首页 > 医学论文 > 线粒体病论文

线粒体病论文

发布时间:

线粒体病论文

Editorial (Thematic Issue: Mitochondrial Biogenesis: Pharmacological Approaches) 社论(专题:线粒体生物发生:药理学方法) 【作 者】Teresa Valero 【刊 名】Current Pharmaceutical Design 【出版日期】2014 【卷 号】 【期 号】 细胞器生物发生伴随细胞分裂过程中的细胞器遗传。细胞器的大小必须加倍并分裂,以产生两个相同的子细胞。线粒体的生物发生是通过原有细胞器的生长和分裂而发生的,并且在时间上与细胞周期事件有关[1]。然而,线粒体的生物发生不仅与细胞分裂有关。它可以响应于氧化刺激,细胞能量需求的增加,运动训练,电刺激,激素,发育过程中的某些线粒体疾病等而产生[2]。因此,线粒体的生物发生被定义为细胞增加其单个线粒体质量的过程[3]。最近的发现引起人们对线粒体生物发生的关注,将其作为治疗迄今为止尚未有效治愈的疾病的潜在靶标。线粒体作为主要的ROS生产者和主要的抗氧化剂生产者,在细胞介导的过程中发挥着至关重要的作用,例如凋亡,排毒,Ca2 +缓冲等。这种关键作用使线粒体成为治疗多种疾病的潜在靶标。 线粒体的生物发生可以通过药理学来操纵。本期试图涵盖通过触发线粒体生物发生来治疗多种疾病的多种方法。它包含了这一新领域的最新发现,重点在于针对慢性和退行性疾病,线粒体疾病,寿命延长,线粒体增生,细胞内信号传导,新的药理目标和天然疗法。它通过涵盖和收集线粒体生物发生的新颖而有希望的领域中鲜有报道的药理学方法,为该领域做出了贡献。 有几种具有线粒体起源的疾病,例如慢性进行性眼外肌麻痹(CPEO)和Kearns-Sayre综合征(KSS),带有红血丝的肌阵挛性癫痫(MERRF),线粒体脑脊髓病, 乳酸性酸中毒和中风样发作(MELAS) ,莱伯(Leber)的遗传性视神经病变(LHON),神经源性肌肉无力,共济失调和色素性视网膜炎(NARP)综合征和利氏综合征。同样,线粒体功能异常起重要作用的其他疾病包括神经退行性疾病,糖尿病或癌症。 通常,在线粒体疾病中,线粒体DNA的突变会导致OXPHOS系统功能丧失,从而导致ATP的消耗和ROS的过度产生,进而会导致进一步的mtDNA突变。吴玉婷,吴世蓓和魏友辉(台湾国立阳明大学生物化学与分子生物学系)的工作[4]专注于上述线粒体疾病,并特别关注其代偿机制。提示线粒体即使在线粒体缺损的情况下也能产生更多的能量。这些补偿机制包括抗氧化酶的过表达,线粒体的生物发生和呼吸系统复杂亚基的过表达,以及代谢向糖酵解的转变。描述了与线粒体生物发生相关的途径,作为对线粒体疾病中能量缺乏的补偿性适应(PGC-1α,Sirtuins,AMPK)。这些作者认为,触发这些信号级联反应的几种药理策略是使用苯扎贝特来激活PPAR-PGC-1α轴,白藜芦醇对AMPK的激活以及Sirt1激动剂(如槲皮素或白藜芦醇)的使用。 当前使用的其他策略包括在饮食中添加抗氧化剂补充剂(饮食中添加抗氧化剂) ,例如L-肉碱,辅酶Q10,MitoQ10和其他针对线粒体的抗氧化剂,N-乙酰半胱氨酸(NAC),维生素C,维生素E维生素K1 ,维生素B,丙酮酸钠或 α-硫辛酸。 如上所述,其他疾病并非仅起源于线粒体,但它们在发病和发展中可能都具有重要的线粒体成分。2型糖尿病或神经退行性疾病就是这种情况。2型糖尿病的特征是周围胰岛素抵抗,伴随着胰岛素分泌的增加(作为代偿系统)。在关于胰岛素抵抗起源的解释中,莫妮卡·萨莫拉(MónicaZamora)和何塞普·A·维伦纳(Josep A. Villena)(庞培法布拉大学实验与健康科学系/西班牙巴塞罗那自治大学代谢与肥胖实验室)[5]考虑了线粒体功能障碍的假说。例如,细胞或组织的(线粒体)氧化能力受损,是胰岛素抵抗和2型糖尿病的主要原因之一。尽管由于2型糖尿病发作期间事件顺序的不确定性(例如,线粒体功能障碍是胰岛素抵抗的原因还是后果)的不确定性,这一假设并非没有争议,但已广泛观察到改善线粒体功能还可以改善胰岛素敏感性并预防2型糖尿病。因此,通过增加线粒体质量来恢复氧化能力似乎是治疗胰岛素抵抗的合适策略。研究人员尝试了解介导线粒体生物发生的信号传导途径,从而发现了新的潜在药理学靶标,并为设计合适的胰岛素抵抗治疗方法开辟了前景。此外,当前使用的一些策略可用于治疗胰岛素抵抗,例如生活方式干预(热量限制和耐力运动)和药理干预(噻唑烷二酮和其他PPAR激动剂,白藜芦醇和其他卡路里限制模拟物,AMPK激活剂,ERR激活剂)。 线粒体生物发生在现代神经化学中尤为重要,因为线粒体离子和ROS稳态,能量产生和形态的缺陷引起了人类疾病的广泛发展[1]。帕金森氏病(PD)是神经退行性疾病中重要的线粒体成分的一个很好的例子。Anuradha Yadav,Swati Agrawal,Shashi Kant Tiwari和Rajnish (CSIR-印度毒理学研究所/科学与创新研究院,印度[6]在他们的综述中评论了线粒体功能障碍在PD中的作用,特别关注氧化应激和生物能缺乏的作用。这些改变可能起源于重要基因如DJ-1,α-syn,parkin,PINK1或LRRK2中的致病基因突变。这些突变反过来可能导致线粒体动力学缺陷(关键事件,如裂变/融合,生物发生,逆行和顺行方向的运输以及线粒体)。这项工作回顾了增强线粒体生物能量学以改善神经退行性过程的不同策略,重点是表明其潜力的临床试验报告。据报道,在肌酸中,辅酶Q10和线粒体靶向的抗氧化剂/肽在临床试验中具有最显着的作用。他们强调了PGC-1α表达对PD预后的双重影响。尽管该转录共激活因子的适度表达会产生积极影响,但过度过度表达则可能产生有害后果。作为诱导PGC-1α激活的策略,这些作者指出了使用白藜芦醇激活Sirt1的可能性,可以使用PPAR激动剂,如吡格列酮,罗格列酮,非诺贝特和苯扎贝特。 其他策略包括通过三萜类化合物(齐墩果酸的衍生物)或Bacopa monniera触发Nrf2 /抗氧化反应元件(ARE)途径,肉碱和α-硫辛酸增强ATP的产生。 线粒体功能障碍是神经退行性疾病和神经发育障碍的主要来源。在神经分化的背景下,Martine Uittenbogaard和Anne Chiaramello(美国乔治华盛顿大学医学院和健康科学学院解剖与再生生物学系)[7]全面描述了线粒体生物发生对神经元分化,其时机,其通过特定信号传导途径的调控和新途径的意义。潜在的治疗策略。线粒体稳态的维持对于神经元发育至关重要。线粒体融合,裂变和质量控制系统与线粒体生物发生之间需要线粒体动态平衡。关于导致线粒体生物发生的信号传导途径,本综述着重介绍了不同调节剂(如AMPK,SIRT1,PGC-1α,NRF1,NRF2,Tfam等)对神经元发育的具体情况的影响,提供了其中这些途径被改变且缺乏这些调节剂的转基因小鼠模型的疾病实例。几种神经退行性疾病(亨廷顿氏病,阿尔茨海默氏病和帕金森氏病)的共同标志是PGC-1α(线粒体生物发生的主要调节剂)的功能或表达受损。在改善线粒体疾病的有希望的策略中,这些作者强调了通过激活PPAR受体(罗格列酮,苯扎贝特)或通过AMPK(AICAR,二甲双胍,白藜芦醇)或SIRT1(SRT1720和几种异黄酮-)来诱导PGC-1α的活性。衍生化合物)。本文还介绍了可用于研究线粒体发生的当前动物和细胞模型的综述。尽管已知许多神经退行性疾病和神经发育疾病起源于线粒体,但线粒体生物发生的调控尚未得到广泛研究。为了找到针对这些最新未治愈疾病的有效治疗方法,因此有必要对线粒体生物发生的控制机制,线粒体动态平衡(融合,裂变,线粒体吞噬和运输)以及不同生物过程之间的潜在串扰进行全面研究。正如作者所表达的,以及开发新型动物模型以适当研究这种线粒体发生的方法。 生物能学的改变对于癌症的发展是必要的。因此,线粒体生物能和动力学的控制可作为潜在的癌症治疗手段。皮拉尔·罗卡(Pilar Roca),Jorge Sastre-Serra,Mercedes Nadal-Serrano,Daniel Gabriel Pons,Mªdel MarBlanquer-Rosselló和Jordi Oliver(Institut d'InvestigacióenCiènciesde la Salut(IUNICS),Universitat de les Illes Balears,西班牙)[8]描述了雌激素受体的调控,它们对乳腺癌,线粒体生物发生,线粒体功能和ROS产生的影响。它对与雌激素受体,类黄酮密切相关的天然化合物及其在癌症治疗和研究中的应用,它们的作用机理等进行了深入的综述,并着重强调了根据剂量,时间,吸收,代谢和荷尔蒙状况,以设计治疗乳腺癌的新策略。 在寻找新的靶向线粒体生物发生疗法的靶点时,了解涉及的途径以及促进这些信号通路的介体至关重要。Fabian Sanchis-Gomar,JoséLuisGarcía-Giménez,Mari CarmenGómez-Cabrera和Federico ó(瓦伦西亚大学生理学系/ CIBERER / INCLIVA,西班牙)[9]对这一领域的当前知识进行了广泛的评论。以及有关线粒体生物发生途径改变的疾病。尽管基于线粒体发生的特定治疗的知识仍然很贫乏,但目前市场上存在的几种药物具有潜在的特征,可用于触发线粒体发生以治疗特定疾病。这篇评论汇编了其中大部分内容,由于线粒体发生是普遍存在的事实,因此着重介绍了这些药物的观察到的副作用以及这些策略的选择性不足。远非落后,这可能构成设计更多组织特异性治疗方法的挑战。线粒体生物发生的研究由于该细胞器的内共生进化起源而特别复杂。线粒体是最复杂和独特的细胞器:真核和原核机制共存,它们具有内膜和外膜,拥有小的基因组,并且遭受连续的融合和裂变事件。此外,伴随着内共生,新的线粒体生物发生途径已经发展[1]。为了扩展我们对诱导不同组织中线粒体发生的潜在机制的了解,使用适当的技术测量线粒体质量至关重要。在活细胞中,线粒体含量或线粒体质量的调节取决于线粒体生物发生,线粒体降解(线粒体)和线粒体动力学(融合,裂变)之间的微妙平衡。Karl J. Tronstad,Marco Nooteboom,Linn IH Nilsson,Julie Nikolaisen,Maciek Sokolewicz,Sander Grefte,Ina KN Pettersen,Sissel Dyrstad,Fredrik Hoel,Peter HGM Willems和Werner JH Koopman(挪威卑尔根大学生物医学系,挪威)拉德布德大学医学中心生物化学系 荷兰[10]描述了维持这种平衡的机制以及量化线粒体形态和含量的可用技术。在回顾了最常见的技术和策略(测量耗氧量,生化生物标志物或通过电子显微镜)的利弊之后,我们可以在这项工作中发现对荧光显微镜的深入分析,用于检测线粒体含量,其可视化,定量和解释2D和3D成像中的结果,以及该小组和其他人员开发的可用软件和策略。这项工作在选择一种研究特定细胞类型中线粒体生物发生的技术时可能会很有帮助。此外,我们还可以找到包含已知影响线粒体发生的几种药物的表格。 自由基已被广泛认为对衰老的细胞结构和启动子有害。然而,它们还通过触发诱导基因表达的信号而充当第二信使。 实际上,内源性自由基可以触发线粒体发生。Hagir B. Suliman和Claude A. Piantadosi(美国杜克大学医学中心,杜克癌症研究所,医学和病理学,麻醉学系,美国)[11]广泛地综述了这些自由基对炎症过程中线粒体发生的影响。在活动性炎症期间,由于急性组织损伤,线粒体经常被氧化和亚硝化应力破坏。内源性自由基的水平升高以补偿方式触发线粒体发生和线粒体吞噬。NO / cGMP /PGC-1α轴就是这种情况,CO / HO-1系统和HS2 / Akt / NRF-1 / -2轴。几种众所周知的药物可以与那些和其他信号传导途径相互作用,以诱导线粒体发生,例如NO供体,CO释放分子,三萜类,促红细胞生成素,噻唑烷二酮类药物,二甲双胍,AICAR和几种天然化合物(包括营养物质和清除剂)。因此,诱导线粒体的生物发生和质量控制代表了开发针对那些伴随线粒体损伤和/或炎症而发展的疾病的新疗法的潜在有价值的方法。 最近的发现指出线粒体生物发生是延长寿命的关键过程,引起了人们的极大关注,例如,在这两个过程中都发现了相似的分子和途径以及相似的干预措施。恩佐·尼索利(Enzo Nisoli)和亚历桑德拉·瓦莱里奥(Alessandra Valerio)(肥胖症研究中心/米兰大学医学生物技术和转化医学系/意大利布雷西亚大学分子转化医学系)[12]回顾了线粒体和其他细胞器的贡献关于衰老和抗衰老策略的研究,指出细胞器之间的相互作用是设计针对年龄相关疾病的新治疗措施并延长寿命和健康寿命的潜在目标。一些干预措施包括通过热量限制,耐力运动和饮食补充富含支链氨基酸(BCAAs)的必需氨基酸混合物来控制线粒体生物发生和动力学的非药理作用。但是,新的药理策略似乎非常有希望,例如新的小型SIRT1激活剂(SRT1720,SRT2183,SRT1460),其他瑟土因激活剂,如恶唑并[4,4-b]吡啶和咪唑并[1,2-b]噻唑衍生物,较小的GSK-3抑制剂SB216763和ZLN005(作用机理未知)或eNOS激活剂,例如AVE化合物。值得强调的最新证据指出,低浓度的自由基是线粒体生物发生和寿命延长的促进剂。 这些发现与线粒体兴奋或线粒体兴奋的新概念密切相关。兴奋剂是定义对轻度应激作出反应的积极作用的术语,如果以较高的强度或浓度施用,对细胞或生物体将是有害的[13]。有许多进化保守过程的例子,其中细胞或生物体暴露于低剂量的一种应激源下会触发适应性反应,从而保护细胞或生物体免受中等或严重压力。实际上,已被证明传统上被认为是有害的自由基在低浓度下可充当第二信使,从而触发不同的信号传导途径。科学界已使用了几个术语,例如自保护,杂合保护,预处理,适应性反应,补偿机制,激素,异激素等。以同样的方式,已经使用了广泛的术语来描述剂量的形状-在低浓度下获得的响应曲线,如双相,双相,双音,钟形,U形,倒U形等[14]。尽管有关此问题的信息被不同的术语所稀释,但已广泛观察到了这类现象。特别是考虑到线粒体,已观察到该细胞器适度产生的自由基可作为第二信使触发线粒体发生[15]。因此,线粒体作用是由于线粒体适度产生自由基而在细胞中产生的有益作用,并且与线粒体生物发生和寿命延长现象密切相关。 本期专刊试图涵盖有关触发线粒体发生的药理学方法,所涉及的信号传导途径,其调控以及线粒体发生对几种疾病的影响的大多数当前知识。但是,该领域仍处于起步阶段。

日本东京大学Umeharu Ohto和日本京都大学Norimichi Nomura团队共同合作近期取得重要工作进展。他们研究发现胆汁酸转运蛋白NTCP的结构对乙型肝炎病毒进入至关重要。该项研究成果2022年5月17日在线发表于《自然》杂志上。 在这里,研究人员报告了人类、牛和大鼠NTCPs在apo状态下的低温电子显微镜(cryo-EM)结构,它揭示了跨膜隧道的存在和底物的可能运输途径。 此外,人类NTCP在LHBs的肉豆蔻酰化preS1结构域存在下的低温电镜结构以及突变和运输试验分析表明了一种结合模式,即preS1和底物竞争NTCP中细胞外通道的开口。重要的是,preS1域相互作用分析能够对人类NTCP中自然发生的HBV不敏感突变进行机理解释。综上所述,他们的研究结果为HBV识别和哺乳动物NTCPs对钠依赖性胆汁酸易位的机制的理解提供了结构框架。 据介绍,慢性乙型肝炎病毒 (HBV) 感染在全球影响超过亿人,是肝硬化和肝细胞癌的主要原因,估计每年导致82万人死亡。HBV感染的建立需要病毒包膜糖蛋白L(LHBs)与宿主进入受体钠-牛磺胆酸共转运多肽(NTCP)之间的分子相互作用,NTCP是一种从血液到肝细胞的钠依赖性胆汁酸转运蛋白。然而,目前对于病毒-转运蛋白相互作用分子基础尚不清楚。 Source: 美国加州大学Arash Komeili研究小组在研究中取得进展。他们发现不同基因簇诱导细菌铁小体细胞器的形成。2022年5月18日出版的《自然》发表了这项成果。 在本研究中,研究人员发现一个与铁结合的隔室,在此命名为“铁小体”,是之前在厌氧细菌磁性脱硫弧菌中发现的。使用蛋白质组学方法,研究人员鉴定了三种铁小体相关(Fez)蛋白,它们在D. magneticus中参与形成铁小体。Fez蛋白由特定的操纵子编码,包括FezB,FezB是在系统发育和代谢不同的细菌和古细菌中发现的P1B-6-ATP酶。研究人员揭示了另外两种细菌物种,Rhodopseudomonas palustris和Shewanella putrefaciens,通过其六基因fez操纵子产生铁小体。 此外,研究发现fez操纵子还可以在外来宿主中形成铁小体。使用S. putrefaciens作为模型,研究表明铁小体可能在厌氧适应铁饥饿中发挥作用。总体而言,该工作发现铁小体可能是一类新的铁储存细胞器,并为研究它们在多种微生物中的形成和结构奠定了基础。 据了解,细胞内铁稳态对于机体至关重要,通过严格调节铁的输入、流出、储存和代谢来维持铁稳态。最常见的铁储存模式使用蛋白质隔室,例如铁蛋白和相关蛋白质。尽管发现了脂质结合的铁隔室,但它们的形成和功能基础仍然未知。 Source: 美国德克萨斯大学西南医学中心Peter M Douglas研究组发现小G蛋白香叶酰化可监测细胞内脂质稳态。2022年5月18日出版的《自然》杂志发表了这项成果。 他们描述了一种在秀丽隐杆线虫中进行细胞内脂质监测的机制,该机制涉及核激素受体 NHR-49 的转录失活,其通过与小 G 蛋白 结合的香叶基香叶酯结合到内吞囊泡进行胞质隔离。由脂质消耗引起的有缺陷的从头类异戊二烯合成限制了 香叶基香叶酰化,这促进了 NHR-49 的核易位和 转录的激活,以增强转运蛋白在质膜上的驻留。因此,他们鉴定了一种细胞可感知的关键脂质,及与其相连 G 蛋白和核受体,它们的动态相互作用使细胞能够感知由于脂质消耗引起的代谢需求,并通过增加营养吸收和脂质代谢来做出反应。 据悉,脂质稳态失衡会对健康产生有害影响。然而,细胞如何感知由于脂质消耗导致的代谢需求并通过增加营养吸收做出反应仍不清楚。 Source: 英国牛津大学Sebastian M. Shimeld研究组探明Hmx基因保留确定了脊椎动物颅神经节的起源。2022年5月18日出版的《自然》杂志发表了该项成果。 他们表明同源盒转录因子 Hmx 是脊椎动物感觉神经节发育的组成成分,并且在小肠绦虫中,Hmx 是驱动双极尾神经元分化程序所必要且充分的,这些细胞以前被认为是神经嵴的同源物。使用绦虫和七鳃鳗转基因,他们证明了茎-脊椎动物谱系中,一个独特的、串联重复的增强子对调节的 Hmx 表达。他们还在绦虫中展示了明显强大的脊椎动物 Hmx 增强子功能,表明上游调控网络的深度保留跨越了脊椎动物的进化起源。这些实验证明了绦虫和脊椎动物 Hmx 之间的调节和功能保护,并指出双极尾神经元是颅感觉神经节的同源物。 研究人员表示,脊椎动物的进化起源包括与掠夺性生活方式的获得相关的感官处理方面的创新。脊椎动物通过由颅感觉神经节服务的感觉系统感知外部刺激,其神经元主要来自颅基板;然而,由于活体谱系之间的解剖学差异以及细胞类型和结构之间的同源性分配困难,阻碍了对基板和颅感觉神经节进化起源的理解。 Source: 美国斯坦福大学Anthony E. Oro团队近期取得重要工作进展。他们研究发现Gibbin中胚层调节模式上皮细胞的发育。该项研究成果2022年5月18日在线发表于《自然》杂志上。 在这里,研究人员鉴定了由Xia-Gibbs AT-hook DNA-binding-motif-containing 1(AHDC1)疾病基因编码的蛋白质Gibbin,它是早期上皮形态发生的关键调节因子。他们发现增强子或启动子结合的Gibbin与数十种序列特异性锌指转录因子和甲基-CpG 结合蛋白相互作用,以调节中胚层基因的表达。Gibbin的缺失导致GATA3依赖性中胚层基因的DNA甲基化增加,导致发育中的真皮和表皮细胞类型之间的信号通路的缺失。 值得注意的是,Gibbin突变的人类胚胎干细胞衍生的皮肤类器官缺乏真皮成熟,导致表达p63的基底细胞具有缺陷的角质形成细胞分层。体内嵌合CRISPR小鼠突变体揭示了一系列Gibbin依赖性发育模式缺陷,这些缺陷影响了反映患者表型的颅面结构、腹壁闭合和表皮分层。他们的结果表明,在Xia–Gibbs和相关综合征中看到的模式表型源于基因特异性 DNA甲基化决定而导致的异常中胚层成熟。 据介绍,在人类发育过程中正确的外胚层模式需要先前确定的转录因子,如GATA3和p63,以及来自区域中胚层的位置信号。然而,外胚层和中胚层因子对稳定基因表达和谱系定型的机制仍不清楚。 Source: 美国纪念斯隆-凯特琳癌症中心Vinod P. Balachandran等研究人员合作发现,新抗原质量可预测胰腺癌幸存者的免疫编辑。相关论文于2022年5月19日在线发表在《自然》杂志上。 研究人员表示,癌症免疫编辑是癌症的一个标志,它预示着淋巴细胞会杀死更多的免疫原性癌细胞,使免疫原性较低的克隆体在群体中占主导地位。虽然在小鼠身上得到证实,但免疫编辑是否在人类癌症中自然发生仍不清楚。 为了解决这个问题,研究人员调查了70个人类胰腺癌在10年内是如何演变的。研究人员发现,尽管有更多的时间积累突变,但罕见的胰腺癌长期幸存者在原发肿瘤中具有更强的T细胞活性,其复发肿瘤的遗传异质性较低,免疫原性突变(新抗原)较少。为了量化免疫编辑是否是这些观察结果的基础,研究人员通过两个特征来推断了新抗原是否具有免疫原性(高质量),这基于新抗原与已知抗原相似性的"非自体性",以及基于新抗原与野生型肽相比不同地结合到MHC或激活T细胞所需的抗原性距离的"自体性"。利用这些特征,研究人员估计癌症克隆的适应性是T细胞识别高质量新抗原的总成本被致癌突变的收益所抵消。 通过这个模型,研究人员预测了肿瘤的克隆进化,并发现胰腺癌的长期幸存者会发展出具有较少高质量新抗原的复发性肿瘤。因此,研究人员展示了人类免疫系统自然编辑新抗原的证据。此外,研究人员提出了一个模型来预测免疫压力是如何诱导癌细胞群随时间演变的。更广泛地说,这些研究结果表明,免疫系统从根本上监督宿主的基因变化来抑制癌症。 Source: 美国斯坦福大学Mark J. Schnitzer、Sadegh Ebrahimi等研究人员合作揭示感觉皮质编码和区域间通信的新兴可靠性。2022年5月19日,国际知名学术期刊《自然》在线发表了这一成果。 研究人员对小鼠执行视觉辨别任务的8个新皮层区域的神经元活动同时进行了5天的成像,产生了超过21000个神经元的纵向记录。分析显示,整个新皮层的事件序列从静止状态开始,到感知的早期阶段,并通过任务反应的形成。在静止状态下,新皮层有一种功能连接模式,通过共享活动共变的区域组来识别。在感觉刺激开始后约200毫秒内,这种连接重新排列,不同区域共享共变和任务相关信息。 在这个短暂的状态中(大约持续300毫秒),区域间的感觉数据传输和感觉编码的冗余都达到了顶峰,反映了任务相关神经元之间相关波动的短暂增加。刺激开始后约秒,视觉表征达到一个更稳定的形式,其结构对单个细胞反应中突出的、逐日的变化是强大的。在刺激出现约1秒后,一个全局波动模式传达了小鼠对每个受检区域即将作出的反应,并与携带感觉数据的模式正交。 总的来说,新皮层通过在感知开始时感觉编码冗余的短暂提升、对细胞变异性稳健的神经群体编码以及广泛的区域间波动模式来支持感觉性能,这些模式以不干扰的渠道传递感觉数据和任务反应。 据了解,可靠的感觉辨别必须来自高保真的神经表征和脑区之间的交流。然而,新皮层感觉处理如何克服神经元感觉反应的巨大变异性仍未确定。 Source: 近日,美国斯坦福大学Jesse M. Engreitz及其团队的最新研究揭示人类增强子和启动子序列的相容性规则。相关论文于2022年5月20日在线发表在《自然》杂志上。 研究人员设计了一种名为ExP STARR-seq(增强子x启动子自转录活性调节区测序)的高通量报告试验,并应用它来研究人类K562细胞中1000个增强子和1000个启动子序列的组合相容性。研究人员确定了增强子-启动子兼容性的简单规则:大多数增强子以类似的数量激活所有启动子,内在的增强子和启动子的活动以倍数结合来决定RNA输出(R2=)。 此外,有两类增强子和启动子显示出微妙的偏好效应。管家基因的启动子含有GABPA和YY1等因子的内置激活模体,这降低了启动子对远端增强子的反应性。表达不一的基因的启动子缺乏这些模体,对增强子表现出更强的反应性。总之,这种对增强子-启动子兼容性的系统评估表明,在人类基因组中,有一个由增强子和启动子类型调整的乘法模型来控制基因转录。 据了解,人类基因组中的基因调控是由远端增强子控制的,它能激活附近特定的启动子。这种特异性的一个模型是,启动子可能对某些增强子有序列编码的偏好,例如由相互作用的转录因子组或辅助因子介导。这种"生化兼容性"模型已被个别人类启动子的观察和果蝇的全基因组测量所支持。然而,人类增强子和启动子内在兼容的程度还没有得到系统的测量,它们的活动如何结合起来控制RNA的表达仍不清楚。 Source: 美国华盛顿大学医学院David J. Pagliarini和美国摩根里奇研究所Joshua J. Coon共同合作,近期取得重要工作进展。他们通过深度多组学分析来确定线粒体蛋白的功能。该项研究成果2022年5月25日在线发表于《自然》杂志上。 在这里,为了建立更完整的人类线粒体蛋白功能纲要,研究人员使用基于质谱的多组学分析方法分析了200多个CRISPR介导的HAP1敲除细胞系。这项工作产生了大约 830 万个不同的生物分子测量值,提供了对线粒体扰动的细胞反应的深入调查,并为蛋白质功能的机制研究奠定了基础。在这些数据的指导下,他们发现PIGY 游开放阅读框(PYURF)是一种S-腺苷甲硫氨酸依赖性甲基转移酶伴侣,它支持复合物I组装和辅酶Q生物合成,并且在以前未解决的多系统线粒体疾病中被破坏。 研究人员进一步将推定的锌转运蛋白SLC30A9与线粒体核糖体和OxPhos完整性联系起来,并将RAB5IF确定为第二个含有导致脑面胸腔发育不良的致病变异的基因。他们的数据可以通过交互式在线资源进行探索,表明许多其他孤儿线粒体蛋白的生物学作用仍然缺乏强大的功能表征,并定义了线粒体功能障碍的丰富细胞特征,可以支持线粒体疾病的基因诊断。 据了解,线粒体是真核生物新陈代谢和生物能学的中心。近几十年来的开创性努力已经确定了这些细胞器的核心蛋白成分,并将它们的功能障碍与150多种不同的疾病联系起来。尽管如此,数以百计的线粒体蛋白仍缺乏明确的功能,约40%的线粒体疾病的潜在遗传基础仍未得到解决。 Source: 美国加州大学洛杉矶分校Alcino J. Silva和Miou Zhou研究组合作揭示,C-C 趋化因子受体 5 (CCR5)可关闭记忆链接的时间窗口。相关论文发表在2022年5月25日出版的《自然》杂志上。 他们展示了CCR5(一种免疫受体,众所周知是 HIV 感染的共同受体)的表达延迟(12-24 小时)增加在环境记忆形成后决定时间窗口的持续时间,以便将该记忆与后续记忆关联或链接。小鼠背侧 CA1 神经元中 CCR5 的这种延迟表达导致神经元兴奋性降低,进而负调节神经元记忆分配,从而减少背侧 CA1 记忆集合之间的重叠。降低这种重叠会影响一个记忆触发另一个记忆的召回能力,因此关闭记忆链接的时间窗口。 他们的研究结果还表明,与年龄相关的 CCR5 及其配体 CCL5 的神经元表达增加会导致老年小鼠的记忆连接受损,这可以通过 Ccr5 敲除和美国食品和药物管理局(FDA)批准的药物逆转。抑制这种受体具有临床意义。总而言之,这里报道的研究结果提供了对塑造记忆链接时间窗口的分子和细胞机制的见解。 据介绍,现实世界的记忆是在特定的环境下形成的,通常不是孤立地获得或回忆的。时间是记忆组织中的一个关键变量,因为时间接近的事件更有可能有意义地关联,而间隔较长的事件则不是。大脑如何区分时间上不同的事件尚不清楚。 Source: 德国海德堡大学Rohini Kuner研究组发现错误连接和终末器官靶向异常可引起神经性疼痛。2022年5月25日出版的《自然》杂志在线发表了这项成果。 研究人员在神经损伤后超过10个月的时间里,以纵向和非侵入性地方式对基因标记的纤维群进行成像,这些纤维群在皮肤周围感知有害刺激(伤害感受器)和轻柔触摸(低阈值传入),同时跟踪这些小鼠与疼痛相关的行为。完全去神经支配的皮肤区域最初失去感觉,逐渐恢复正常敏感性,并在受伤几个月后出现明显的异常性疼痛和对轻触的厌恶。这种神经再支配引起的神经性疼痛与伤害感受器有关,这些伤害感受器延伸到去神经支配的区域,精确地再现神经支配的初始模式,由血管引导,在皮肤中显示出不规则的终端连接,并降低了模拟低阈值传入的激活阈值。 相比之下,低阈值传入神经(通常在损伤后完整神经区域中介导触觉以及异常性疼痛)没有重新建立神经支配,导致仅具有伤害感受器的迈斯纳小体等触觉末端器官受异常神经支配。敲除与伤害感受器有关的基因完全消除了神经再支配异常性疼痛。因此,该研究结果揭示了一种慢性神经性疼痛的发生机制,这种疼痛是由结构可塑性、异常末端连接和神经再支配过程中伤害感受器受损造成的,并为在临床观察到的对病人产生沉重负担的矛盾感觉提供了机制框架。 据了解,神经损伤会导致慢性疼痛和对轻柔触摸的过度敏感(异常性疼痛)以及受伤和未受伤神经聚集区域的感觉丧失。改善这些混合和矛盾症状的机制尚不清楚。 Source: 星形胶质细胞在不同疾病中的反应性转录调控不同,这一成果由美国加州大学Michael V. Sofroniew、Joshua E. Burda研究组经过不懈努力而取得。2022年5月25日出版的《自然》杂志发表了这项成果。 研究人员通过将生物学和信息学分析(包括RNA测序、蛋白质检测、转座酶可及染色质测定与高通量测序(ATAC-seq)和条件基因缺失)相结合的方法来预测转录调节因子,这些调节因子调控了超过12,000个与小鼠和人不同中枢神经系统疾病中星形胶质细胞反应有关的差异表达基因(DEGs)。与星形胶质细胞反应相关的DEG在疾病中表现出明显的异质性。转录调节因子也具有疾病特异性差异,但研究人员发现了一个在这两个物种多种疾病中常见的由61个转录调节因子组成的核心组。实验表明,DEG多样性是由不同转录调节因子与特定细胞内环境之间相互作用决定的。 值得注意的是,相同反应性转录调节因子可以调节不同疾病中显著不同的DEG队列。转录调节因子对DNA结合基序的可及性变化在不同疾病之间存在明显差异;对DEG变化至关重要的调控可能需要多个反应性转录调节因子。通过调节反应性,转录调节因子可以显著改变疾病结果,并可以将其作为治疗靶点。该研究提供了与疾病相关反应性星形胶质细胞DEG及可搜索的预测转录调节因子资源。该研究结果表明,与星形胶质细胞反应性相关的转录变化是高度异质的,并且可通过特定于细胞内环境的转录调节因子组合产生大量潜在的DEG。 据悉,星形胶质细胞对中枢神经系统疾病和损伤作出反应,反应性变化会影响疾病进展。这些变化包括DEGs,然而对DEGs背景多样性和调控知之甚少。 Source: 近日,以色列魏茨曼科学研究所Karina Yaniv、Rudra N. Das等研究人员合作发现,淋巴管转分化可产生专门的血管。相关论文于2022年5月25日在线发表在《自然》杂志上。 研究人员利用斑马鱼臀鳍的循环成像和系谱追踪,从早期发育到成年,发现了一种通过淋巴管内皮细胞(LECs)的转分化形成专门血管的机制。此外,研究人员证明了从淋巴与血液内皮细胞(EC)衍生出的臀鳍血管在成年生物体中的功能差异,揭示了细胞本体和功能之间的联系。研究人员进一步利用单细胞RNA测序分析来描述了转分化过程中涉及的不同细胞群和过渡状态。 最后,结果表明,与正常发育相似,在臀鳍再生过程中,血管从淋巴管中重新衍生出来,表明成年鱼的LEC保留了生成血液EC的效力和可塑性。总的来说,这项研究强调了通过LEC转分化形成血管的先天机制,并为EC的细胞个体发生和功能之间的联系提供了体内证据。 据了解,细胞的谱系和发育轨迹是决定细胞身份的关键因素。在血管系统中,血液和淋巴管的EC通过分化和特化来满足每个器官的独特生理需求。虽然淋巴管被证明来自多种细胞来源,但LEC不知道会产生其他细胞类型。 Source: 德国马克斯·普朗克免疫生物学和表观遗传学研究所Thomas Boehm、Dominic Grün等研究人员合作揭示两种双潜能胸腺上皮细胞祖先类型的发育动态。相关论文于2022年5月25日在线发表于国际学术期刊《自然》。 研究人员结合单细胞RNA测序(scRNA-seq)和一个新的基于CRISPR-Cas9的细胞条形码系统,在小鼠中确定胸腺上皮细胞随时间变化的质和量。这种双重方法使研究人员能够确定两个主要的祖先群体:一个早期双潜能祖先类型偏向皮质上皮,一个产后双潜能祖先群体偏向髓质上皮。研究人员进一步证明,连续提供Fgf7的自分泌导致胸腺微环境的持续扩张,而不会耗尽上皮祖细胞池,这表明有一种策略可以调节胸腺造血活动的程度。 据介绍,胸腺中的T细胞发育对细胞免疫至关重要,并取决于器官型的胸腺上皮微环境。与其他器官相比,胸腺的大小和细胞组成是异常动态的,例如在发育的早期阶段快速生长和高T细胞输出,随后随着年龄的增长,胸腺上皮细胞的功能逐渐丧失,初始T细胞的产量减少。scRNA-seq发现了年轻和年老的成年小鼠胸腺上皮细胞的意外异质性;然而,推定的产前和产后上皮祖细胞的身份和发育动态仍未得到解决。 Source: 美国西奈山伊坎医学院Filip K. Swirski、Wolfram C. Poller等研究人员合作发现,大脑运动和恐惧回路在急性应激期间调节白细胞。2022年5月30日,《自然》杂志在线发表了这项成果。 研究人员发现,在小鼠急性应激期间,不同的大脑区域塑造了白细胞的分布和整个身体的功能。利用光遗传学和化学遗传学,研究人员证明运动回路通过骨骼肌来源的吸引中性粒细胞的趋化因子诱导中性粒细胞从骨髓快速动员到周围组织。相反,室旁下丘脑通过直接的、细胞内的糖皮质激素信号控制单核细胞和淋巴细胞从二级淋巴器官和血液向骨髓排出。这些压力诱导的、反方向的、全群体的白细胞转移与疾病易感性的改变有关。 一方面,急性应激通过重塑中性粒细胞并引导它们被招募到损伤部位来改变先天免疫力。另一方面,促肾上腺素释放激素(CRH)神经元介导的白细胞转移可防止获得自身免疫,但会损害对SARS-CoV-2和流感感染的免疫力。总的来说,这些数据显示,在心理压力期间,不同的大脑区域会不同地、迅速地调整白细胞景观,从而校准免疫系统对身体威胁的反应能力。 据了解,神经系统和免疫系统有着错综复杂的联系。尽管人们知道心理压力可以调节免疫功能,但将大脑中的压力网络与外周白细胞联系起来的机制途径仍然不为人知。 Source:

线粒体:完全真实的细胞器,能将糖、脂肪和氧转化为细胞可用的能量。Midi chlorians:完全合成并广受嘲笑的微观生命形式,赋予绝地武士在《星球大战》电影中使用原力的能力。

看到区别了吗?少数“同行评论员”显然没有这样做,因为本周一篇以“midi-chlorians”代替“线粒体”的论文被四家期刊接受。这篇论文将 *** 上稍加改动的文字与《星球大战》相关的漫无边际的文字混为一谈,其中包括臭名昭著的关于达斯·普拉盖斯悲剧的独白《西斯的复仇》。

这篇论文是一个由所谓的神经学家写的,他为《发现》杂志撰写了化名博客。关键是什么?揭露“掠夺性期刊”,声称提供同行评议,开放获取的出版物,但实际上出版几乎任何东西的费用,根据神经学家。[不错的尝试:2016年前五大收回的科学研究]

“都是关于钱的,”长期致力于揭露掠夺性出版商的科罗拉多丹佛大学研究图书管理员杰弗里·比尔(Jeffrey Beall)说。Beall说,在许多情况下,审阅这些期刊的论文的同行审稿人甚至不存在,或者杂志的所有者摆在审稿人面前。[狗'科学家'坐在编辑委员会的医学杂志]

神经科的刺并不是第一次揭露这些杂志是什么。这些期刊通过收取作者的出版费来盈利;由于论文只在网上发表,出版商的成本微乎其微。他们经常向研究人员的电子邮件帐户发送垃圾邮件,要求他们发表文章。在一个案例中,一本掠夺性的杂志实际上接受了两位研究人员的论文,他们一次又一次地读到“把我从你的邮件列表上弄下来”。在另一次刺痛中,研究人员捏造了一个冒牌科学家,斯苏斯特博士(波兰人称“欺诈”),并把她带到了48个独立的掠夺性期刊的董事会上。“KDSPE”“KDSPs”的灵感来自这些刺,Neuroskeptic把一个假纸混合线粒体和MIDI ChLLIANS,甚至承认在文字中,大部分的措辞已经从 *** 窃取。一个样本:“KDSPE”“KDSPs”“MIDI”介导的氧化应激导致2型糖尿病患者的心肌病。随着更多的脂肪酸传递到心脏,并进入心肌细胞,脂肪酸在这些细胞中的氧化增加。你听说过智者达斯·普雷格斯的悲剧吗?我想不是。这不是绝地武士会告诉你的故事。

(《智者达斯·普拉格斯的悲剧》,演员伊恩·麦克迪亚米德扮演帕尔帕廷的角色的独白,2017年初成为《星球大战》粉丝中的一个迷因。

期刊的回复

神经系统科学将论文发送给了9家负责向科学家发送垃圾邮件的期刊。四-美国医学和生物研究杂志,国际分子生物学杂志:开放获取,奥斯汀药理学和治疗学杂志,以及美国生物科学研究杂志-接受了这篇荒谬的论文。后三位甚至在没有收取费用的情况下发表了这篇文章。比尔说,最有可能的是,这些期刊利用这篇论文人为地夸大了他们的出版记录,并使他们的网站看起来更合法。《奥斯汀药理学与治疗学杂志》和《国际分子生物学杂志:开放获取》后来删除了这篇论文。

翻译科学杂志,《医学与生物化学与生理学进展:开放获取》拒绝了这篇论文。JSM生物化学和分子生物学要求神经系统科学的修改并重新提交论文;读到这篇论文的人得到了一个笑话,并要求修改后的论文包括帕尔帕廷等引文。1980年。同时,《分子生物学与技术》杂志

线粒体肌病论文

线粒体脑肌病属线粒体遗传病,呈母系遗传方式,主要分为4种临床类型:①慢性进行性眼外肌瘫痪(CPEO):多在儿童期起病,以眼睑下垂为首发症状,缓慢进展为全眼外肌瘫痪,眼球运动障碍,但因两侧对称性受累,复视并不常见;部分患者可有咽部肌肉和四肢近端肌无力;②Kearns-Sayre综合征(KSS):20岁以前发病,进展较快,表现CPEO和视网膜色素变性,常伴心脏传导阻滞、小脑性共济失调、脑脊液蛋白增高、神经性耳聋和智能减退等;③线粒体脑肌病伴高乳酸血症和卒中样发作(MECAS)综合征:40岁前起病,儿童期发病较多,表现突发的卒中样发作,如偏瘫、偏盲或皮质盲、反复癫痫发作、偏头痛和呕吐等,病情逐渐加重;CT/MRI可见枕叶脑软化,病灶范围与主要脑血管分布不一致,常见脑萎缩、脑室扩大和基底节钙化;血和脑脊液乳酸增高;④肌阵挛性癫痫伴肌肉蓬毛样红纤维(MERRF)综合征:多在儿童期起病,表现肌阵挛性癫痫、小脑性共济失调和四肢近端肌无力等,可伴多发性对称性脂肪瘤。

线粒体肌病是DNA缺乏由于线粒体DNA缺陷导致线粒体结构和功能障碍ATP合成不足导致的疾病。表现为骨骼肌不能耐受疲劳,而导致轻度活动就会出现疲乏的症状,休息后好转。

常伴有肌肉酸疼及压痛,治疗起来比较困难,主要使用一些增加肌肉供血和供氧的药物来缓解症状,也可以酌情使用一些维生素类的食物,能够很好的缓解症状。也可以使用一些中药当中的补益类的药物,能够很好的缓解疾病的症状。

线粒体疾病注意事项

应避免使用的药物:抗逆转录病毒药(叠氮胸苷),全麻药,丙戊酸钠,四环素,巴比妥类,氯霉素。对有多系统受累的患者应避免氨基糖甙类抗生素。避免用二甲双胍,容易酸中毒。

饮食:需要注意丙酮酸脱氢酶缺乏患者应该生酮饮食,即高脂肪低碳水化合物饮食。线粒体脂肪代谢异常的患者建议高碳水化合物和中链甘油三脂饮食,少用长链脂肪酸。评价患者的基础代谢率。增加就餐次数,避免饥饿,当患有感冒或其他影响进食的疾病时应及时静脉营养,可静脉输注葡萄糖。

线粒体脑病论文

Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. 肌苷,辅酶Q10和硫辛酸对线粒体疾病的有益作用 【作 者】M Christine Rodriguez;Jay R MacDonald;Douglas J Mahoney;Gianni Parise;M Flint Beal;Mark A Tarnopolsky 【刊 名】Muscle & nerve 【出版日期】2007 【卷 号】 【页 码】235-242 【doi】 【影响因子】(2007)  (2015) 摘要: 线粒体疾病具有共同的细胞后果:(1)ATP产生减少;(2)增加对替代厌氧能源的依赖;(3)增加活性氧的产生。本研究的目的是确定联合治疗的效果(肌酸一水合物,辅酶Q 10,以及针对上述细胞后果的硫辛酸,使用线粒体细胞病患者的随机,双盲,安慰剂对照,交叉研究设计,针对多个结果变量。 3例患有线粒体脑病,乳酸性酸中毒和中风样发作(MELAS),4例存在线粒体DNA缺失(3例慢性进行性眼外肌麻痹患者和1例Kearns-Sayre综合征患者),还有9例其他非线粒体疾病分为前两组。 联合疗法可降低所有患者组的静息血浆乳酸和尿8-异前列腺素,并减轻峰值踝背屈强度的下降,而仅MELAS组观察到较高的无脂肪量。一起,这些结果表明,针对线粒体功能障碍的多个最终共同途径的联合疗法可有利地影响细胞能量功能障碍的替代标志物。将来需要在相对均一的人群中进行更大样本量的研究,以确定这种联合疗法是否影响功能和生活质量。 线粒体疾病代表一组影响线粒体能量传导的疾病,其特征是临床,生化和遗传异质性。 18 尽管表型表达差异很大,但大多数患者合并有乳酸性酸中毒,中风或癫痫发作,头痛,色素性视网膜炎,上睑下垂,运动耐力低下,眼肌麻痹,心肌病,神经病和视力减退。 16 , 29 , 38 线粒体功能障碍导致许多细胞后果,包括:(1)ATP生成减少;(2)增加对替代厌氧能源的依赖;(3)增加活性氧(ROS)的产生。 16 , 37 没有疗效的治疗线粒体疾病,大多数策略的目的是为了缓解上述蜂窝后果。 16 , 18 上的患者的线粒体疾病的治疗策略的报告已经检查的单一化合物的效果,如辅酶Q 10(辅酶Q 10) 2 , 4 , 21 或肌酸(CRM)。 13 ,  14 ,  38 基于的概念,即线粒体功能障碍导致一些细胞的病理生理学后果,  33个 为线粒体疾病大多数治疗策略具有相对于单一疗法使用的联合治疗(或治疗“鸡尾酒”)。某些研究已经评估了针对上述三种方法中的一种以上的联合疗法的疗效。然而,这些是任何一种情况下报告,  8 ,  25次 开放试验中,  1 ,  19 ,  20 ,  27 ,  32 或回顾性研究。 26 基于线粒体疾病人体试验的潜在功效证据或人体试验或体外研究的证据显示拟议的化合物可以缓解线粒体功能障碍的一种或多种最终常见途径,我们建议评估联合用药的潜在疗效下列化合物:(1)CrM(替代能源 36 和抗氧化剂 30 ); (2)α-硫辛酸(抗氧化剂 17 和可增加CrM的吸收 6 ) ;(3)辅酶Q 10 [作为抗氧化剂 21 并绕过电子传输链(ETC) 19的配合 物I ]。我们在这里报告了一项随机,双盲,安慰剂对照,交叉试验的结果,该试验研究了这种靶向联合治疗性鸡尾酒联合CrM,CoQ 10和α-硫辛酸对线粒体细胞病变患者的影响。 患者: 从麦克马斯特大学的神经肌肉和神经代谢诊所招募了17位具有明确或可能的线粒体疾病的患者。结合临床症状,空腹血清乳酸浓度,肌肉活检结果(红色的纤维状或细胞色素 c 氧化酶阴性纤维)和线粒体DNA(mtDNA)分析。仅8、9和13号患者未鉴定出DNA突变,对于线粒体神经胃肠道脑病的患者,仅进行确认试验(胸苷升高,胸苷磷酸化酶活性降低);然而,他们的乳酸浓度升高,组织学异常,运动耐力低下,有氧能力低,被认为具有“可能的线粒体细胞病变”。一名患者由于个人原因未完成研究的一部分;因此,该患者的数据被排除在分析之外。最终分析基于16位患者(10位女性和6位男性),根据他们的诊断分为三组。表中显示了患者人群的特征 1 。 第一组包括三位线粒体脑病,乳酸性酸中毒和中风样发作的患者(MELAS组)。第二组包括三名被诊断为慢性进行性眼外肌麻痹(CPEO)的患者和一名被诊断为Kearns-Sayre综合征(KSS)的患者,所有患者均在肌肉来源的mtDNA中被检测出缺失(CPEO / KSS组)。第三组包括各种线粒体疾病的患者:六名线粒体细胞病变患者,两名Leber遗传性视神经病变患者和一名线粒体神经胃肠道脑病患者(其他组) 。该研究获得了我们机构伦理委员会的道德批准,所有患者均提供了知情的书面同意。 CPEO,慢性进行性眼外肌麻痹;细胞病变,线粒体细胞病变;KSS,Kearns–Sayre综合征;LHON,Leber的遗传性视神经病变;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作;MNGIE,线粒体神经胃肠道脑病(无胸苷磷酸化酶活性,胸腺嘧啶核苷水平高)。 设计/干预。 患者参加了一项随机,双盲,安慰剂对照,交叉研究,其中每个参与者均接受了2个月的治疗和安慰剂治疗,两次试验之间有5周的清除期。治疗阶段包括3 g CrM + 2 g葡萄糖+调味剂(新碱;加利福尼亚州帕洛阿尔托的Avicena),300 mgα-硫辛酸(Tishcon,Westbury,纽约)和120 mg CoQ 10(Qgel; Tishcon)每天的0:900和21:00。在安慰剂阶段,将外观相同,品尝相同的粉末(5 g葡萄糖+调味剂; Avicena)和凝胶胶囊(大豆油; Tishcon)用作安慰剂。 禁食4小时后,两个试验的患者在大约每天同一时间(2-3小时内)在每个干预阶段之前和之后完成测试。 测量。 仅在首次访问时记录参与者的身高和体重。所有其他访视均采取了其他所有结果指标。参与者使用定制的力传感器设备进行了握力,踝背屈(关节角度为90°)和膝盖伸展强度测试,数据已直接输入包含数据采集和分析软件的计算机中,如前所述。 38 对于所有力量测量,参与者都在右侧进行测试,并根据手的大小进行个性化设置,并在每次访问之间保持恒定。为了达到峰值强度,参与者进行了3个5s试验,相隔约30 s。记录具有最佳结果的试验值。参与者还进行了1分钟的等距握力和踝背屈疲劳测试(9秒钟工作时间:1秒钟休息周期)。使用肺活量计(Koko; PDS Instrumentation,路易斯维尔,科罗拉多州)进行肺功能测试,包括1秒内的强制肺活量和强制呼气量。每位患者每次访视均至少完成两次肺活量测定,以确保该值与他们的首次尝试一致。进行生物电阻抗(Prism BIA 101A; RJL Systems,Clinton Twp,密歇根州)以确定身体成分。 静脉血液采样和尿液采集。 从肘前静脉将全血收集到预先冷却的,装有肝素(用于乳酸分析)或EDTA(用于测定CoQ 10)的真空管中,并以2500 rpm离心10分钟。将血浆储存在-80℃。每位患者都提供了尿液样本样品,将其约10 ml快速冷冻并保存在-80°C下用于肌酸,肌酐,8-羟基-2'-脱氧鸟苷(8-OHdG)和8-异前列腺素的后续分析( 8-IsoP)。 乳酸 使用YSI 2300 Stat Plus乳酸分析仪(YSI,Yellow Springs,俄亥俄州)测定血浆乳酸浓度。乳酸的批内和批内变异系数分别为%和%。 辅酶Q 10。 使用电化学检测器通过高效液相色谱(HPLC)测定血浆CoQ 10浓度。将血浆( ml)等分到装有1 ml 1-丙醇和 ml辅酶Q 9的10 ml真空容器中,混合5分钟,然后在300  g下 离心5分钟。使用μM注射器过滤器过滤样品,然后将其转移到色谱瓶中,以进行HPLC直接分析。将辅酶Q 9添加到混合物中以作为内标,作为辅酶Q 9的水平在人体血液中微不足道。将所得样品注入装有3μm填料的反相不锈钢色谱柱(150×3 mm)RP‐C18中,该色谱柱带有一个电化学检测器(ESA,贝德福德,马萨诸塞州),该检测器连接到带有单个电极的保卫室(5020型) ; E = +350 mV)和带有双电极的库仑分析池(5011型; E1 = -400 mV,E2 = +300 mV)。使用混合和脱气的甲醇,1-丙醇和乙醇(70:20:10)的流动相,其中含有50 mM乙酸锂作为电导盐,流速为 ml / min,总运行时间少于15分钟 首先通过还原泛醌(E = -400 mV),然后氧化所得泛醇(E = +300 mV)测量辅酶Q 10。辅酶Q 10和辅酶Q 10 H 2在最后一个电极上以最高灵敏度检测到。标准曲线的相关系数为。变异系数确定为<2%。 肌酸和肌酐。 使用HPLC测定尿液中的肌酸浓度,肌酐和肌酸:肌酐的比例。将尿液(1 ml)等分到微量离心管中,并以10,000 rpm离心10分钟。使用ddH 2 O 将尿液上清液稀释至十分之一稀释( ml上清液至 ml ddH 2O)。使用冷藏自动进样器将稀释的尿液上清液保持在10°C。使用Hewlett Packard LC1100系列HPLC(Agilent,Mississauga,Ontario),将紫外检测器设置为λ= 210 nm,将样品注入250× mm C18 Phenomenex10-μHydro-RP 80色谱柱中。Hewlett Packard LC1100数据分析程序会生成校准曲线并分析所得数据。流动相是使用氢氧化钾以 ml / min的流速将磷酸二氢钾(20 mM)调节至pH 。变异系数为%。 8-IsoP。 按照制造商的说明,使用商业酶联免疫吸附测定法(MediCorp,蒙特利尔,魁北克)测定尿中的8-IsoP浓度。标准曲线的相关系数为。变异系数为%。8-IsoP值相对于肌酐(g)表示。 8-OHdG。 如前所述,使用HPLC测定尿液中8-OHdG的浓度。 3  8-OHdG值相对于肌酐(g)表示。 统计。 使用三向(组×处理×时间)或双向(组×处理)重复测量方差分析(ANOVA)进行统计分析。鉴于先前的假设,即由于三种成分中的每一种都具有抗氧化特性,因此联合疗法可减少乳酸盐并降低氧化应激,我们对氧化应激标志物使用了单尾检验。当发现重要结果时,将运行Tukey HSD事后测试。所有分析均使用Statistica v。5软件(StatSoft,Tulsa,俄克拉荷马州)进行。 P  <的值被认为具有统计学意义。所有数据均以平均值±SD给出。 辅酶Q 10和肌酸:肌酸酐。 如预期的那样,与安慰剂阶段相比,联合治疗的血浆辅酶Q 10和尿肌酸:肌酐的比率明显更高。联合治疗后(±μg/ ml)的血浆CoQ 10浓度比安慰剂(±μg/ ml)高172%( P  <;  n  = 14),肌酸:肌酐比高600% (±)比安慰剂(±)( P <)。 血浆乳酸盐。 在血浆乳酸中发现显着的治疗×时间相互作用( P  <,单尾),在联合治疗阶段血浆乳酸浓度较低,在安慰剂阶段未观察到效果(图 1 )。*  P  <,单尾。COMB,联合疗法;CPEO,慢性进行性眼外肌麻痹;KSS,Kearns–Sayre综合征;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作。黑柱,联合疗法;开列,安慰剂。 观察到FFM,TBW和%BF的显着三向相互作用(组×治疗×时间)( P  <)(图 2 ),FFM和TBW升高,%BF降低仅对MELAS集团。(A) 三组中每个治疗阶段之前和之后的无脂质量(FFM), (B) 全身水(TBW)和 (C) 身体脂肪百分比(%BF)。*  P  <;**  P  <,单尾。COMB,联合疗法;CPEO,慢性进行性眼外肌麻痹;KSS,Kearns–Sayre综合征;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作。黑柱,联合疗法;开列,安慰剂。 肺功能。 在1 s内未观察到治疗,组或时间对强制肺活量或强制呼气量的影响(表 2 )。 表2. 肺功能( n  = 11)。 CPEO,慢性进行性眼外肌麻痹;FEV 1,用力呼气量1 s;FVC,强制肺活量;KSS,Kearns–Sayre综合征;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作。 强度措施。 尽管对于每个阶段的结束,无论采用何种治疗方法,峰值握力都降低的趋势不明显( P  = ),但对于峰值握力的处理,组别或时间均无影响。对于握把或脚踝背屈疲劳(表示为峰值疲劳或区域疲劳)或峰值伸膝力量,也没有任何治疗,组或时间效应。但是,观察到踝背屈峰值强度存在显着的双向相互作用(治疗×时间),安慰剂后,踝背屈峰值强度显着下降(从± Nm降至± Nm),但未观察到组合治疗(从± Nm到± Nm)( P <, n  = 16)。 尿液8-OHdG和8-IsoP。 尿8-OHdG没有治疗或组作用;然而,与安慰剂相比,联合治疗后降低8-OHdG /肌酐的趋势无统计学意义(分别为3,±1, ng / g肌酐与4,165±1, ng / g肌酐; P  = )。观察到8-IsoP的治疗效果,因此与安慰剂相比较,联合治疗后观察到较低的尿8-IsoP /肌酐含量(分别为6,±3, ng / g肌酐与7,±3, ng / g肌酐。 ; P <)。 CrM,CoQ 10和硫辛酸 的联合治疗 可降低静息乳酸浓度,防止峰值踝背屈强度降低和氧化应激降低,这可通过尿中8-IsoP排泄和尿液的显着减少来体现。 所有组中8-OHdG排泄的方向性趋势。此外,在MELAS组中,患者的身体成分发生了积极变化(FFM和TBW增加,%BF降低)。联合疗法对肺功能,峰值握力或膝盖伸展力量,或握力或脚踝背屈百分比或区域疲劳没有影响。 从突变线粒体疾病的结果导致在氧化磷酸化的缺陷,导致在nonaerobic能源的依赖性增加 16 , 38 和一个升高的血浆乳酸浓度。 16 , 29 , 38 无论是磷酸肌酸(PCR)系统,腺苷酸激酶/ AMP脱氨酶,或糖酵解/糖原分解可以被用来提供ATP; 但是,由于对糖酵解/糖酵解的依赖性增加,导致乳酸升高 38 CrM被包括在本研究中用于增强PCr系统的联合治疗中。联合治疗后尿肌酸:肌酐的升高和血浆乳酸浓度的降低间接表明联合治疗中的CrM成分可能为肌肉收缩提供了另一种厌氧能源。 从线粒体疾病患者的肌肉中观察到总肌酸 36 和PCr  14的 水平较低,进一步支持了在此类患者中补充CrM的潜在益处。Kornblum等人的最新研究。 14 研究了补充CrM对CPEO或KSS患者肌内PCr的影响。相反,先前在健康受试者中,观察到的结果 6 , 11 没有导致CrM工作在补充尽管肌酸的血浆浓度显著随着由磷- 31核磁共振光谱法测量增加肌内肌酸浓度。 14 当前研究的局限性在于未在大脑或骨骼肌中测量肌酸或PCr含量。然而,伯克等。 6 表明,在健康志愿者中,将CrM与硫辛酸联合使用时,肌肉PCr和总肌酸浓度显着高于单独补充CrM时。 因此,硫辛酸在我们的患者中可能会增加CrM的摄取,从而导致观察到的静息血浆乳酸浓度降低。 乳酸浓度较低的另一种或其他解释可能是联合治疗改善了线粒体ATP的产生。辅酶Q 10是ETC中的电子受体,它将电子从络合物I和II转移到络合物III。 16 , 18 , 33 的CoQ的目标10的补充是旁路缺陷在ETC最大化ATP产生。 16 一项使用来自线粒体细胞病变患者的培养淋巴细胞的研究发现,结合CoQ 10的联合疗法可增加线粒体ATP的产生,其中约49%归因于CoQ 10。 19 相比之下,人类研究的结果不是决定性的,对于一些报道报道辅酶Q的有益效果10在降低血浆休息乳酸浓度患者的线粒体疾病, 1 , 2 ,而另一些则没有。 19 , 20 , 38 不同于以往的报道中,病人在我们的研究也给予硫辛酸。 硫辛酸天然存在于线粒体内,是丙酮酸脱氢酶和α-酮戊二酸脱氢酶的重要辅助因子。 33 硫辛酸用作有效的抗氧化剂 31 , 33 ,并且降低氧化应激在健康志愿者的标记。 17 硫辛酸对ROS的清除作用增加,可能会减慢线粒体疾病中的“恶性循环”,在这种情况下,ROS的产生会导致mtDNA突变,从而加剧氧化磷酸化的缺陷,从而导致更多的ROS产生 。 16 因此, 辅酶Q 10与硫辛酸结合使用,可能具有增加ATP产生的能力,从而导致替代能源的利用率下降,血浆血浆乳酸浓度降低。 安慰剂治疗后,联合疗法减轻了峰值踝背屈强度的下降。据推测,在联合治疗CRM的成分会导致与安慰剂相比改进的强度值,如CRM有被证实可以改善患者强度与线粒体疾病 35 , 38 或杜氏肌营养不良症, 34 和中老年健康志愿者。 5 鉴于我们没有直接测量肌肉中的肌酸或PCr含量,因此我们不能得出结论说联合疗法中的CrM成分会导致踝背屈峰值强度下降。其他研究表明,使用CoQ可以改善线粒体疾病患者的强度10补充。 4 , 9 先前的研究表明,补充CrM可以改善人体成分。 5 , 34 的MELAS组在体本研究中证实的改善的组合物,增加FFM和TBW,和降低的%BF-以下组合疗法; 但是,CPEO / KSS或其他组的患者未见这些改善。与本研究其他两组中代表的其他形式的线粒体疾病患者相比,MELAS患者表现出更严重的临床表型。因此,患有MELAS的患者在本研究中测量的所有变量(包括身体组成)方面都有更大的改善空间。 高水平的ROS和氧化应激与线粒体疾病的病理生理有关。氧化应激的更高水平已报告患者的线粒体疾病与对照组相比 21 , 39 和患者的线粒体DNA突变更高程度的异质性。 7 联合疗法中的所有三种化合物均具有降低氧化应激的特性。 肌酸在无细胞系统中具有直接的抗氧化特性 15, 并为与多种氧化剂孵育的哺乳动物细胞提供细胞保护作用。 30 辅酶Q 10充当脂质的抗氧化剂和线粒体膜 10 , 33 并且还可以通过绕过氧化磷酸化中的缺陷来减少ETC的电子泄漏。 10 最后, 补充硫辛酸后,健康志愿者的尿中异前列腺素水平较低 。 17 我们观察到,与安慰剂相比,联合治疗后的8-IsoP浓度更低;但是,仅观察到了8-OHdG含量降低的趋势。异前列腺素是由花生四烯酸的过氧化作用形成的类似于前列腺素的化合物。 22  -  24 它们是化学稳定的,在体内形成的,并且是一个过氧化特异性产物可检测在稳态水平在多种人类组织和体液中的 24 ;  所有这些特征都使8-IsoP被认为是评估体内氧化应激的最可靠标记。 23 , 24 的8-OHdG由鸟苷残基的羟基化形成,并且经常被用来作为对DNA损伤ROS的生物标志物。 28 , 39 由于的8-OHdG是用于向所有的DNA,不仅线粒体DNA的氧化损伤的生物标记物,它是可能的核DNA的存在可能掩盖或稀释用于降低氧化性损伤的mtDNA的联合治疗的有益效果。 很少有随机对照试验检查了营养药物在线粒体疾病患者中的作用。那些已经进行了严格的检查,单一化合物的唯一的效果,如CRM的 12 , 13 , 38 或辅酶Q 10, 9 已审查。其他的研究,审查的联合治疗效果 1 , 19 , 20 , 26 , 27 , 32 没有使用与我们的研究相同的严格研究设计。结果,与这些研究进行直接比较非常困难,特别是当结合不同线粒体疾病人群中检查了不同的化合物,组合和结果指标这一事实时。考虑到几乎无限的组合,在将来进行临床试验评估之前,必须采用多种筛选方法,基于合理的首要原则测试潜在疗法。方法论,例如使用转基因动物模型或杂种动物,可能被证明可用于评估“线粒体混合物”中目前使用的十几种化合物的许多潜在组合。 我们的结果表明,与安慰剂相比, 针对线粒体功能障碍的三种后果的CrM,CoQ 10和硫辛酸的联合疗法可改善静息血浆乳酸浓度,身体成分,踝背屈强度和氧化应激。 但是,由于一个患者组比其他患者具有更大的获益 (MELAS> CPEO / KSS =其他) ,因此一种治疗策略可能并不普遍适用于所有线粒体疾病。 这项研究由沃伦·拉默特(Warren Lammert)及其家人慷慨捐赠。辅助酶Q 10和硫辛酸由Tishcon捐赠,肌酸一水合物由Avicena捐赠。 8-IsoP,8-异前列腺素; 8-OHdG,8-羟基-2'-脱氧鸟苷; %BF,身体脂肪百分比;辅酶Q 10,辅酶Q 10 ; CPEO,慢性进行性眼外肌麻痹;CrM,肌酸一水合物;ETC,电子传输链;FFM,无脂肪物质;HPLC高效液相色谱;KSS,Kearns–Sayre综合征;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作;mtDNA,线粒体DNA;PCr,磷酸肌酸;ROS,活性氧;TBW,全身水 略

报道一例伴有颈髓病变的、迅速进展恶化的MELAS/Leigh叠加综合征,描述其临床病理特点、病情演变经过和基因突变特点。方法:患者女性,13岁,于2012年3月爬山后出现双下肢麻木,紧绷感,左下肢体频繁抽搐,伴意识丧失发作1次,走路不稳,当地医院MRI提示右侧大脑脚、额叶皮层异常信号,C2-C6颈髓条状异常信号;脑脊液正常;按“播散性脑脊髓炎”予甲强龙冲击、丙种球蛋白治疗好转出院。2012年12月突发恶心呕吐、四肢抽搐伴小便失禁,右侧肢体麻木无力。MR提示左侧小脑半球、双侧丘脑、双侧额叶皮层见新增病灶,大脑脚及右侧额叶皮层病灶扩大。当地医院按“多发性硬化”予甲强龙冲击治疗缓解出院。2013-2-22出现右侧肢体无力、右侧肢体和面部抽搐。我院脑脊液生化、常规、IgG指数正常,脑脊液寡克隆带、水通道蛋白4阴性。3-17因左侧口角抽搐,MRI示双侧顶叶新病灶。4-13因抽搐伴意识不清、呼吸急促来我院急诊,血气分析Ph ,PO2 , 血乳酸18 mmol/L,予气管插管,纠酸等治疗,次日拔管,MRI示双侧中脑、小脑、顶叶多发新病灶。4月24日出现肌阵挛、兴奋、易激惹,双眼下视障碍、共济失调,双眼水平眼震。MRI示脑干小脑新病灶,部分好转出院。7-28出现头痛恶心,血压80/45mmHg,眼球运动障碍,进展到呼吸困难、嗜睡、反应迟钝、GCS评分7分,MRI提示双侧小脑、脑桥、延髓、中脑新病灶。8月11日突发呼吸微弱,血压下降,神志不清,氧饱和度60%,予气管插管,呼吸机辅助呼吸。8月20转当地医院时呈浅昏迷,自主呼吸存在,偶见肢体自发躁动,双侧巴氏征阳性。9-22日脱机回家时,患者意识清,不能言语,能睁眼,右侧肢体痛刺激有回缩。2013-10-26再次出现抽搐、昏迷于当地医院死亡。结果:2013-2-28行肌肉活检,酶染见破碎红纤维,电镜提示线粒体数量和形态异常。全血mtDNA测序提示13094T>C突变,肌肉DNA结果13094T>C近乎纯合突变,确诊线粒体病。开始给予辅酶Q10、左卡尼汀、维生素B2等线粒体保护药物维持治疗。结论:本篇为国内首例13094T>G突变致MELAS/Leigh综合征的报道;出现颈髓病变为线粒体病所罕见;线粒体保护性药物治疗下仍频繁复发、加重甚至死亡的病程不同于3243A>G突变患者。

弟弟,有你就没有,这是可能的

线粒体DNA(mtDNA)是细胞的能量转换系统,在细胞合成、物质转运及信息传递中起重要作用。线粒体可存在于哺乳动物及人类真核细胞内,代谢旺盛的脏器、组织和细胞含量较多:如心脏、肝脏、肌肉、肾小管上皮细胞,含线粒体极为丰富便于提供能量,淋巴细胞含量较少,成熟红细胞则不含线粒体,每个线粒体含有3~10个DNA分子。mtDNA是由16565个碱基对构成的双股环状DNA,分子量约为×107,mtDNA是由重链和轻链构成的双链超螺旋结构,并有特殊遗传特征,mtDNA是母系遗传,1个卵细胞含数十万个mtDNA,而1个精细胞仅含数百个mtDNA,因此发生生殖系遗传以母系遗传为主。mtDNA未受组蛋白保护,易受氧自由基袭击及某些药物副反应损伤,所以是脆弱易损的。由于mtDNA不具有核校读作用故错误率高,其突变率是细胞核DNA的10~100倍,随增龄等因素又使mtDNA突变累积,线粒体氧化磷酸化(OXPHOS)能力降低,细胞产生ATP的量越来越少,这是发生衰老和疾病基础〔1~3〕。线粒体病(mitochondrial disorders)是遗传缺损引起线粒体代谢酶缺陷,致使ATP 合成障碍、能量来源不足导致的一组异质性病变。多在20 岁时起病,也有儿童及中年病,男女均受累。线粒体脑肌病的不同类型发病年龄不同。症状:线粒体病(mitochondrial disorders)是遗传缺损引起线粒体代谢酶缺陷,致使ATP 合成障碍、能量来源不足导致的一组异质性病变。 线粒体是密切与能量代谢相关的细胞器,无论是细胞的成活(氧化磷酸化)和细胞死亡(凋亡)均与线粒体功能有关,特别是呼吸链的氧化磷酸化异常与许多人类疾病有关。 Luft 等(1962)首次报道一例线粒体肌病,生化研究证实为氧化磷酸化脱耦联引起。Anderson(1981)测定人类线粒体DNA(mtDNA)全长序列,Holt(1988)首次发现线粒体病患者mtDNA 缺失,证实mtDNA 突变是人类疾病的重要病因,建立了有别于传统孟德尔遗传的线粒体遗传新概念。 根据线粒体病变部位不同可分为: 1.线粒体肌病(mitochondrial myopathy) 线粒体病变侵犯骨骼肌为主。 2.线粒体脑肌病(mitochondrial encephalomyopathy) 病变同时侵犯骨骼肌和中枢神经系统。 3.线粒体脑病 病变侵犯中枢神经系统为主。

线粒体病论文结尾

生物按其结构来分,就分为三种类型,一是由真核细胞构成的真核生物;二是由原核细胞来构成的原核生物;三是没有细胞结构的病毒。所以没有细胞结构的生物就只有病毒了。 其实病毒是一个大的范围,它还包括一个分支——亚病毒(如朊病毒就是属于亚病毒的一类),亚病毒就是比病毒结构更简单的生物。但如果从宏观来讲,也把亚病毒划在病毒学的范畴。所以对于高中生物知识来说,除了病毒外,其它的生物都是由细胞来构成的了(包括真核和原核)。 在光学显微镜下观察植物的细胞,可以看到它的结构分为下列四个部分(图3-1-1)。细胞壁 位于植物细胞的最外层,是一层透明的薄壁。它主要是由纤维素组成的,孔隙较大,物质分子可以自由透过。细胞壁对细胞起着支持和保护的作用。 细胞膜 细胞壁的内侧紧贴着一层极薄的膜,叫做细胞膜。这层由蛋白质分子和脂类分子组成的薄膜,水和氧气等小分子物质能够自由通过,而某些离子和大分子物质则不能自由通过,因此,它除了起着保护细胞内部的作用以外,还具有控制物质进出细胞的作用:既不让有用物质任意地渗出细胞,也不让有害物质轻易地进入细胞。 细胞膜在光学显微镜下不易分辨。用电子显微镜观察,可以知道细胞膜主要由蛋白质分子和脂类分子构成。在细胞膜的中间,是磷脂双分子层,这是细胞膜的基本骨架。在磷脂双分子层的外侧和内侧,有许多球形的蛋白质分子,它们以不同深度镶嵌在磷脂分子层中(图3-1-2),或者覆盖在磷脂分子层的表面。这些磷脂分子和蛋白质分子大都是可以流动的,可以说,细胞膜具有一定的流动性。细胞膜的这种结构特点,对于它完成各种生理功能是非常重要的。细胞质 细胞膜包着的黏稠透明的物质,叫做细胞质。在细胞质中还可看到一些带折光性的颗粒,这些颗粒多数具有一定的结构和功能,类似生物体的各种器官,因此叫做细胞器。例如,在绿色植物的叶肉细胞中,能看到许多绿色的颗粒,这就是一种细胞器,叫做叶绿体。绿色植物的光合作用就是在叶绿体中进行的。在细胞质中,往往还能看到一个或几个液泡,其中充满着液体,叫做细胞液。在成熟的植物细胞中,液泡合并为一个中央液泡,其体积占去整个细胞的大半。 细胞质不是凝固静止的,而是缓缓地运动着的。在只具有一个中央液泡的细胞内,细胞质往往围绕液泡循环流动,这样便促进了细胞内物质的转运,也加强了细胞器之间的相互联系。细胞质运动是一种消耗能量的生命现象。细胞的生命活动越旺盛,细胞质流动越快,反之,则越慢。细胞死亡后,其细胞质的流动也就停止了。 除叶绿体外,植物细胞中还有一些细胞器,它们具有不同的结构,执行着不同的功能,共同完成细胞的生命活动。这些细胞器的结构需用电子显微镜观察。在电镜下观察到的细胞结构称为亚显微结构(图3-1-3)。线粒体 呈线状、粒状,故名。在线粒体上,有很多种与呼吸作用有关的颗粒,即多种呼吸酶。它是细胞进行呼吸作用的场所,通过呼吸作用,将有机物氧化分解,并释放能量,供细胞的生命活动所需,所以有人称线粒体为细胞的“发电站”或“动力工厂”。 内质网 内质网是细胞质中由膜构成的网状管道系统。它与细胞膜相通连,对细胞内蛋白质等物质的合成和运输起着重要作用。 核糖体 核糖体是一种颗粒状小体,多存在于内质网膜的外表面,是合成蛋白质的重要基地。 中心体 中心体存在于动物细胞和某些低等植物细胞中,因为它的位置靠近细胞核,所以叫中心体。 中心体与细胞的有丝分裂有密切关系。 细胞核 细胞质里含有一个近似球形的细胞核,是由更加黏稠的物质构成的。细胞核通常位于细胞的中央,成熟的植物细胞的细胞核,往往被中央液泡推挤到细胞的边缘。细胞核中有一种物质,易被洋红、苏木精等碱性染料染成深色,叫做染色质。生物体用于传种接代的物质即遗传物质,就在染色质上。当细胞进行有丝分裂时,染色质就变化成染色体。多数细胞只有一个细胞核,有些细胞含有两个或多个细胞核,如肌细胞、肝细胞等。细胞核可分为核膜、染色质、核液和核仁四部分。核膜与内质网相通连,染色质位于核膜与核仁之间。染色质主要由蛋白质和DNA组成。DNA是一种有机物大分子,又叫脱氧核糖核酸,是生物的遗传物质。在有丝分裂时,染色体复制,DNA也随之复制为两份,平均分配到两个子细胞中,使得后代细胞染色体数目恒定,从而保证了后代遗传特性的稳定。 动物细胞与植物细胞相比较,具有很多相似的地方,如动物细胞也具有细胞膜、细胞质、细胞核等结构。但是动物细胞与植物细胞又有一些重要的区别,如动物细胞的最外面是细胞膜,没有细胞壁;动物细胞的细胞质中不含叶绿体,也不形成中央液泡(图3-1-4)。 总之,不论是植物还是动物,都是由细胞构成的。细胞是生物体结构和功能的基本单位自己找一部分吧

是的,我忘了在哪一个论文上看到过的了,他们产品的NMN是可以影响NAD+,进而修复损伤的线粒体,让线粒体重返年轻。

这句话是错误的,因为线粒体和叶绿体是半自主性细胞器,半自主性细胞器的概念:自身含有遗传表达系统(自主性);但编码的遗传信息十分有限,其RNA转录、蛋白质翻译、自身构建和功能发挥等必须依赖核基因组编码的遗传信息(自主性有限)。 很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。线粒体DNA和可以自我复制,复制也是以半保留方式进行的。用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂。叶绿体DNA复制的时间在G1期。它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的。

几十年来,有关线粒体保留自身基因的可能原因,科学家提出了一些假说,但都一直存在争论。分析显示,线粒体保留的基因与其自身结构的建造有关,否则就有被细胞核放置错位的风险。而且,这些基因所在的DNA通过一种非常古老的形态紧密连结起来,从而不会被分解。威廉姆斯和约翰斯顿认为,这种通常不会在我们自身DNA中存在的设计,很可能就是防止线粒体基因在线粒体制造能量时不被分解的原因所在。在线粒体内部制造能量——以三磷酸腺苷(ATP)的形式——的时候,同时会产生自由基。自由基也是受到辐射损伤的常见副产物。从本质上来说,线粒体制造能量的同时也会伴随一定的损伤,而线粒体本身也能够承受这样的损伤。“在这种极端的环境下,你需要有专业的工作者,因为细胞核并不一定能胜任这项工作,”威廉姆斯说道。研究人员还观察到,线粒体基因的丢失在真核生物界内呈现出相同的模式。这或许告诉我们,演化可能以同样的路径进行了许多次,而且并不总是随机的过程。在细胞内部环境中,不同生物体线粒体基因丢失情况的演变变得几乎是可预知的。“如果我们能够利用好过去历史中的演化数据,就可以对未来发生的情况作出预测,为合成生物学和疾病探索提供巨大的可能性,”约翰斯顿说道。通过自己开发的算法,研究人员下一步的计划是探索线粒体疾病发生的原因。这类疾病通常会带来灾难性后果。尽管这项研究还不能完全解决我们为什么还保留线粒体DNA的问题,但论文作者称,研究结果的确为争论中的许多不同观点找到了一个中间地带。

线粒体糖尿病论文

1.线粒体与糖尿病 糖尿病是一种常见的内分泌代谢病,我国约有9000多万糖尿病患者,大多为Ⅱ型糖尿病。糖尿病的发病原因复杂,有的以遗传因素为主,也有的以环境因素为主,更多的是由遗传和环境共同作用所引起的。1992年发现线粒体基因的某些片段缺失或某些位点的突变与糖尿病发病有关,而且此类糖尿病具有母系遗传特征,1997年美国糖尿病协会正式把该类糖尿病确定为线粒体糖尿病。根据流行病学调查,线粒体糖尿病发病率约占Ⅱ型糖尿病的5%左右。 2、线粒体与肿瘤 线粒体与肿瘤之间的联系现在已引起了专家学者的普遍关注。目前,国内外已在乳腺、肺、胃、肝、胰、结肠、肾、膀胱、前列腺、甲状腺和卵巢等处的恶性肿瘤中都发现了线粒体DNA突变,线粒体DNA是致癌物作用的重要靶点,因此,不可忽视线粒体DNA的突变在导致细胞癌变中的作用。 3、线粒体与心脏疾病 心脏是人体内最大的耗能器官,线粒体是能量的主要来源。线粒体在心肌细胞中大量分布,约占心肌细胞总容积的40%—60%。正常情况下,线粒体通过磷酸化产生三磷酸腺苷(adenosine triphosphate, ATP),为心肌细胞的正常收缩及代谢提供能量,并维持细胞内稳定。由于心脏本身的需氧特征,心肌细胞内的线粒体通过大量的非线性化学反应维持代谢的稳定性。线粒体主要排列在相邻的肌原纤维间,且紧靠包膜下,该结构决定了线粒体可以准确地为心肌细胞的正常收缩提供能量。总之,线粒体功能的稳定对于心脏正常生理功能的维持尤为重要。 4、线粒体与长寿 最新研究表明,部分线粒体突变也是寿命的标志之一,部分人到了70岁时,就会出现决定生与死的关口,如果跨过去了,柳暗花明又一村,人体会启动另一套生命机制,所以线粒体与人的寿命是很有关系的。

本病系母系遗传,多在45岁以前起病,最早者11岁,但亦有迟至81岁才发病,常有轻至中度神经性耳聋症状,但耳聋与糖尿病起病时间可不一致,可间隔20年。多数患者初诊为2型糖尿病,多无酮症倾向,但其体形消瘦,常伴有神经性耳聋及神经肌肉症状。发病时其胰岛β细胞功能尚可,常用口服降糖药治疗。随着病程延长,胰岛β细胞功能进行性低下,降糖药继发性失效而需用胰岛素治疗,部分起病时即需要胰岛素治疗。亦有少数初诊为1型糖尿病并发生过酮症酸中毒,但与1型糖尿病的不同点在于:①发病年龄相对较晚;②病程呈缓慢进展,临床症状也随着年龄的老化而加重;③胰岛β细胞功能低下是不完全的;④胰岛细胞抗体多为阴性,少数表现为低滴度持续阳性;⑤多有2型糖尿病家族史。临床诊断以基因诊断技术确诊。线粒体基因组遗传表现出典型的母系遗传特点只有女性患者可将致病基因传递给后代,而后代无论男女均可发病。而患病男性不能向下传递致病突变。线粒体病具有量效现象,即小量的线粒体DNA突变可能不出现临床症状,随着突变线粒体比例增高,出现临床表现,且临床严重程度可能和突变比例成正相关。精子的线粒体外膜上存在有泛素,当精子进入卵子后,受精卵以一种主动的方式降解了来自精子的线粒体及其中的DNA。糖尿病尤其2型糖尿病是一组具有显著遗传背景的多基因疾病,其遗传特征不符合典型的孟德尔遗传规律。然而,我国绝大部分医院由于基因诊断技术所限,在目前诊断为2型糖尿病的人群中混杂有许多未明确诊断的单基因突变糖尿病,如MODY、线粒体糖尿病(MIDD)等。线粒体基因突变糖尿病(MIDD)的发现是近年来糖尿病分子遗传学研究的重要进展之一,并成为糖尿病领域研究热点.自1992年,Ballinger首先报道了线粒体DNA的的丢失导致糖尿病的1个家系。同年van den Ouweland发现另1家系的糖尿病是线粒体的tRNALeu(UUR)基因的异常即第3243位点A→G的点突变引起,二人分别确认线粒体糖尿病由线粒体基因突变引起。从此世界各地陆续有该基因突变致糖尿病的病例报道。大量研究证实,它是目前所知患病率最高的单基因突变糖尿病,已经为国内外学者所公认,能以简易的分子生物学技术检出,目前己成为首次进入日常临床基因诊断的一种糖尿病亚型。

Anderson(1981)测定人类线粒体DNA(mtDNA)全长序列,Holt(1988)首次作线粒体病患者发现mtDNA缺失,证实mtDNA突变是人类疾病的重要病因,建立了有别于孟德尔遗传的线粒体遗传的新概念。根据线粒体病变部位不同可分为:①线粒体肌病:线粒体病变侵犯骨骼肌为主;②线粒体脑肌病:病变同时侵犯骨骼肌和中枢神经系统;③线粒体脑病:病变侵犯中枢神经系统为主。线粒体糖尿病的病因mtDNA3243A→G突变是病因。该突变发生于16SrRNA与tRNA交界处,改变了tRNALEU(UUR)双氢尿苷环,引起线粒体末端转录损害,从而使线粒体蛋白质合成异常和功能缺陷,影响呼吸链的组分与功能而致胰岛β细胞葡萄糖氧化磷酸化障碍,ATP产生不足,致胰岛素分泌障碍,能量合成障碍,引发糖尿病。胰岛素抵抗亦不是其发病的主要病因。

  • 索引序列
  • 线粒体病论文
  • 线粒体肌病论文
  • 线粒体脑病论文
  • 线粒体病论文结尾
  • 线粒体糖尿病论文
  • 返回顶部