首页 > 医学论文 > 医学论文统计学错误实例

医学论文统计学错误实例

发布时间:

医学论文统计学错误实例

医学统计中的常见误区有哪些

医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。医学研究的对象主要是人体以及与人的健康有关的各种因素。下面是我为大家带来的关于医学统计中的常见误区的知识,欢迎阅读。

一,真正差异和统计学差异

常常有人和我说: P值越小,试验结果的差异就越大!而且还有依据 [P < 是有显著性差异; P < 是有极显著性差异]。

其实,这些人忽略了 n 这个样本数的作用,n 的大小会影响 P 值。但更应该澄清一下的是: P 值代表的是统计学差异,并不是真正的差异!真正的差异只能靠平均值或者频度的比较才能得到。

二,卡方检验的局限性

我们知道各组之间的计数资料的比较,要用卡方检验,但有些情况是不行的!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

2,当组与组之间有不同的背景,而这些背景因子还可能会影响到组与组之间结果差异,这是就必须要用 Mantel-Haenszel 检验!

这第2条可能大家不要理解,那我就举两个例子:

1) 关于男性和女性对于不同颜色的喜好的统计学分析

但这里应该注意到年龄可能会对这个分析造成影响,这就要用Mantel-Haenszel 检验了。

***红色 蓝色 黄色

男性 5 7 8

女性 15 10 6

可以按大人和小孩(比如我们以15岁为分界)分层,在SPSS中要把这个因素放到[行] [列]下边的[层化]一栏里,并在统计指标选项里,选 Cochran和Mantel-Haenszel的统计量选项,这样出来的结果就可靠了!

2)两种治疗(A和B)效果的评价分析:

*****A法 B法

生存 41 54

死亡 47 31

用卡方检验 X2=; P <

但是,病人的临床分期将影响着分析结果:

********生存**************死亡

——————————***——————————

————A****B————————A*****B———

1期-----18-----21--------------------0--------0-------

2期-----23-----33-------------------13------- 8-------

3期------0------0--------------------34-------23-------

再用Mantel-Haenszel检验: X2=; P >

说明实际上A法和B法两组的统计学差异,是这个不同的分期造成的!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。

当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。

三,t 检验的局限性

1,我们经常用 t 检验来判别两组病人血清中某种标记物水平上的差异,但这里要注意,有一些血清标记物的水平是不能用 t 检验的!

比如: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!

这时应该用 非参数性检验---即 Mann-Whitney U test (Wilcoxon U test)。

2,关于用不用配对t 检验,我个人认为当同一组样本在不同时点,不同处理方式的比较上,应该用配对t 检验。

四,ANOVA 检验的局限性

1,在2组以上计量资料样本比较时,ANOVA 检验非常常用。但这个检验只是说明了一个趋势的比较结果,并不能说明真正的统计学差异,真正的`差异还要通过每两个点的直接比较,也就是说应该在ANOVA 检验后,还必须做两两比较或多重比较,这样才能从全貌上反映出统计的全部结果。

2,既然方差分析得到差别有显著性意义的结论后,还需进行两两比较,有人认为还不如一开始就进行多次t检验更方便,其实,这种认识是不妥当的。t检验用于ANOVA的两两比较将增大第一类错误,产生假阳性,因此要采用特定的方法,在SPSS的one-way ANOVA或General linear models中操作时,Post Hoc(多重比较)对话框内有多种方法可供选择,象两两比较一般用SNK法,而多个试验组和一个对照组的比较则多用dunnett检验。

3,我们经常用 ANOVA 检验来判别几组病人血清中某种标记物水平上的差异,但这里要注意,与 t 检验一样,有一些血清标记物的水平是不能用 ANOVA 检验的!

如上所说的: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!

这时应该用 非参数性检验---即 Kruskal-Wallis rank test 。

五,单元线性相关分析

有时我们常常只注意到了 P 值大小,可最重要的是 r 值!

样本数 n 对 P 值 结果的影响很大,容易让我们产生错觉,其实,相关的存在与否的评价是与 r 值最直接相关的,如下:

当 P 值小于时: r 值

几乎没有相关关系

弱的相关关系

有相关关系

强相关关系

极强相关关系

P 值只是证明这个相关在统计学上是否成立!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。

当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。

不是说样本小于5

而是说:在R×C表中

理论频数不应该小于1,并且1≤T≤5的格子数不应该超过总格子数的1/5,若出现上述情况可以通过以下方法:

a.增加样本含量,使理论频数增大;

b.根据专业知识,删除理论频数太小的行和列;或者将理论频数太小的行或列与性质相近的邻行和邻近列合并。

c.改用双向无序的R×C表的fishher确切概率法。

还有一点

四格表卡方检验的适应指标:(T为理论频数)

1。n≥40,且T≥5时用卡方检验基本公式。但是当p≈α应该用fisher确切概率法

2。n≥40,但是1≤T≤5时,用四格表校正公式

3。n<40,或者T<1时,用fisher四格表确切概率法

4。四格表卡方检验的连续性校正仅仅用于自由度为1的四格表尤其是n较小时。

补充几点:

1. 关于P值:P值的大小并不是各组差异的大小,而是统计学差异显著性的大小。P值越小,说明得出各组没有差异的概率越小,越有理由说明各组存在差异(可以说,P值的大小反映了做出统计结论的“理由”的大小,而不是被比较的各组的实际差异的大小,得出有意义的结论后,其差异的大小可直接通过各组的均数或率进行比较)。

2. 关于t检验和方差分析:katalyster兄上面提到的t检验及方差分析在某些时候不适用,实际上就是每种方法都有其应用条件,不服从正态分布当然不能用。对这样的资料首先可考虑变量变换(如抗体滴度等资料,为指数或幂次的关系,可用对数转换),如变换后,服从正态分布,可用上述方法;若还不符合,则考虑非参数检验。

3. 关于相关分析:两个变量间是否存在相关关系,要看P值,而不是r值,r值用来说明相关关系的大小。当P<,才能讲两变量间存在相关关系,再看r值,r值越大,相关关系越强,反之越小;否则,P>,不能讲两变量间存在相关关系,r值毫无意义。

感谢kushuya, xiaoxiongzjh两位专家的补充和指正!之所以开这个专题,是真心想让初学者从这些<误区>中走出来!

六,Logistic regression 分析

在判断某因子对疾病的危险度时常用的方法。

1,假设要判断某因子对疾病的危险度(OR),要了解这个OR是一个相对危险度,即是有某因子存在和没有某因子存在之间比较的OR值。

2,OR 和 RR 不一样,OR是在Logistic regression model中使用,RR是在Cox proportional hazard model中使用。

3,假设要判断某因子对疾病的危险度,要在多变量Logistic regression model中校正一些混扰因素,如常见的年龄,性别,吸烟等等,并最后得出这个 Adjusted OR。但并不是说有了这些校正,我们就可以在实验设计上就不考虑这些混扰因素,相反,必须在实验设计上就把这些混扰因素在实验组和对照组配平,光靠在多变量Logistic regression model中校正是不可靠的。

其它方法---生存分析 (Kaplan-Meier法+ Logrank法):

我们有时在临床研究只注意到了用这种方法分析与生存相关的研究,其实,在疾病复发上也常用这种方法!前者是以生---死为判别,后者则以复发---不复发为判别。

不论是什么错,还是谁提出的,一经核实,原刊物会在以后的期刊中,给出勘误表或更正。如果是作者本人,发现的最好尽快与杂志社联系,予以更正,并附一封对读者的致歉信。

我搜到3篇文章,希望对你有所帮助医学科研设计中一个常被忽视的统计学错误辨析【作者中文名】 毕京峰; 段俊国; 【作者单位】 山东中医药大学; 成都中医药大学; 【文献出处】 时珍国医国药, Lishizhen Medicine and Materia Medica Research, 编辑部邮箱 2008年 10期 期刊荣誉:中文核心期刊要目总览 ASPT来源刊 CJFD收录刊 【关键词】 医学统计学; 科研设计; 【摘要】 统计学错误在既往的临床科研设计中是常见的,但一般易于发现和改正。笔者近期查阅相关医学科研论文发现,有一个统计学错误,其错误应用率很高,甚至许多统计专业人员也不例外。例:某研究者研究A药对高脂血症性脂肪肝大鼠的作用,设计了如下试验方案:建立高脂血症性脂肪肝大鼠模型,以高、中、低剂量去脂胶囊进行干预,通过血液生化检查,观察其对脂肪肝大鼠的血脂的影响。结果:去脂胶囊能明显降低脂肪肝大鼠血脂,与对照组比较差异有显著性意义(P<)。结论:去脂胶囊对大鼠脂肪肝有肯定治疗作用。在本设计方案中,研究者将A药高、中、低3个剂量组与甲硫氨酸片组和自然恢复组按多因素一水平的统计方法进行方差分析。仔细考察各处理组之间的关系,其实本研究主要涉及两个因素:A药治疗与甲硫氨酸片治疗,而A药高、中、低3个剂量组是A药的3个水平,而不是与甲硫氨酸片平等的3个因素。表1各组大鼠血清脂质比较(x-±s)mmol·L-1组别TC TG HDL-C自然恢复± ± ±药低剂量± ± ±药中剂量±... 【DOI】 CNKI:SUN: 医学科研论文中常见的统计学错误【作者中文名】 李祝华; 【作者单位】 白城市传染病医院 吉林白城; 【文献出处】 吉林医药学院学报, Journal of Jilin Medical College, 编辑部邮箱 2007年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学; 科研论文; 统计学错误; 【摘要】 科技论文常用统计学方法对资料进行加工、整理与分析,从而定性或定量地阐述一些理论或实验结果。现就一些医学期刊(1999~2000年度国家级期刊8种共60期)中出现错误的统计方法进行归纳分析,以提醒科技工作者在撰写科技论文时能合理应用统计学方法,准确地进行描述、估计、比较、预测与分析,尽量减少统计学方法的错误应用,提高科技论文的写作水平。1资料缺乏可靠性有的资料样本数量较少,有的作者选择的实验对象不具代表性,有许多人为因素,有个别作者根据自己主观期望判断结果,更有甚者有时更改实验数据,致使一些实验结果出现较大误差。2统计学方法缺乏科学性统计学方法比较多,如率、构成比、发展速度、显著性检验方法等。有时计算方法不当就能直接影响结果或造成误解。如率与构成比的联系与区别就常被人误解,也有的作者只看表面现象,不经统计学方法处理,就下结论。3统计量投入缺乏规范性科学恰当地计算统计量,才能正确反映事物的真实情况,但如果计算不当,则会出现假象或错误的结果。如未经标准化处理的资料就进行率的比较,由于两组资料的内部结构不同,结... 【DOI】 CNKI:SUN: 医学论文中常见的统计学错误及对策【作者中文名】 杨云华; 【作者单位】 天津市医学科学技术信息研究所 300050天津; 【文献出处】 中华医学科研管理杂志, Chinese Journal of Medical Science Research Management, 编辑部邮箱 2004年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学论文; 统计学; 常见错误; 对策; 【摘要】 分析医学科研论文中统计学方法应用中常出现的错误 ,提高编辑人员识别统计学常见错误的能力 ,确保科研论文的科学性、准确性和可信性 ,努力办成精品期刊。 【DOI】 cnki:ISSN:

你可以参考一下 《当代医学论文研究 》 里面很多这样子的文章

医学论文统计错误案例

呵呵~~~没事,查到也是学校的责任,学校会帮你的,没事放心吧!

《中国电子商务》格式说明 [论文题目]作者A1作者B2[作者]1(单位A上海 210000)[单位] 2(单位B上海 210000)本规格为在《中国电子商务》上发表的科技论文而设定。请作者逐条阅读并落实,如不符合要求,将影响文章的发表。摘要的内容应包含与论文同等量的主要信息,一般应说明研究工作目的、实验方法、结果和最终结论等,而重点是结果和结论。电子商务格式说明信息化FORMAT DESCRIPTION OF COMPUTER APPLICATIONS AND SOFTWARE[英文题目]Zuo Zhe A1 Zuo Zhe B2 [英文作者]1(Editorial Department, Computer Applications and Software, Shanghai 210000,China) [英文单位]2(Editorial Department, Computer Applications and Software, Shanghai 210000,China) [英文单位]This specification is set for the theses to be published in Computer Applications and Software, including fonts, margins, page size and print area. Computer Format description Software [keywords] 引言 [标题1]采用Word 2000或Word xp格式排版,请同时提供Word版本和打印稿。[正文缩进]务请作者按照本规格编排论文。请直接使用样式,不要对样式作任何修改! 格式说明版心说明 [标题2]用A4纸,页边距上下左右已经设置好,请不要改动。论文题目一般不要超过两行。作者 关于作者中文名字的要求 [标题3]使用“作者”样式。姓名是两个字的,中间用一个中文空格或两个英文空格隔开。只有一个作者的,且作者姓名字数为三个的(包括三个的),姓名的每个字之间用一个英文空格隔开。 关于作者简介使用“收稿日期”样式。在文章的第一页右下角,可附一段说明,内容包括收稿日期、基金项目、第一作者姓名、职称、主研领域等。多个研究领域之间使用全角逗号隔开。一般保持在2行,如果高度不够,可作适当调整。单位使用“单位”样式。作者工作单位准确到系或学院等,要写全称。如:“清华大学计算机科学与技术系”不应简写为“清华大学计算机系”;“浙江大学计算机科学与工程学系”不应简写为“浙江大学计算机系”。单位是多个的写在多行中,可以用上标加以区分。在单位名称和城市名之间使用一个中文空格或两个英文空格隔开,在城市名和邮编之间使用一个英文空格隔开,不能用逗号。摘要使用“摘要”样式。中文摘要需写成200字左右的篇幅,摘要内容不能太简单,要有研究目的、方法、结果和结论等。摘要请采用第3人称的写法,且放在一个段落中。关键词提供3-8个关键词,之间用一个中文空格或两个英文空格隔开。英文题目使用“英文题目”样式。英文标题全部大写,一般不要超过两行。英文署名使用“英文作者”样式。两个姓名中间用两个英文空格隔开。姓氏第一个字母大写,单、双名第1个字母大写,双名中间不加连字符。例如: 李伟 Li Wei 张小军 Zhang Xiaojun英文单位使用“英文单位”样式。作者单位的中英文要完全对应。每个实词的首字母大写。在部门名称和单位名称之间、在单位名称和城市名之间使用英文逗号隔开,城市名和邮编之间使用一个英文空格隔开,不能用逗号。 Abstract使用“Abstract”样式。英文摘要需写成200词左右的篇幅,为了使本刊尽快实现国际化,所以要求英文摘要水平一定要高,内容要充实,要包括研究目的、方法、结果和结论等,与中文摘要可不完全对应。Keywords使用“Keywords”样式。提供与中文关键词对应的英文关键词。每个关键词之间用两个英文空格分开。每个关键词以一个单词的首字母大写,其余小写。 标题 一级标题使用“标题1”样式。用阿拉伯数字1,2,3…,数字之后没有任何符号,如小数点、顿号、逗号等。一般不超过一行。 二级标题使用“标题2”样式。前面冠之于一级标题,用阿拉伯数字表示,形如,,…。一般不超过一行。 三级标题及下级标题要求如同二级标题。形如,…。一般不超过一行。 四级标题使用“标题4”样式。形如,…。…。可以是多行。 标题文字标题为两个字的,如“引言”、“结论”等,两字中间用空格(一个中文空格或两个英文空格)隔开。 正文使用“正文缩进”样式。每个自然段开始时缩进两个汉字。

我搜到3篇文章,希望对你有所帮助医学科研设计中一个常被忽视的统计学错误辨析【作者中文名】 毕京峰; 段俊国; 【作者单位】 山东中医药大学; 成都中医药大学; 【文献出处】 时珍国医国药, Lishizhen Medicine and Materia Medica Research, 编辑部邮箱 2008年 10期 期刊荣誉:中文核心期刊要目总览 ASPT来源刊 CJFD收录刊 【关键词】 医学统计学; 科研设计; 【摘要】 统计学错误在既往的临床科研设计中是常见的,但一般易于发现和改正。笔者近期查阅相关医学科研论文发现,有一个统计学错误,其错误应用率很高,甚至许多统计专业人员也不例外。例:某研究者研究A药对高脂血症性脂肪肝大鼠的作用,设计了如下试验方案:建立高脂血症性脂肪肝大鼠模型,以高、中、低剂量去脂胶囊进行干预,通过血液生化检查,观察其对脂肪肝大鼠的血脂的影响。结果:去脂胶囊能明显降低脂肪肝大鼠血脂,与对照组比较差异有显著性意义(P<)。结论:去脂胶囊对大鼠脂肪肝有肯定治疗作用。在本设计方案中,研究者将A药高、中、低3个剂量组与甲硫氨酸片组和自然恢复组按多因素一水平的统计方法进行方差分析。仔细考察各处理组之间的关系,其实本研究主要涉及两个因素:A药治疗与甲硫氨酸片治疗,而A药高、中、低3个剂量组是A药的3个水平,而不是与甲硫氨酸片平等的3个因素。表1各组大鼠血清脂质比较(x-±s)mmol·L-1组别TC TG HDL-C自然恢复± ± ±药低剂量± ± ±药中剂量±... 【DOI】 CNKI:SUN: 医学科研论文中常见的统计学错误【作者中文名】 李祝华; 【作者单位】 白城市传染病医院 吉林白城; 【文献出处】 吉林医药学院学报, Journal of Jilin Medical College, 编辑部邮箱 2007年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学; 科研论文; 统计学错误; 【摘要】 科技论文常用统计学方法对资料进行加工、整理与分析,从而定性或定量地阐述一些理论或实验结果。现就一些医学期刊(1999~2000年度国家级期刊8种共60期)中出现错误的统计方法进行归纳分析,以提醒科技工作者在撰写科技论文时能合理应用统计学方法,准确地进行描述、估计、比较、预测与分析,尽量减少统计学方法的错误应用,提高科技论文的写作水平。1资料缺乏可靠性有的资料样本数量较少,有的作者选择的实验对象不具代表性,有许多人为因素,有个别作者根据自己主观期望判断结果,更有甚者有时更改实验数据,致使一些实验结果出现较大误差。2统计学方法缺乏科学性统计学方法比较多,如率、构成比、发展速度、显著性检验方法等。有时计算方法不当就能直接影响结果或造成误解。如率与构成比的联系与区别就常被人误解,也有的作者只看表面现象,不经统计学方法处理,就下结论。3统计量投入缺乏规范性科学恰当地计算统计量,才能正确反映事物的真实情况,但如果计算不当,则会出现假象或错误的结果。如未经标准化处理的资料就进行率的比较,由于两组资料的内部结构不同,结... 【DOI】 CNKI:SUN: 医学论文中常见的统计学错误及对策【作者中文名】 杨云华; 【作者单位】 天津市医学科学技术信息研究所 300050天津; 【文献出处】 中华医学科研管理杂志, Chinese Journal of Medical Science Research Management, 编辑部邮箱 2004年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学论文; 统计学; 常见错误; 对策; 【摘要】 分析医学科研论文中统计学方法应用中常出现的错误 ,提高编辑人员识别统计学常见错误的能力 ,确保科研论文的科学性、准确性和可信性 ,努力办成精品期刊。 【DOI】 cnki:ISSN:

算数据造假,但是已经毕业,应该不至于被取消学位。

硕士论文算错也就是数据造假。如果论文数据的确存在造假行为,那就存在被人发现的可能,一旦被查,将会受到相应的处罚。据统计,数据造假发生最多的领域,第一是医学, 其次是药理学。硕士论文一般是由学校保存,只有优秀的论文才能被知网等网络数据库收录。

但是在论文答辩之前要经过审核的,还是要注意一些为好。 对论文的认真程度,要看你的答辩组的老师态度了,还有硕士论文在毕业之后,还会经历一次教育部的抽查, 如果到那时被发现出了问题,就比较麻烦了。所以建议你如果数据可以得到真实的,就避免使用虚假数据。

论文数据重要性:

虽然审稿专家没有发现,但是并不代表论文发表出去后,别人发现不了。要知道论文发表出去,面向的是与你方向相同的人员,肯定会有不少同行业的人员阅读你的论文,若是发现错误,那么会质疑你的论文水平,也会怀疑杂志社及审稿专家的水平,对你今后在行业的发展并没有好处。

所以,一旦发现错误之后,就要及时联系杂志社或是审稿专家修改。尤其是医学方面的作者来说,任何一个小数的错误,可能都会影响整个研究实验,甚至会造成连锁反应。就拿药学论文来说,因为一个小数原则,可能导致某一项药品成分增加或是减少, 起到相反的作用,那么后果是非常严重的。

而对于一件机械零件的设计而言,可能因为一厘一毫的差别, 而导致一批零件无法投入使用。所以发现错误后要及时修改,这既是对自己,也是对他人负责的表现。

医学论文错误统计案例

中国光大(集团)总公司:你公司《关于报送企业集团统计报表的请示》(光京字[2003]67号)收悉。经研究,现批复如下:一、我局现行企业集团统计报表制度规定,国家试点企业集团和中央管理的企业集团统计报表由我局企业调查总队负责布置、收集。由于你公司属于中央管理的企业集团,因此你公司填报的企业集团统计报表应直接报送给我局企业调查总队,具体执行时间从今年半年报开始。二、《北京市统计局关于完善企业集团统计报表制度的通知》(京统发[2003]85号)要求你公司向其报送集团2003年年报和半年报的有关事宜,我局企业调查总队已和北京市统计局企调队进行了沟通,北京市企业集团统计的范围不再包括你公司,其所需资料由我局企业调查总队予以提供。国家统计局办公室二○○三年九月十五日

我搜到3篇文章,希望对你有所帮助医学科研设计中一个常被忽视的统计学错误辨析【作者中文名】 毕京峰; 段俊国; 【作者单位】 山东中医药大学; 成都中医药大学; 【文献出处】 时珍国医国药, Lishizhen Medicine and Materia Medica Research, 编辑部邮箱 2008年 10期 期刊荣誉:中文核心期刊要目总览 ASPT来源刊 CJFD收录刊 【关键词】 医学统计学; 科研设计; 【摘要】 统计学错误在既往的临床科研设计中是常见的,但一般易于发现和改正。笔者近期查阅相关医学科研论文发现,有一个统计学错误,其错误应用率很高,甚至许多统计专业人员也不例外。例:某研究者研究A药对高脂血症性脂肪肝大鼠的作用,设计了如下试验方案:建立高脂血症性脂肪肝大鼠模型,以高、中、低剂量去脂胶囊进行干预,通过血液生化检查,观察其对脂肪肝大鼠的血脂的影响。结果:去脂胶囊能明显降低脂肪肝大鼠血脂,与对照组比较差异有显著性意义(P<)。结论:去脂胶囊对大鼠脂肪肝有肯定治疗作用。在本设计方案中,研究者将A药高、中、低3个剂量组与甲硫氨酸片组和自然恢复组按多因素一水平的统计方法进行方差分析。仔细考察各处理组之间的关系,其实本研究主要涉及两个因素:A药治疗与甲硫氨酸片治疗,而A药高、中、低3个剂量组是A药的3个水平,而不是与甲硫氨酸片平等的3个因素。表1各组大鼠血清脂质比较(x-±s)mmol·L-1组别TC TG HDL-C自然恢复± ± ±药低剂量± ± ±药中剂量±... 【DOI】 CNKI:SUN: 医学科研论文中常见的统计学错误【作者中文名】 李祝华; 【作者单位】 白城市传染病医院 吉林白城; 【文献出处】 吉林医药学院学报, Journal of Jilin Medical College, 编辑部邮箱 2007年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学; 科研论文; 统计学错误; 【摘要】 科技论文常用统计学方法对资料进行加工、整理与分析,从而定性或定量地阐述一些理论或实验结果。现就一些医学期刊(1999~2000年度国家级期刊8种共60期)中出现错误的统计方法进行归纳分析,以提醒科技工作者在撰写科技论文时能合理应用统计学方法,准确地进行描述、估计、比较、预测与分析,尽量减少统计学方法的错误应用,提高科技论文的写作水平。1资料缺乏可靠性有的资料样本数量较少,有的作者选择的实验对象不具代表性,有许多人为因素,有个别作者根据自己主观期望判断结果,更有甚者有时更改实验数据,致使一些实验结果出现较大误差。2统计学方法缺乏科学性统计学方法比较多,如率、构成比、发展速度、显著性检验方法等。有时计算方法不当就能直接影响结果或造成误解。如率与构成比的联系与区别就常被人误解,也有的作者只看表面现象,不经统计学方法处理,就下结论。3统计量投入缺乏规范性科学恰当地计算统计量,才能正确反映事物的真实情况,但如果计算不当,则会出现假象或错误的结果。如未经标准化处理的资料就进行率的比较,由于两组资料的内部结构不同,结... 【DOI】 CNKI:SUN: 医学论文中常见的统计学错误及对策【作者中文名】 杨云华; 【作者单位】 天津市医学科学技术信息研究所 300050天津; 【文献出处】 中华医学科研管理杂志, Chinese Journal of Medical Science Research Management, 编辑部邮箱 2004年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学论文; 统计学; 常见错误; 对策; 【摘要】 分析医学科研论文中统计学方法应用中常出现的错误 ,提高编辑人员识别统计学常见错误的能力 ,确保科研论文的科学性、准确性和可信性 ,努力办成精品期刊。 【DOI】 cnki:ISSN:

以字数定框架

安瑞医学希望能解答您的问题,有更多医学sci疑问的朋友也可以私信我:医学sci论文在投稿中有以下10种状态:1. Submitted to Journal当上传结束后,显示的状态是Submitted to Journal,这个状态是自然形成的无需处理。2. With editor如果在投稿的时候没有要求选择编辑,就先到主编那里,主编会分派给别的编辑。这当中就会有另两个状态:① Editor assigned编辑分派② Editor Declined Invitation编辑拒绝邀请,这时主编不得不将投稿文章重新分派给其它编辑。3. Reviewer(s) invited说明编辑已接手处理,正在邀请审稿人中。有时该过程会持续很长时间,如果其中原因是编辑一直没有找到合适的审稿人,这时投稿者可以向编辑推荐审稿人。4. Under review审稿人的意见已上传,说明审稿人已接受审稿,正在审稿中,这应该是一个漫长的等待(期刊通常会限定审稿人审稿时间,一般为一个月左右)。当然前面各步骤也可能很慢的,要看编辑的处理情况。如果被邀请审稿人不想审,就会decline,编辑会重新邀请别的审稿人。5. required review completed审稿结束,等编辑处理,该过程短则几天,长则无期,科学堂有一篇文章出现required review completed状态已近一个月了,还是没有消息。6. Decision in Process到了这一步就快要有结果了,编辑开始考虑是给修改还是直接拒,当然也有可能直接接受的,但可能性很小,呵呵。7. Minor revision/Major revision小修/大修,这个时候可以稍微庆祝一下了,因为有修改就有可能。具体怎么改就不多说了,谦虚谨慎是不可少的(因为修改后一般会再发给审稿人看,所以一定要细心的回答每一个审稿人的每一个问题,态度要谦逊,要让审稿人觉得他提的每个问题都很有水准的,然后针对他的问题,一个一个的做出答复,能修改的就修改,不能修改的给出理由,而且都要列出来,文章的哪一段哪一行修改了最好都说出来,记住:给审稿人减少麻烦就是给你自己减少麻烦!另注:有时,审稿人会在修改意见里隐讳里说出要你仔细阅读某几篇文献,这时可要注意了,其中某些文章可能就是评审者自己发表的,这时你最好在你的修改稿中加以引用),修改后被拒绝的例子也多不胜数的。8. Revision Submitted to Journal修改后重新提交,等待编辑审理。9. Accepted如果不要再审,只是小修改,编辑看后会马上显示这个状态,但如果要再审也会有上面的部分状态。一步会比较快,但也有慢的。看杂志的。10. Rejected相信大家见了Rejected,都会很郁闷。但也不要太灰心,耐心将评审意见看完,一般评审者会给出有益的建议,相信看后你会有所收获。在投稿和审稿的过程中有可能出现的错误以及需要注意的问题是:发表的研究论文会给科研与创新带来新方法,为科学、技术与社会发展开辟新视野。本文分享下着名学者审稿和投稿经历,让投稿、审稿更轻松;相关经验总结如下:一、做研究决不能拖拉,有了idea一定要努力push,不管任务有多难,总是有希望完成的,一鼓作气,不到论文发表决不停歇(最好是还有后续工作); 二、论文投稿一定要及时,多少导师压着学生的paper不理不改不投,耽误了时机甚至影响其毕业? 三、即便是follow别人的研究工作,只要做的更加深入、系统、具体,总是能得到更为普遍的结论,也具有一定的发表价值,但是如果做的单薄,就难免被审稿人诟病而被拒稿; 四、审稿应该认真仔细些,不仅需要通读细读全文,也要提出准确中肯的意见,还得认认真真参照杂志审稿要求打分。试问有多少人认为光有审稿意见足矣,而打分只是随便打打的? 五、要学会从审稿意见中推测审稿人是谁,如果被拒稿,改投其他期刊后在建议审稿人里把之前可能是给好意见的那位加上,而对于给苛刻难以对付的审稿意见那位,就建议编辑规避,这样也许可以加速文章审稿和被接收的进程。目前, 国际一流SCI杂志基本都已采用了在线投稿方式。 常见的投稿系统有: ScholarOne Manuscripts, Editorial Manager, Elsevier Editorial System, EJPress, Open Journal Systems (OJS), 等等; 也有些出版者倾向于自己开发投稿系统, 如美国物理联合会出版社(AIP)的Peer X-Press, 英国物理学会出版社(IOPP)的Author Service and Referee Service, 等等。 这些在线投稿系统虽然界面风格各有不同, 但总体功能十分相似, 极大地方便了编者、作者、审稿人之间的联系与沟通, 对于提高出版效率、降低出版成本具有非常重要的作用。 在线投稿时应注意的事项主要有: (1) 应注意查询拟投稿期刊的最新要求, 以便在稿件的准备中尽早开始遵循期刊的习惯和格式。 (2) 投稿时应严格遵循期刊的相关要求, 按规定的程序填写或添加投稿信息, 如投稿信、摘要、文件类型、辅助信息、图件、建议的审稿人等, 以满足期刊的要求 (3) Email地址必须准确, 有些期刊要求主要作者和通信作者有相互独立的用户名和密码, 并且主要是与通信作者进行投稿及投稿后的联系, 这也是在投稿时需要注意的。 (4) 在投稿系统注册以后作者便拥有自己的网页, 该网页通常分为几个区域, 如投稿、查询已投稿件的状态、继续已经开始的投稿、传送修改稿、已录用稿件的出版阶段等, 因此, 对于特定的期刊(群), 应尽量保持自己唯一的用户名和密码, 以免导致混乱。 (5) 除了Email和FTP投稿形式需要一次性投稿外, 通过网页的投稿可以采取暂时保存的形式分多次完成投稿任务, 在最终递交稿件前, 投稿系统需要作者确认所有项目均已完成并且允许作者修改。 通常情况下投稿完成以后就不允许作者对已投的稿件进行修改, 除非编辑和出版商要求作者作某些修改。 (6) 投稿成功以后, 作者通常会收到一份来自编辑或系统的确认函, 作者可根据确认函提供的稿件编号跟踪稿件状态及进行投稿后的联系(如要求加快稿件处理速度), 可通过投稿系统规定的渠道或Email与编辑联络。

医学期刊统计错误案例

不论是什么错,还是谁提出的,一经核实,原刊物会在以后的期刊中,给出勘误表或更正。如果是作者本人,发现的最好尽快与杂志社联系,予以更正,并附一封对读者的致歉信。

幸存者偏差只是个简单的说法而已,并不是真正是幸存,更广的概念是Selection bias,选择偏差,在回报的时候有误,这种事情用统计学来统计,这种大数据,我觉得是非常不对的。

2022年11月24日,国际医学期刊《柳叶刀》编辑部对原湖北省武汉市金银潭医院院长张定宇、中国医学科学院北京协和医学院副院校长王健伟教授、中日友好医院副院长曹彬教授等人关于“新冠肺炎对患者健康的长期影响”的一篇研究论文发表关注声明。该论文披露了对2020年1月7日至5月29日期间自武汉市金银潭医院出院的1733例患者,在当年6月至9月期间完成的集中随访的研究结果。该论文发现,超过四分之三的COVID-19患者报告了发病6个月后仍有至少一个症状,比如疲劳或肌肉无力。《柳叶刀》编辑部上述关注声明称,《柳叶刀》编辑部在询问通讯作者后,于2022年11月7日被告知,涉事论文中使用的“数据集中的一些变量被错误地打乱了顺序”。“鉴于这些数据错误的程度,我们现在对‘6个月’论文发表关注声明,同时将进一步调查,包括对更正后数据的进一步统计和临床审查。”2022年11月24日,国际医学期刊《柳叶刀》编辑部发布的关注声明涉事论文的标题是《新冠肺炎出院患者的6个月临床结局:一项队列研究》,于2021年1月8日在线发表在《柳叶刀》上。该论文标明,曹彬、张定宇和王健伟贡献相同。曹彬为论文中标注的通讯作者。其中,曹彬的署名单位包括中日友好医院、呼吸与危重症医学科、国家呼吸疾病临床医学研究中心、国家呼吸医学中心。中日友好医院相关网页2021年1月11日发布的信息称,上述研究由武汉市金银潭医院、中日友好医院呼吸中心、国家呼吸医学中心和中国医学科学院病原生物学研究所共同完成。黄朝林、黄立学、王业明、李霞、任丽丽、谷晓颖、康亮、郭丽和刘敏为共同第一作者。该研究评估了COVID-19对患者的长期结局影响。“研究发现,76%的患者在发病6个月后仍有至少一个持续症状。疲劳、肌肉无力是最常见的症状,睡眠障碍、焦虑和抑郁也频繁出现。”“国家呼吸医学中心、中日友好医院和首都医科大学的曹彬教授表示:‘因为COVID-19是一种新发的疾病,我们才刚刚开始了解它对患者健康的长期影响。我们的随访研究表明,大部分患者在出院后仍然会继续受到该病毒的至少部分影响,出院后的医疗照护是非常有必要的,特别是针对住院时病情更重的患者。我们的研究也提示在更大的人群中进行更长期随访研究的重要性,以便了解该疾病可能对人体产生的全面影响。’这项随访研究于2020年6月16日至9月3日期间完成,入选了2020年1月7日至5月29日期间自武汉市金银潭医院出院的1733例患者。患者中位年龄57岁,中位随访时间为发病后186天。”中日友好医院相关网页上述信息称。《柳叶刀》编辑部关注声明针对的文章。该论文称,随访发现,76%的新冠肺炎患者在发病6个月后仍存在至少一个持续症状上述论文的署名作者有ChaolinHuang、LixueHuang、YemingWang、XiaLi、LiliRen、XiaoyingGu、LiangKang、LiGuo、MinLiu、XingZhou、JianfengLuo、ZhenghuiHuang、ShengjinTu、YueZhao、LiChen、DecuiXu、YanpingLi、CaihongLi、LuPeng、YongLi、WuxiangXie、DanCui、LianhanShang、GuohuiFan、JiuyangXu、GengWang、YingWang、JingchuanZhong、ChenWang、JianweiWang、DingyuZhang、BinCao。什么是新冠长期症状?在上述论文发表约一个月前,2020年12月,国际医学期刊《柳叶刀》发表社论称,“直面新冠长期症状困境”,并称,在2020年11月底举办的2020“柳叶刀-中国医学科学院医学与健康大会”上,“曹彬介绍了关于武汉COVID-19患者长期结局的情况,并警示,一些出院患者的功能障碍和并发症可能会持续至少6个月。我们称之为‘新冠长期症状’,这是一个迅猛发展的医学问题而且现在就需要采取行动来应对。”在上述涉事论文发表7个月后,2021年8月,曹彬、王健伟等人在《柳叶刀》上发表了对此前从武汉市金银潭医院出院患者中的1276名患者随访一年的研究结果。他们发现,“还存在至少一种后遗症状的患者比例从6个月时的68%下降到12个月时的49%。”论文的标题是《新冠肺炎住院幸存者的1年临床结局:一项纵向队列研究》。对1276名新冠肺炎出院患者随访一年的研究结果但该论文在首次发表后进行了更正。其更正后的版本最早于2022年5月5日发布在《柳叶刀》网站上。值得注意的是,上述“6个月论文”提及,在新冠肺炎发病6个月后,幸存者报告还存在至少一种症状的比例是76%。但上述“1年论文”提及的相关比例为68%。《柳叶刀》目前尚未披露其关切声明中提及的“数据不一致”是否为这一比例。《柳叶刀》编辑部2022年11月24日发布的上述关注声明称,“在收到了一位研究人员关于这两篇文章之间数据不一致的询问,我们向这两篇文章的通讯作者寻求解释。2022年11月7日,《柳叶刀》编辑部被告知,‘6个月’和‘1年’数据之间的不一致,是由于‘用于6个月的论文的数据集中的一些变量被错误地打乱了顺序’。鉴于这些数据错误的程度,我们现在对‘6个月’论文发表关注声明,同时将进一步调查,包括对更正后数据的进一步统计和临床审查。如有更多信息,我们将立即更新此通知。”此外,2022年5月11日,曹彬和王健伟作为共同通讯作者,在国际学术期刊《柳叶刀呼吸医学》上在线发表论文,报告了对武汉市金银潭医院新冠肺炎出院患者中1192人随访两年的研究结果。该论文称,从2020年1月7日至5月29日,2469新冠肺炎患者从武汉市金银潭医院出院。其中1192人在三次随访中完成了评估,被纳入最终分析;94%的人、1119人参加了感染两年后的面对面访谈。总体而言,新冠康复患者在首次感染后两年时的健康状况仍然差于普通人群,这意味着部分患者需要更长的时间才能完全康复。“还存在至少一种后遗症状的新冠肺炎幸存者的比例从6个月时的68%,显著下降到2年时的55%,疲劳或肌肉无力是最常见的症状。”该论文的标题是《新冠肺炎住院幸存者的2年健康结局:一项纵向队列研究》。该研究被媒体报道为“全球新冠最长随访”。对1192名新冠肺炎出院患者随访2年的研究结果此外,据《柳叶刀》微信公众号发布的消息,2021年7月17日,该期刊发表一项针对英国302家医院超过7万人的观察性研究,发现每两个COVID-19住院患者中会有一人出现至少一种并发症。“来自中日友好医院的曹彬教授及谷晓颖在一篇相关评论中写道:‘考虑到全球有大量的SARS-CoV-2感染者,COVID-19后急性期的公共卫生影响是巨大的。除了分析COVID-19后急性期整个临床疾病谱的多种表现之外,还需要在具有不同人口和临床特征的人群中开展进一步研究,以阐明COVID-19后急性期尤其是远期COVID-19的病理生理机制。此外,还需要研究血清学特征,以及急性SARS-CoV-2感染导致的免疫异常和炎症损伤对后急性期或长期COVID-19的影响。’”中日友好医院官网显示,曹彬,主任医师,教授,博士生导师,专业特长是诊疗呼吸系统感染;现任中日友好医院副院长、呼吸与危重症医学科主任兼呼吸与危重症医学科二部主任、临床医学研究所管委会主任、国家呼吸医学中心常务副主任、中国医学科学院呼吸病学研究院副院长;担任“国际流感和呼吸道病毒感染学会”委员、《ClinicalRespiratoryJournal》杂志副主编、《InternationalJournalofInfectiousDiseases》杂志编辑指导委员会委员、《中华医学杂志》及《中华结核和呼吸杂志》通讯编委。中国医学科学院北京协和医学院官网显示,王健伟,研究员、教授、博士生导师;2006年2月至今,历任中国医学科学院北京协和医学院病原生物学研究所副研究员、研究员、教授、博士生导师,克里斯托弗_梅里埃实验室主任、所长助理、副所长、院校科技管理处处长。2019年6月任副院校长、党委常委。上述信息称,王健伟主要从事重要呼吸道病毒感染致病机制与防治研究,曾获多项人才计划项目支持,系“艾滋病和病毒性肝炎等重大传染病防治”科技重大专项总体组成员、“生物安全关键技术研发”重点专项专家组成员;系中华预防医学会第六届理事会常务理事、Biosafety&Health杂志执行主编。

中国光大(集团)总公司:你公司《关于报送企业集团统计报表的请示》(光京字[2003]67号)收悉。经研究,现批复如下:一、我局现行企业集团统计报表制度规定,国家试点企业集团和中央管理的企业集团统计报表由我局企业调查总队负责布置、收集。由于你公司属于中央管理的企业集团,因此你公司填报的企业集团统计报表应直接报送给我局企业调查总队,具体执行时间从今年半年报开始。二、《北京市统计局关于完善企业集团统计报表制度的通知》(京统发[2003]85号)要求你公司向其报送集团2003年年报和半年报的有关事宜,我局企业调查总队已和北京市统计局企调队进行了沟通,北京市企业集团统计的范围不再包括你公司,其所需资料由我局企业调查总队予以提供。国家统计局办公室二○○三年九月十五日

医学论文统计学错误举例

医学统计中的常见误区有哪些

医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。医学研究的对象主要是人体以及与人的健康有关的各种因素。下面是我为大家带来的关于医学统计中的常见误区的知识,欢迎阅读。

一,真正差异和统计学差异

常常有人和我说: P值越小,试验结果的差异就越大!而且还有依据 [P < 是有显著性差异; P < 是有极显著性差异]。

其实,这些人忽略了 n 这个样本数的作用,n 的大小会影响 P 值。但更应该澄清一下的是: P 值代表的是统计学差异,并不是真正的差异!真正的差异只能靠平均值或者频度的比较才能得到。

二,卡方检验的局限性

我们知道各组之间的计数资料的比较,要用卡方检验,但有些情况是不行的!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

2,当组与组之间有不同的背景,而这些背景因子还可能会影响到组与组之间结果差异,这是就必须要用 Mantel-Haenszel 检验!

这第2条可能大家不要理解,那我就举两个例子:

1) 关于男性和女性对于不同颜色的喜好的统计学分析

但这里应该注意到年龄可能会对这个分析造成影响,这就要用Mantel-Haenszel 检验了。

***红色 蓝色 黄色

男性 5 7 8

女性 15 10 6

可以按大人和小孩(比如我们以15岁为分界)分层,在SPSS中要把这个因素放到[行] [列]下边的[层化]一栏里,并在统计指标选项里,选 Cochran和Mantel-Haenszel的统计量选项,这样出来的结果就可靠了!

2)两种治疗(A和B)效果的评价分析:

*****A法 B法

生存 41 54

死亡 47 31

用卡方检验 X2=; P <

但是,病人的临床分期将影响着分析结果:

********生存**************死亡

——————————***——————————

————A****B————————A*****B———

1期-----18-----21--------------------0--------0-------

2期-----23-----33-------------------13------- 8-------

3期------0------0--------------------34-------23-------

再用Mantel-Haenszel检验: X2=; P >

说明实际上A法和B法两组的统计学差异,是这个不同的分期造成的!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。

当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。

三,t 检验的局限性

1,我们经常用 t 检验来判别两组病人血清中某种标记物水平上的差异,但这里要注意,有一些血清标记物的水平是不能用 t 检验的!

比如: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!

这时应该用 非参数性检验---即 Mann-Whitney U test (Wilcoxon U test)。

2,关于用不用配对t 检验,我个人认为当同一组样本在不同时点,不同处理方式的比较上,应该用配对t 检验。

四,ANOVA 检验的局限性

1,在2组以上计量资料样本比较时,ANOVA 检验非常常用。但这个检验只是说明了一个趋势的比较结果,并不能说明真正的统计学差异,真正的`差异还要通过每两个点的直接比较,也就是说应该在ANOVA 检验后,还必须做两两比较或多重比较,这样才能从全貌上反映出统计的全部结果。

2,既然方差分析得到差别有显著性意义的结论后,还需进行两两比较,有人认为还不如一开始就进行多次t检验更方便,其实,这种认识是不妥当的。t检验用于ANOVA的两两比较将增大第一类错误,产生假阳性,因此要采用特定的方法,在SPSS的one-way ANOVA或General linear models中操作时,Post Hoc(多重比较)对话框内有多种方法可供选择,象两两比较一般用SNK法,而多个试验组和一个对照组的比较则多用dunnett检验。

3,我们经常用 ANOVA 检验来判别几组病人血清中某种标记物水平上的差异,但这里要注意,与 t 检验一样,有一些血清标记物的水平是不能用 ANOVA 检验的!

如上所说的: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!

这时应该用 非参数性检验---即 Kruskal-Wallis rank test 。

五,单元线性相关分析

有时我们常常只注意到了 P 值大小,可最重要的是 r 值!

样本数 n 对 P 值 结果的影响很大,容易让我们产生错觉,其实,相关的存在与否的评价是与 r 值最直接相关的,如下:

当 P 值小于时: r 值

几乎没有相关关系

弱的相关关系

有相关关系

强相关关系

极强相关关系

P 值只是证明这个相关在统计学上是否成立!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。

当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。

不是说样本小于5

而是说:在R×C表中

理论频数不应该小于1,并且1≤T≤5的格子数不应该超过总格子数的1/5,若出现上述情况可以通过以下方法:

a.增加样本含量,使理论频数增大;

b.根据专业知识,删除理论频数太小的行和列;或者将理论频数太小的行或列与性质相近的邻行和邻近列合并。

c.改用双向无序的R×C表的fishher确切概率法。

还有一点

四格表卡方检验的适应指标:(T为理论频数)

1。n≥40,且T≥5时用卡方检验基本公式。但是当p≈α应该用fisher确切概率法

2。n≥40,但是1≤T≤5时,用四格表校正公式

3。n<40,或者T<1时,用fisher四格表确切概率法

4。四格表卡方检验的连续性校正仅仅用于自由度为1的四格表尤其是n较小时。

补充几点:

1. 关于P值:P值的大小并不是各组差异的大小,而是统计学差异显著性的大小。P值越小,说明得出各组没有差异的概率越小,越有理由说明各组存在差异(可以说,P值的大小反映了做出统计结论的“理由”的大小,而不是被比较的各组的实际差异的大小,得出有意义的结论后,其差异的大小可直接通过各组的均数或率进行比较)。

2. 关于t检验和方差分析:katalyster兄上面提到的t检验及方差分析在某些时候不适用,实际上就是每种方法都有其应用条件,不服从正态分布当然不能用。对这样的资料首先可考虑变量变换(如抗体滴度等资料,为指数或幂次的关系,可用对数转换),如变换后,服从正态分布,可用上述方法;若还不符合,则考虑非参数检验。

3. 关于相关分析:两个变量间是否存在相关关系,要看P值,而不是r值,r值用来说明相关关系的大小。当P<,才能讲两变量间存在相关关系,再看r值,r值越大,相关关系越强,反之越小;否则,P>,不能讲两变量间存在相关关系,r值毫无意义。

感谢kushuya, xiaoxiongzjh两位专家的补充和指正!之所以开这个专题,是真心想让初学者从这些<误区>中走出来!

六,Logistic regression 分析

在判断某因子对疾病的危险度时常用的方法。

1,假设要判断某因子对疾病的危险度(OR),要了解这个OR是一个相对危险度,即是有某因子存在和没有某因子存在之间比较的OR值。

2,OR 和 RR 不一样,OR是在Logistic regression model中使用,RR是在Cox proportional hazard model中使用。

3,假设要判断某因子对疾病的危险度,要在多变量Logistic regression model中校正一些混扰因素,如常见的年龄,性别,吸烟等等,并最后得出这个 Adjusted OR。但并不是说有了这些校正,我们就可以在实验设计上就不考虑这些混扰因素,相反,必须在实验设计上就把这些混扰因素在实验组和对照组配平,光靠在多变量Logistic regression model中校正是不可靠的。

其它方法---生存分析 (Kaplan-Meier法+ Logrank法):

我们有时在临床研究只注意到了用这种方法分析与生存相关的研究,其实,在疾病复发上也常用这种方法!前者是以生---死为判别,后者则以复发---不复发为判别。

第一类错误:原假设是正确的,却拒绝了原假设。

第二类错误:原假设是错误的,却没有拒绝原假设。

第一类错误即I型错误是指拒绝了实际上成立的H0,为“弃真”的错误,其概率通常用α表示,这称为显著性水平。α可取单侧也可取双侧,可以根据需要确定α的大小,一般规定α=或α=。

第二类错误即Ⅱ型错误是指不拒绝实际上不成立的H0,为“存伪”的错误,其概率通常用β表示。β只能取单尾,假设检验时一般不知道β的值,在一定条件下(如已知两总体的差值δ、样本含量n和检验水准α)可以测算出来。

我们在做假设检验的时候会犯两种错误:第一,原假设是正确的,而你判断它为错误的;第二,原假设是错误的,而你判断它为正确的。我们分别称这两种错误为第一类错误和第二类错误。

我们常把假设检验比作法庭判案,我们想知道被告是好人还是坏人。原假设是“被告是好人”,备择假设是“被告是坏人”。法庭判案会犯两种错误:如果被告真是好人,而你判他有罪,这是第一类错误(错杀好人);如果被告真是坏人,而你判他无罪,这是第二类错误(放走坏人)。

记忆方法:我们可以把第一类错误记为“以真为假”,把第二类错误记为“以假为真”。当然我们也可以将第一类错误记为“错杀好人”,把第二类错误记为“放走坏人”。

在其他条件不变的情况下,如果要求犯第一类错误概率越小,那么犯第二类错误的概率就会越大。这个结论比较容易理解,当我们要求“错杀好人”的概率降低时,那么往往就会“放走坏人”。

同样的,在其他条件不变的情况下,如果要求犯第二类错误概率越小,那么犯第一类错误的概率就会越大。当我们要求“放走坏人”的概率降低时,那么往往就会“错杀好人”。

同样的,在其他条件不变的情况下,如果要求犯第二类错误概率越小,那么犯第一类错误的概率就会越大。当我们要求“放走坏人”的概率降低时,那么往往就会“错杀好人”。

参考资料来源:百度百科-第一类错误

参考资料来源:百度百科-第二类错误

统计学是一门抽象难懂的学科,非统计学专业毕业人员一般很难做到精通。下文是我为大家整理的关于统计类论文投稿的范文,欢迎大家阅读参考!

医学统计学方法应用的错误解析

一、引 言

医学由于其研究的复杂性和系统性,常需要应用严谨的统计学方法,由于有些作者对医学科研的统计学理论和方法的应用缺乏深刻了解,在医学论文中错误应用统计学方法的现象时有发生。统计学方法应用的错误直接导致统计结果的错误。例如统计学图表、统计学指标、统计学的显著性检验等。因此,正确应用统计学方法,并将所获得的结果进行正确的描述有助于单篇论著的质量提高,现将医学论文中统计学方法应用及其常见结果的错误解析如下。

二、医学论文统计学方法应用概况

医学论文的摘要是全文的高度浓缩[1],主要由目的、方法、结果、结论组成。一般要求要写明主要的统计学方法、统计学研究结果和P值。一篇医学论文的质量往往通过摘要的统计学结果部分就能判断。统计学方法的选择和结果的表达直接影响单篇论著的科研水平。

(一)材料与方法部分

正文中,材料与方法部分必须对统计学方法的选择、应用、统计学显著性的设定进行明确说明。通过对统计学方法的描述,读者应该清楚论著的统计学设计思路。材料部分要清楚说明样本或病例的来源、入组和排除标准、样本量大小、研究组和对照组的设定条件、回顾性或者前瞻性研究、调查或者实验性研究、其他与研究有关的一般资料情况,其目的是表明统计学方法应用的合理性和可靠性,他人作相关研究时具备可重复性。方法部分应详细叙述研究组和对照组的不同处理过程、观察的具体指标、采用的测量技术,要具备可比较性和科学性,

方法部分还要专门介绍统计分析方法及其采用的统计软件。不同的数据处理要采用不同的方法,必须清楚的说明计数或者计量资料、两组或者多组比较、不同处理因素的关联性研究。常用的有两组间计量资料的t检验,多组间计量资料的F检验,计数资料的卡方检验,不同因素之间的相关分析和回归分析。有些遗传学研究方法还有专门的统计学方法,要在这里简要说明并给出参考文献,还要简单叙述统计方法的原理。统计学软件要清楚的说明软件的名称和版本号,如基于家系资料研究的版本。

(二)论文结果部分

论文结果部分要显示应用统计学方法得到的统计量[2],所采用的统计学指标较多时,往往分开叙述。分组比较多时还要借助统计图表来准确表达统计结果。对于数据的精确度,除了与测量仪器的精密程度有关外,还与样本本身的均数有关,所得值的单位一般采用紧邻均数除以三为原则。均数和标准差的有效位数要和原始数据一致。标准差或标准误差有时需要增加一个位数,百分比一般保留一个小数。在统计软件中,分析结果往往精确度比较高,一般要采用四舍五入的方法使其靠近实验的实际情况,否则还会降低论文的可信度和可读性。

结果部分的统计表采用统一的“三线”表,表题中要注明均数、标准差等数据类型。表格中的数值要按照行和列进行顺序放置,要求整齐美观,不能出现错行现象。要明确标注观察的例数,得到的检验统计量。统计图可以直观的表达研究结果,如回归和相关分析的散点图可以显示个体值的散布情况。曲线图表达个体均值在不同组别随时间变化的情况或者不同条件下重复测量的结果。误差条图由均数加减标准误绘出,描述的是67%的置信区间,不是95%,提倡在误差条图采用95%的置信区间。

关于统计量,一般采用均数与标准差两个指标,均数不宜单独使用。使用均数的时候要明确变异指标标准差或者精确性指标标准误。关于百分比,分母的确定必须要符合逻辑,过小的样本会导致分母过小而出现百分比过大的情况。百分率的比较要写清两者中不同的变化,可以采用卡方检验。

1.假设检验的结果中,常见只写P值的情况,有时候会误导读者,也会隐藏计算失误的情况,因此写出具体的统计值,如F值、t值,可以增强可信度。对于率、相关系数、均数这类描述统计量,要清楚写明进行过统计学检验并将结果列出。P值一般取与作为检验显著性,对于结果的计算要求具体的P值,如P=或P=。

2.在对论文进行讨论时,作为统计学方法产生的结果往往要作为作者的主要观点支持其科学假设,对统计结果的正确解释至关重要。P值很大表明两组间没有差别属于大概率事件,P值很小表明两组间没有差别的概率很小。当P<,表明差异具有统计学意义。P值与观察的样本量的大小有关联,当样本量小的时候,数据之间的差别即使很大,P值也可能很大;当样本量大时,数据之间的差别即使很小,P值也可能显示有显著性差异。相关系数统计学意义的显著性也与相关系数的大小没有绝对的关联,有统计学意义的样本相关系数可能很小。因此,有统计学差异的描述并不一定意味着两组间差别很大,错判的危险性很大,显著性的检验为定性的结果,结合统计量大小方可判断是否具有专业意义。

变量间虚假的相关关系与变量随时间变化而变化相关,统计学意义的关联并不表示变量间一定存在因果关系。因果关系的确定要根据专业知识和采用的研究方法的不同来考量。使用回归方程进行分析,当两变量间具有显著性关系,但是从自变量推测因变量仍然不会很精确。相关或回归系数不能预测推测结果的精确程度,而只是预测一个可信区间。诊断性检验应用于人群发病率很低的疾病,灵敏度、特异度的高低对于明确疾病诊断并不能很肯定。“假阳性率”与“假阴性率”根据实际的需要不同要求并不一致,在疾病患病率很低时,出现假阳性也是正常的,要确诊疾病必须要与临床症状体征相结合。因此,这两个率的计算方法必须交待清楚。

三、医学论文统计学方法应用的常见错误分析

(一)“材料与方法”中的统计学方法应用的常见错误

“材料与方法”中统计学方法常见的问题主要为:对样本的选择或者研究对象的来源和分组描述很少或者过于简单。例如,临床入组病例分组只采用简单的随机分组,未描述随机分组的方法,未描述是否双盲双模拟,未设置空白对照组,分组后对性别、年龄、文化程度的描述未进行统计学检验,对于特殊的统计学方法没有详细交代;动物实验分组的随机化原则描述过于简单,没有具体说清完全随机、配对或分层随机分组等;统计分析方法没有任何说明采用的分析软件,有的只说明采用的分析软件而不交代在软件中采用的统计方法;没有说明原因的情况下出现样本量过于小等情况。

(二)“结果”统计学方法应用的常见错误

1.应用正确的统计学方法出现的结果表达并不一定正确。例如前文所述数据的精确度要求。医学论文常见错误中包括均数、标准差、标准误等统计学指标与原始数据应保留的小数位数不同;对于率、例数、比值、比值比、相对危险度等统计学指标保留的小数点位数过多;罕见疾病的发病率、患病率、现患率等指标没有选择好基数,导致结果没有整数位;相关系数、回归系数等指标保留的小数位数过多或者过少;常用的一些检验统计量,如F值、t值保留的位数不符合要求。

2.对统计学指标进行分析和计算时,一般采用计数资料和计量资料进行区分。计量资料常用三线表,在近似服从正态分布的前提下采用均数、标准差进行说明,如果不符合正态分布时,可以采用加对数或其他的处理方式使其近似正态分布,否则只能采用中位数和四分位数间距等指标进行描述。医学论文中常见未对数据进行正态分布检验的计算,影响统计结果的真实性和可信度。对于率、构成比等常用的计数资料指标,常见样本量过小的问题,采用率进行描述会影响统计结果的可靠性,采用绝对数进行说明会显得客观一些。还有一些文献将构成比误用为率,也是不可取的。

3.在判断临床疗效之一指标时,两组平均疗效有差别并不意味着两组的每一个个体都有效或无效,必须通过计算有效率进行计算。如比较某药物治疗糖尿病的疗效,服药一周后,研究组和对照组的对血糖降低值分别为 ± 和 ± ( P = 1) 。按空腹血糖值低于的疗效判定有效率,研究组和对照组的有效率分别为和 ,尽管平均疗效相差较多,但也要注意到该药物对部分患者无效()。对假设检验结果的统计学分析结果,P 值的表达提倡报告精确P值,如P = 或P = 等。目前的统计学分析软件均可自动计算精确的P 值。例如常用的SAS,SPSS等,只要提供原始数据,就可以计算出t值、F值和相应的自由度,并可获得精确的P值。

四、小 结

提高医学论文中统计学方法的使用质量是编辑部值得重视的一项长期而又艰巨的工作[3],医学论文中统计方法应用和统计结果的表达正确与否,不仅体现了论文的科学性和严谨性,而且对于提高期刊整体的学术质量,促进医学科学的发展和传播也有着重要作用[4]。

参考文献:

[1] 李敬文,吕相征,薛爱华.医学期刊评论性文章摘要的添加对期刊被引频次的影响[J].编辑学报,2011(23).

[2] 陈长生.生物医学论文中统计结果的表达及解释[J].细胞与分子免疫学杂志,2008(24).

[3] 潘明志.新时期复合型医学科技期刊编辑应具备的素质和能力[J].中国科技期刊研究,2011 (22).

统计学专业毕业现状分析与对策研究

本科毕业论文是高等学校人才培养计划的重要组成部分,是本科教学过程中最后一个重要的教学实践环节,是学士学位授予的一个重要依据。[1,2]然而,相较于其他教学环节,毕业论文没有受到足够的重视,从而导致该环节存在着一些问题。[3]本文将以中央民族大学统计学专业毕业论文为例,在分析其现状的基础上,找到问题并提出相应的建议。

中央民族大学统计学本科专业设置于2003年,目前已有六届毕业生。经过学院和学校层面的努力,统计学专业作为新办专业取得了较快发展,所培养的学生具有较好的专业能力和综合素质,近四成学生继续读研深造,就业的学生大都在专业对口的工作岗位上,就业率一直在85%左右。

本科毕业论文环节在培养方案中是6个学分。学生在第七学期开始选择指导教师以确定毕业论文题目。经过前6个学期的系统理论学习,统计学专业学生已基本掌握了统计学的基础理论和基本方法,具备了正确的统计思想和较强的统计软件应用能力,以及运用所学的理论和方法解决实际问题、文献检索和资料查询等综合能力。本科毕业论文的写作就是统计学专业学生将上述基础和能力进一步深化与升华的重要过程,从而培养学生的创新能力和实践能力,使学生的知识、技能和素质得到进一步的充实和提高,同时也是衡量学校教学质量和办学水平的重要指标。因此对如何提高毕业论文质量进行研究是必要和有意义的。[4]

一、统计学专业毕业论文质量的现状分析

从论文完成情况来看,每届的毕业论文基本都能达到论文教学环节的要求,通过对中央民族大学统计学专业2007~2011年四届毕业生的毕业论文进行分析,发现毕业论文及格率为。

从毕业论文研究的类型来看,主要分为两大类:理论研究型论文和实证型论文,理论研究型论文表现为总结和论述现有统计理论问题,表述理论研究的成果,或应用理论对现实问题进行分析、说明,并提出自己的思考;实证型论文主要表现为针对某一特定的实际目的或目标,运用所学统计的理论和方法,对经济、管理、金融、医学、生物、工程、环境等领域进行统计调查、统计信息管理、数量分析等。

从论文知识点范围的分析来看,学生论文绝大多数是统计专业问题,极少数是其他数学分支的问题。从中央民族大学历届统计学专业学生的毕业论文情况分析,发现毕业论文中研究其他数学分支的问题占总数的,主要包括:一是其他科目的应用研究(数学分析、常微分方程、运筹学及空间解析几何等),占总数的。二是数学专业教育和数学思维的研究,占总数的。研究统计学专业问题的毕业论文占绝大部分,比例为,选题内容广泛且多为社会热点问题,涉及经济、社会、医疗卫生、教育发展、旅游、基础设施建设等多领域,由于受学校人文环境影响,很大比例的学生对少数民族地区的经济、社会、民生等问题进行了统计分析,约占总学生人数的。所使用的分析方法主要集中于抽样调查、回归分析、多元统计方法、聚类分析、判别分析等常用统计方法。

此外,统计分析显示学生成绩普遍偏高,统计学专业学生的毕业论文,尤其是实证类论文,存在着可以大量使用背景介绍和统计软件分析结果的特点,因此,一些论文没有创新性和学术含量,但具有较大的篇幅,与理学院其他专业的毕业论文成绩比较,其平均成绩相对较高,约分。

二、统计学专业毕业论文存在的问题

毕业论文的质量问题关系到本科人才的培养规格和目标,直接体现了学生本科阶段的学习成果,是衡量教学水平、学生毕业与学位资格认证的重要依据。通过对论文和考评结果的具体分析,发现学生的毕业论文在创新性、理论深度及论文写作常识多方面存在问题。具体表现为:

1.创新性不够

学生的毕业论文表现为理论性研究非常少,大都是实证型论文,并且多是简单的统计方法应用,缺少创新性研究和思考。从中央民族大学历届统计学专业学生的毕业论文来看,理论研究型论文只占,与实证型论文的比例为1︰,比例悬殊,体现了学生在毕业论文大的选题过程中,避重就轻,缺乏创新的特点。如每年都有一定数量的学生选择“我国人均GDP的预测”这类针对某经济指标进行预测的题目,论文的主要内容就是利用ARMA、灰色预测或者趋势外推方法等一种或多种方法对时间序列数据做简单建模和分析,论文没有对指标本身的意义以及国内国际的社会经济形势进行综合分析。这种方法简单套用性质的论文占有很大的比重。

2.选题过大、内容空泛,缺乏深入研究,存在抄袭、拼凑现象

有些学生在选择研究课题时,往往不能根据自身的专业知识结构特点和社会实践情况进行准确定位,只是一味的盲目的选择一些过大过空的社会热点问题,因此难以看到所要研究的问题的本质。如有的学生针对CPI做研究,没有深入了解问题的实质,只是收集了一些文献,很难提出自己的观点或研究角度,造成了材料堆积且过于散乱,论文变成了一些材料的简单拼凑。有些论文针对某一社会经济问题进行研究,论文的主题只是针对现有数据利用简单的统计方法进行分析,对数据的质量和可靠性以及方法的适用性不做针对性讨论,对所得的结论也不结合社会经济现实情况进行分析,导致论文质量不高。

3.相对前沿的分析方法利用较少

前沿的分析方法利用较少,通过毕业 论文的 写作, 统计分析能力没有实质性提升。学生论文使用的统计方法主要集中于回归分析、聚类分析、判别分析、相关性分析等,其中回归分析方法占有非常大的比例,约,其他各统计方法使用的比例分别为:聚类分析为,判别分析为,相关性分析为,多元统计方法为,时间序列分析为,极少有学生使用教科书外的相对前沿的分析方法。

4.论文写作上存在结构不合理、没有相关研究介绍、创新点表述不清、参考文献不会正确标注等问题

从学生的毕业论文来看,论文写作不规范,专业性差。主要存在论文形式不规范、结构不合理、题目含糊、有些论文杂乱无章、口语化严重、可读性差等问题。

三、存在问题的原因分析

针对上述问题,统计学系通过对论文进行详细审查以及 组织指导教师和学生座谈,发现毕业论文出现以上问题的主要原因包括以下几方面:

1.学生对论文不够重视

部分学生由于忙于考研学习而无暇顾及毕业论文的研究,还有部分学生由于忙于外出找 工作、 实习而无心认真撰写论文。论文撰写所需的必要时间难以得到保障,因此学生应付了事,从而无法保证论文的深度。此外,还有部分学生认为毕业论文只是一个教学环节,与考研的好坏无关,存在只要写了论文,教师都会让自己通过的侥幸 心理,在思想上没有引起足够的重视。

2.缺乏指导教师的针对性指导

指导教师所带毕业生人数过多,使得导师的工作量呈现超负荷状态,无法保证每个学生毕业论文的质量,从而致使部分学生的论文规范性较差,没有对存在的问题反复修改,使得学生论文存在诸多问题。

3.学生的专业训练还不够

大部分本科生没有经历过论文的写作训练,写作水平较低,不了解学术论文的规范性及其格式,不知如何从科研的角度构思文章、组织材料、安排结构,使得相当一部分学生的毕业论文表达的观点不够准确清楚,论据亦不能很好地支持论点。另外,一些同学为了完成任务,直接将在 网络中搜索到的资料不假思索的拼凑在一起,使得内容不成体系,观点混乱。

四、提高毕业论文质量的建议和 实践

1.加强毕业论文重要性的宣传,提高学生的重视度

加强对毕业论文重要性的认识有助于提高本科生毕业论文的质量。通过讲座、课堂传授等形式,让学生意识到毕业论文的实践性和综合性是任何教学环节都不能替代的,是提高发现问题、分析问题、解决问题能力的有效途径,更是进行个人综合素质提高的必不可少的重要环节,[4]从而使学生在思想上认识到毕业论文的重要性,投入更多精力进行毕业论文设计。

2.选题和教师的科研项目相结合,提高论文的创新性

在选择课题时,为了能充分发挥学生的主观能动性,可以让学生根据自身的特点,与指导教师协商,结合导师的研究方向制定课题方案。统计学专业的教师一般除了 申请国家自然科学基金和国家 社会科学基金这类对理论性和创新性要求较高的项目以外,很多教师还主持或参加有相应的 应用研究类项目。应用类项目大都需要实地调研(以及问卷涉及和数据分析)或者大量的数据分析和建模。引导学生参加这类项目来设计和完成自己的本科毕业论文,能够激发学生的科研热情和创新潜力。此外,鼓励和引导一些成绩较好,如让具备保研资格的学生参加教师的科研讨论班或者课题组,选择一些具有一定难度的理论问题进行研究,可以使学生了解本学科的 发展方向和最新动态。最近两年,越来越多的学生,特别是具备了保研资格的学生,在大四上学期就能投入到项目和毕业论文的写作中。

3.重视平时实践教学环节,培养学生的实践能力、发现问题以及解决问题的能力

为了提高学生的学习兴趣以及对问题的分析、解决能力,广泛开展了丰富多彩的社会实践活动,使学生尽可能早地接触与本专业有关的实际工作,切身 体会到如何将理论与实际相结合,了解本学科的实际业务,从而提高自主学习能力,加强专业知识的把握。结合学校的实际情况,积极鼓励学生在大二和大三阶段参加校级和国家级的全国大学生数学建模竞赛,申请“中央民族大学本科生研究训练 计划项目”、“北京市大学生科学研究计划项目”和“国家大学生创新性试验计划项目”。项目的申请和实施以及研究 报告的写作,对学生来说都是一个很好的锻炼。目前,统计学专业本科生的参与率在70%以上。此外,建立专业实习基地可以提高学生利用专业知识分析和解决实际问题的能力。这些环节的设计和实施都有力地保障了学生本科毕业论文的水平和质量。

4.加强学生科技论文写作训练

加强平时课堂上大作业的规范化,潜移默化培养学生科技论文的写作能力。通过平时的实践活动,如学生数学建模以及大学生创新实践等各类实践性项目来提高学生的 论文 写作能力。

5.实施激励措施,激发学生的兴趣和主动性

针对那些参与实际课题的学生,学院鼓励指导教师根据学生的完成情况以劳务费的形式给予其奖励,另外积极鼓励毕业论文质量优秀的学生进行投稿 发表。此外,还需对答辩程序和评分标准进行规范化,建立优秀毕业论文指导教师和优秀毕业论文奖励制度,以形成积极的导向作用,充分调动指导教师和学生的积极性。

6.加强教师责任心,建立完善的机制

加强学生毕业论文的过程 管理,从开题到中期检查严格执行,指导教师严格把关。为了保证学生与教师之间的沟通,学校可以通过建立师生信息反馈机制改善师生分离状态,为师生提供便利的沟通渠道,同时设置适当的教师激励制度,中央民族大学目前对教师指导本科毕业论文有额外的课时补贴。

弃真错误,是指拒绝了实际上成立的、正确的假设。存伪错误是指原假设是错误的,但是没有拒绝它。

  • 索引序列
  • 医学论文统计学错误实例
  • 医学论文统计错误案例
  • 医学论文错误统计案例
  • 医学期刊统计错误案例
  • 医学论文统计学错误举例
  • 返回顶部