波长: 柱温:室温6 试样制备: 醋酸钠缓冲液取醋酸钠,加水750mL,振摇使溶解,用冰醋酸调节pH值至。 对照品溶液的制备精密称取布洛芬对照品适量,加甲醇定量稀释制成每1mL中含布洛芬的溶液,即为对照品溶液。 供试品溶液的制备用内容量移液管,精密量取供试品适量,加甲醇定量稀释制成每1mL中含布洛芬的溶液,即为供试品溶液。7 注:“精密称取”系指称取重量应准确至所称取重量的千分之一。“精密量取”系指量取体积的准确度应符合国家标准中对该体积移液管的精度要求。

布洛芬的制作方法如下:

飞秒检测发现现在常采用的布洛芬的合成方法是醇羰基化法,即 BHC 法 ,以异丁苯为原料 ,经与乙酰氯的傅克酰化、催化加氢还原和催化羰基化 3步反应制得布洛芬 ,为目前最先进的工艺路线 ,为国外多数厂家所采用。

如果要从缩水甘油酯开始,过程更长,需要先制备出乙酰氯等。布洛芬具有降温和抑制肺部炎症的双重作用。布洛芬属于丙酸类非甾体抗炎药,其主要作用为抑制前列腺素的合成,从而起到退热、止痛和抗炎效果。

临床上本药物可用于普通感冒,或流行性感冒、急性咽喉炎等疾病,出现高热症状时进行退烧、去热的对症治疗。还有轻中度的一些疼痛症状,如头痛、关节痛、神经痛、牙痛,以及女性出现痛经等,服用本药物后,也能较好地缓解疼痛。

此外,服用布洛芬的患者需要注意,其对胃肠道有一定刺激性,尽量不要空腹用药。尤其需要注意,用药期间不可饮酒,否则会加重消化道负担,甚至可引起消化道出血的症状。

布洛芬片制造成本较低,制备工艺简单、成熟、应用携带方便,是临床应用最多的制剂之一,国内外研制布洛芬骨架片剂的文献较多。

  • 索引序列
  • 微生物发酵制药工艺研究论文
  • 纳米生物发酵工艺研究论文
  • 微生物发酵杂志
  • 微生物制药论文
  • 布洛芬药物制药工艺研究论文
  • 返回顶部