人兽共患病(zoonosis)主要由细菌、病毒和寄生虫这三大病原生物引起,有记载的人兽共患病约200种。我们将在人与脊椎动物之间自然传播的寄生虫病和寄生虫感染称为人兽共患寄生虫病(communicable parasitosis common to man and animal,CPCMA), 至今已报道70多种,在人兽共患病中占重要地位。其病原包括原虫、蠕虫和节肢动物中能钻入或进入宿主皮肤或体内寄生的种类共120多种〔1,2〕。随着世界经济的发展和人们生活水平的提高,在发达国家和发展中国家先后掀起了宠物热。我国近十年来,宠物业在全国迅猛发展,犬、猫、鱼、鸟等已进入百姓家庭。宠物,特别是与人关系最密切的犬、猫的饲养,既使人们的生活增添了乐趣,又给人类健康带来了威胁。它使宠物市场出现了前所未有的商机,也给人兽共患寄生虫病的防治带来了严峻挑战。为此,本文就宠物(犬、猫) CPCMA及其疫苗防治研究现状作一综述。1 宠物(犬、猫)人兽共患寄生虫病 主要种类 经文献检索,有记载的犬、猫人兽共患寄生虫病至少有39种,约占CPCMA的56%,其中原虫病9种(内脏利什曼病、皮肤利什曼病、皮肤黏膜利什曼病、肺孢子虫病、弓形虫病、非洲锥虫病、克氏锥虫病、等孢球虫病、贾第虫病)、吸虫病8种(血吸虫病、华支睾吸虫病、后睾吸虫病、双腔吸虫病、棘口吸虫病、片形吸虫病、异形吸虫病、并殖吸虫病)、绦虫病8种(猪绦虫/囊虫病、牛绦虫/囊虫病、棘球蚴病、泡球蚴病、裂头蚴病、裂头绦虫病、复孔绦虫病、细颈囊尾蚴病)、线虫病10种(钩虫病、膨结线虫病、毛细线虫病、麦地那龙线虫病、犬恶丝虫病、马来丝虫病、吸吮线虫病、颚口线虫病、粪类圆线虫病、旋毛虫病)、棘头虫病1种(猪巨吻棘头虫病)和节肢动物病3种(蝇蛆病、疥螨病、蠕形螨病),病原涉及80多种医学寄生虫和节肢动物〔3〕。 生活史类型〔2〕 直接型 病原生物通过接触或媒介直接传播给易感脊椎动物或人,传播过程中病原体不发育、繁殖。如疥螨病、蠕形螨病等,称之为直接人兽共患病。 循环型 完成生活史需要一个以上的脊椎动物宿主。如绦虫病、棘球蚴病等,称之为循环人兽共患病。 媒介型 病原体在传播媒介体内发育、繁殖或既发育又繁殖,然后传播给脊椎动物或人。如疟疾、丝虫病等,称之为媒介人兽共患病。 污染型 存在脊椎动物宿主与病原体发育或储集的非动物环境如水、食物、土壤、植物等,宿主的感染来源于被污染的非动物环境。如钩虫病、粪类圆线虫病等,称之为污染人兽共患病。 流行因素 传染源广 人兽共患寄生虫对宿主的选择性不严格,一种寄生虫可寄生于多种宿主。寄生宿主除人、犬和猫,还有多种哺乳类、禽类、鸟类、鱼类和爬行类等多种野生动物。感染宿主是重要的传染源,传染源广泛是CPCMA分布广、控制难的主要原因。 传播途径多 CPCMA的传播与流行,是生态系统中寄生虫种群流动时人和兽共同参与的过程。传播途径包括兽传兽、人传人、兽传人和人传兽,各种流行环节既相互独立,又相互联系、相互影响、相互制约。感染方式也多种多样,包括经口、经皮肤或黏膜、经接触、经飞沫、经胎盘、经节肢动物媒介传播等多种先天和后天感染方式。 宿主普遍易感 寄生虫感染的免疫力多属非消除性免疫,未感染宿主因缺乏特异性免疫而易感。当具有免疫力的感染宿主体内的寄生虫被清除后,这种特异性获得免疫也将逐渐消失,重新处于易感状态,很易发生再感染。对某些寄生虫的易感性除与免疫有关外,还与宿主的食性、生活习性等因素有关。 防治原则 CPCMA的防治常根据流行情况和流行规律,制定相应的法规监督管理制度,将控制传染源、切断传播途径和保护易感宿主有机结合起来,因地制宜,以防为主,综合防治。而免疫预防(immunoprophylaxis),应用疫苗接种的方法诱导宿主产生特异性免疫,以预防和控制寄生虫病已被国内外科学家认为是最安全、有效的防治措施,也是人们多年来共同追求的目标。2 宠物(犬、猫)人兽共患寄生虫疫苗研究 现状与需求 长期以来,无论对人或兽的寄生虫病防治都以药物驱虫为主,并取得了显著成效。过去的10年,驱虫药已成为动物药品市场中增长最快的领域,约占世界动物药品销售额(18万亿美元)的四分之一〔4〕。至今,药物驱虫仍然在治疗和控制寄生虫病中发挥着重要作用。但是,长期、大量化学药物的应用,出现了药物抗性寄生虫、化学药物残留以及药物残留引发的食品安全和环境污染等问题〔5〕。加之,寄生虫存在明显的再感染现象、抗虫新药研发周期长、投资巨大以及宠物主对疫苗预防的渴望和需求,这些都引起了研究者和商家的高度关注。一个寄生虫病疫苗防治的新领域正悄然兴起,一个潜在而巨大的宠物寄生虫疫苗商品市场将面临竞争。 疫苗研究进展 由于疫苗安全、无副作用、无残留、无污染,具有预防和治疗的双重功效,且易被消费者接受,所以人类对几乎所有传染病都提出疫苗防治的要求。虽然,寄生虫结构、抗原复杂、寄生部位和免疫机制特殊等原因给疫苗研制带来了重重困难,但是,消费者对健康和安全的需求以及盈利超过3万亿美元的宠物市场对疫苗的需求,对寄生虫疫苗的研究产生了巨大的动力。虽然,兽用寄生虫疫苗研究已取得明显进展,但至今,商品寄生虫疫苗绝大多数仍为活疫苗或致弱活疫苗。由于其存在保护率低、安全性差、产量低、成本高等问题,商业前景不容乐观(Bain,1999)〔6〕。而基因工程疫苗和核酸疫苗的研究,可使寄生虫疫苗的产业化和商品化成为现实,许多科学家对此寄予极大的期望(Alarcon等,1999)〔7〕。 原虫疫苗 原虫是引起CPCMA的重要病原。在医学研究领域人们在疟原虫、弓形虫、利什曼原虫和锥虫的研究中积累了大量的免疫学、基因组学和疫苗学知识,并利用这些知识研制了防治动物寄生虫病的贾第虫疫苗、弓形虫疫苗、隐孢子虫疫苗和球虫疫苗,目前已有几种疫苗上市销售(Olson等,2000;Augstine,2001)〔8,9〕。利什曼原虫疫苗的研究经历了全虫疫苗、重组疫苗和核酸疫苗的过程。1999年,研究证实LPG(lipophosphoglycan)是阻断传播中有希望的候选疫苗。目前,硕大利什曼原虫核酸疫苗保护性抗原基因有表面抗原gp63、LACK、PSA-2、表面抗原/gp46/M-2等。Handman等(2001)发现DNA疫苗也有治疗作用〔10〕,Mendez等(2001)用L. major对C57BL/6小鼠免疫实验研究,结果表明DNA疫苗接种可产生有效的保护性〔11〕。另外,还发现一种可诱导更高保护率的LACK蛋白,并在构建硕大利什曼原虫LACK DNA疫苗后,证实其能诱导Th1反应,可控制感染〔12〕。Fort Dodge动物卫生组织(1999)研制的贾第虫疫苗,能减少或阻止犬和猫肠道内贾第虫包囊脱囊,最终实现疫苗接种动物体内无滋养体感染(Olson等,2000)〔13〕。1993年,英特威公司以致弱S48株刚地弓形虫研制弓形虫DNA疫苗“Toxovax”,用其滴鼻预防绵羊弓形虫病取得有效的结果。有关弓形虫核酸疫苗的研究,Angus等(1996)用弓形虫SAGI重质粒免疫小鼠进行初步研究。周永安等(1999)用PcDNA3-p30真核表达质粒免疫小鼠,结果显示血清抗体升高,感染小鼠存活时间延长〔14〕。郭虹等(1999)将PcDNA-ROPI重组质粒以IFN-γ为佐剂免疫小鼠,结果显示NK细胞活性、CD8+T细胞明显增高,CD4+/CD8+比值明显降低〔15〕。预防球虫病的重组疫苗正在研究中,用沙门氏杆菌作为载体表达的球虫抗原EalA诱导免疫应答的研究也在实验中(Song等,2000)〔16〕。许多实验研究表明预防原虫感染的保护性免疫是可以人工建立的。 吸虫疫苗 人体吸虫均有脊椎动物保虫宿主,绝大多数都可在人和脊椎动物之间自然传播,目前对其疫苗的研究主要见于血吸虫和片形吸虫。血吸虫疫苗研究也已经历了全虫疫苗(死疫苗、活疫苗、同种致弱活疫苗和异种活疫苗)到分子疫苗(基因工程亚单位疫苗、合成肽疫苗和核酸疫苗)的发展过程。随着生物高新技术的发展,血吸虫疫苗候选抗原分子或抗原基因不断被发现和鉴定,基因工程疫苗已成为主要研究方向。1998年,WHO/TDR在两个独立的研究室对几种曼氏血吸虫(Sm)疫苗候选分子进行了平行实验,并提出6个最具潜力的疫苗候选分子,包括28kDa SmGST(谷胱甘肽-S-转移酶)、97kDaSm Paramyosin(副肌球蛋白)、IrV-5(致弱尾蚴免疫血清筛选的抗原分子)、TPI(丙糖-膦酸酯异构酶)、Sm23(膜相关抗原)和Sm14(脂肪酸结合蛋白)。其中,GST已进入临床Ι期试验,paramyosin、MAP-4/TPI和Sm14抗原将按GMP标准制备用于临床试验,而IrV-5和MAP-3/Sm23被推荐采用DNA免疫的形式继续研究〔2〕。1999年报道,肝片形吸虫分泌的组织蛋白酶L1和L2是重要的蛋白分子,参与免疫逃避、组织穿透和营养吸收等功能(Mulcahy等,1999;Spithill等,1999)〔17,18〕。用其接种牛,可减少虫负荷42%~69%,虫卵活力下降60%,若将其与高分子血红蛋白结合,保护率可增加至73%(McGonigle等,1995)。Piacenza等(1999)用其接种绵羊,保护率为60%,减卵率为71%~81%,将其与天然亮氨酸氨肽酶结合时,保护率可增加到79%〔19〕。肝片形吸虫其他蛋白分子,如谷胱甘肽S转移酶(GST)和多种脂肪酸结合蛋白(FABP)对牛的保护率分别是19%~67%和55%,但有关肝片形吸虫重组疫苗的试验未见报道(Spithill等,1999)〔20〕。 绦虫疫苗 绦虫也多引起人兽共患病,且中绦期幼虫寄生引起的囊尾蚴病和棘球蚴病对宿主的危害更严重。用于预防带属(囊尾蚴病)和棘球属(棘球蚴病)绦虫的重组疫苗研究已获成功。20世纪80年代,在中国、新西兰和澳大利亚、阿根廷分别实施的试验结果证明棘球蚴疫苗EG95对牛群感染的保护率达96%~100%。预防绵羊带绦虫感染的疫苗45W的保护率达92%以上,牛带绦虫疫苗预防牛的感染同样有效。EG95和45W抗原在六钩蚴表面表达,与抗体和补体结合,阻止六钩蚴逸出和移行,从而发挥保护免疫作用。其另一重要特性是能产生跨种保护,已证实绵羊带绦虫45W、To18t To16分子的复合物能诱导人工感染猪的保护率达93%。因此,在预防人类感染中有应用潜力(Lightowlers等,2000)〔21〕。Chabalgoity(2001)报道棘球绦虫六钩蚴的脂肪酸结合蛋白以致弱的鼠伤寒杆菌(LVRO1)表达形式口服接种犬,可产生有效的体液和细胞免疫应答,作者建议研究其他犬用候选疫苗时应用这种表达形式,因为鼠伤寒杆菌LCRO1对犬无害〔22〕。 线虫疫苗 钩虫疫苗的研究目标主要针对减轻虫负荷、减少宿主失血和增强交叉防御作用。早在30年代,Johns Hopkins公共卫生学院蠕虫学系用犬钩口线虫活的三期幼虫(L3)口服或皮下接种犬和鼠,可减轻虫负荷、减少肠出血。60年代,L3疫苗被研制成一种致弱活疫苗,70年代初投放市场。然而,因其不能抵御感染和再感染且价格昂贵而被淘汰。随后研究重点转向L3分泌抗原(Ancylostoma secreted protein, ASP)。目前,ASP-1和ASP-2类似蛋白在十二指肠钩口线虫、锡兰钩口线虫和美洲板口线虫已得到分离和克隆。并有证据表明,ASP是有前景的疫苗候抗原〔23〕。血矛属、奥斯特属和毛圆属消化道线虫,是牛、羊等动物最主要的寄生虫,在驱虫药市场中占有最大的份额,人们投入的研究精力也最多。有效的线虫疫苗是一种具氨肽酶A和M活性的110KDa的H11蛋白分子。H11在线虫微绒毛上表达并与抗体结合,可破坏线虫四期幼虫和成虫的摄食能力,对绵羊羔的保护率达90%以上。这种保护率与抗体滴度相关。因H11在自然感染时不具免疫原性,而被认为是一种“隐蔽抗原”(Newton等,1999)〔24〕。研究显示,捻转血矛线虫p100GA1在预防山羊异源感染时保护率为60%、虫卵减少率为50%。从众多的疫苗成分中提取能产生交叉保护的单一分子,或至少是少数几个分子已成为线虫疫苗研究的焦点。而“隐蔽抗原”被认为是最理想的候选物。另一挑战是通过重组DNA等技术使疫苗研究产业化,重组H11、H-gal-GP和TSBP的研究正在向这个方向发展(Knox等,2001)〔25〕。 节肢动物疫苗 目前的研究主要集中在与牛、绵羊等经济动物相关的节肢动物(蜱、螨、吸血蝇、毛虱等)。最具里程碑意义的是一种由大肠杆菌表达的Bm86基因工程疫苗〔TickGard (TM)〕,由澳大利亚生物技术所和联邦科学与工业研究组织(CSIRO)联合研制,用于预防牛的微小牛蜱(Willadsen,1995)〔26〕。此后,在酵母中也表达成功类似的重组疫苗〔Gavac (TM)〕并由古巴哈瓦那Heber生物技术科学院商品化生产(Garcia等,2000)〔27〕。该疫苗诱导的抗体可结合、溶解蜱肠细胞上的Bm86分子,从而干扰蜱的吸血行为,使其繁殖能力下降。1999年,澳大利亚生物技术所研制出第二代能产生强而持久免疫应答的微小牛蜱疫苗〔TickGard Plus(TM)〕。同年,加拿大批准一种预防牛纹皮蝇的蛋白酶“hypodermin A”重组疫苗上市销售(Pruett,1999)〔28〕。 寄生虫疫苗研究展望 上述证据表明,CPCMA种类多、流行因素复杂、防治难度大。人们试图寻找一种有效预防和消除这类疾病的新方法、新途径。大量研究结果证明,接种疫苗诱导宿主产生保护性免疫,以防治寄生虫和节肢动物对宿主的感染或侵害是可行的。尽管已有多种寄生虫疫苗候选抗原的研究取得明显进展,但大多数疫苗诱导的免疫保护率尚未令人满意。抗原分离与筛选、基因克隆与重组、高效表达、提高保护率交叉保护力等仍然是今后一段时间研究的重点。当然,寄生虫疫苗制剂的研究和商品化过程并非一朝一夕,它涉及寄生虫生物学、分子生物学、免疫学、疫苗试验、产业化和商品化等许多环节。我们相信,随着免疫学、基因组学和分子生物学等现代高新技术在寄生虫学研究领域的应用和发展,寄生虫疫苗必将在CPCMA的防制中发挥重要作用。
吸虫病由单殖亚纲﹑盾腹亚纲和复殖亚纲的内﹑外寄生虫引起的疾病总称。前两个亚纲的吸虫主要寄生于鱼类﹑两栖类﹑爬虫类和软件动物﹑甲壳动物。后一亚纲的复殖吸虫还寄生于哺乳动物和鸟类。 家畜吸虫病的病原均属复殖亚纲﹐常见的有片形吸虫﹑双腔吸虫﹑阔盘吸虫﹑裂体吸虫﹑姜片吸虫﹑枝睾吸虫和前殖吸虫﹐以及前后盘科各属的吸虫等。其中有的危害严重﹐呈现地方性流行﹐如肝片吸虫病和血吸虫病。 在发展中国家,人口稠密,生活水平较低,卫生条件较差,人类与家畜、家禽、野生动物及病原媒介的接触机会较多,因而感染人兽共患寄生虫病仍较普遍。寄生在肝脏的吸虫能引起急性或慢性肝炎﹐出现黄疸和消化不良﹔寄生在瘤胃和肠道的吸虫则导致消化障碍和腹泻﹔吸虫寄生于肺脏时出现咳嗽或胸膜炎﹐而当移行到皮下时则形成囊肿。
是有的,看到就好好珍惜,很难找了
生活在疫区的人畜,解除了被感染的水的能媒介就会发生人畜共同感染的现象发生。比如血吸虫、肺吸虫都有这样的现象,血吸虫在微丝蚴期,从钉螺体内通过感染疫水,进入人畜体内,而导致患血吸虫病。在其他期不能对人畜产生感染。肺吸虫也同样存在这种情况。
人兽共患寄生虫自然传播方式如下:一、 动物性食品为载体传播的病1.肉类食品为载体传播的病 如:猪带绦虫病、牛带绦虫病、旋毛虫、肉孢子虫病、弓形虫病。2,水产食品为载体传播的病 如:并殖吸虫病、华支睾吸虫病、后睾吸虫病、异形吸虫病、棘口吸虫病、裂头蚴病、裂头绦虫病、线中殖孔绦虫病、管圆线虫病、颚口线虫病、膨结线虫病。3.动物性非食品为载体传播的病 如:阔盘吸虫病、双腔吸虫病、复殖孔绦虫病、矮小膜壳绦虫病、缩小膜壳绦虫病、棘头虫病、简线虫病、龙线虫病。二、植物为载体经口感染的病兽医教学参考,兽医临床交流,犬病辅助诊断系如:姜片吸虫病、片形吸虫病、嗜眼吸虫病。三、水、土壤为载体经口感染的病.如:猪囊尾蚴病、棘球蚴病、多头蚴病、细颈囊尾蚴、毛细线虫病、毛圆线虫病、蛔虫病、食道口线虫病、舌形虫病、贾第虫病、隐孢子虫病、小袋虫病。四、经肤感染的病1.水、土壤为载体经肤感染的病 如:日本血吸虫病、东毕吸虫病、毛毕吸虫病及其尾蚴性皮炎、类圆线虫病、钩口线虫病。9M4n)U7B!h7Q+n6k"O兽医教学参考,兽医临床交流,犬病辅助诊断系统 2.蜱、昆虫为传播媒介的病 如:巴贝斯虫病、马米丝虫病、恶丝虫病、吸吮线虫病、内脏利什曼病。专业兽医人的交流平台网站,兽医教学参考,兽医临床技术交流,犬病辅助诊断系统:j6M'A#u$r$|$x"f3.蜱、螨、昆虫接触传播的病五、空气、飞沫为载体经呼吸道感染的病兽医教学参考,兽医临床交流,犬病辅助诊断系统;如:卡氏肺孢子虫病。
是有的,看到就好好珍惜,很难找了
一般去的类 型比较多,kk6mm,C ° m
生活在疫区的人畜,解除了被感染的水的能媒介就会发生人畜共同感染的现象发生。比如血吸虫、肺吸虫都有这样的现象,血吸虫在微丝蚴期,从钉螺体内通过感染疫水,进入人畜体内,而导致患血吸虫病。在其他期不能对人畜产生感染。肺吸虫也同样存在这种情况。
人兽共患寄生虫自然传播方式如下:一、 动物性食品为载体传播的病1.肉类食品为载体传播的病 如:猪带绦虫病、牛带绦虫病、旋毛虫、肉孢子虫病、弓形虫病。2,水产食品为载体传播的病 如:并殖吸虫病、华支睾吸虫病、后睾吸虫病、异形吸虫病、棘口吸虫病、裂头蚴病、裂头绦虫病、线中殖孔绦虫病、管圆线虫病、颚口线虫病、膨结线虫病。3.动物性非食品为载体传播的病 如:阔盘吸虫病、双腔吸虫病、复殖孔绦虫病、矮小膜壳绦虫病、缩小膜壳绦虫病、棘头虫病、简线虫病、龙线虫病。二、植物为载体经口感染的病兽医教学参考,兽医临床交流,犬病辅助诊断系如:姜片吸虫病、片形吸虫病、嗜眼吸虫病。三、水、土壤为载体经口感染的病.如:猪囊尾蚴病、棘球蚴病、多头蚴病、细颈囊尾蚴、毛细线虫病、毛圆线虫病、蛔虫病、食道口线虫病、舌形虫病、贾第虫病、隐孢子虫病、小袋虫病。四、经肤感染的病1.水、土壤为载体经肤感染的病 如:日本血吸虫病、东毕吸虫病、毛毕吸虫病及其尾蚴性皮炎、类圆线虫病、钩口线虫病。9M4n)U7B!h7Q+n6k"O兽医教学参考,兽医临床交流,犬病辅助诊断系统 2.蜱、昆虫为传播媒介的病 如:巴贝斯虫病、马米丝虫病、恶丝虫病、吸吮线虫病、内脏利什曼病。专业兽医人的交流平台网站,兽医教学参考,兽医临床技术交流,犬病辅助诊断系统:j6M'A#u$r$|$x"f3.蜱、螨、昆虫接触传播的病五、空气、飞沫为载体经呼吸道感染的病兽医教学参考,兽医临床交流,犬病辅助诊断系统;如:卡氏肺孢子虫病。
是有的,看到就好好珍惜,很难找了
第一篇总论 人体寄生虫学(human parasitology)是研究与人体健康有关的寄生虫的形态结构、生活活动和生存繁殖规律,阐明寄生虫与人体及外界因素的相互关系的科学。它是预防医学和临床医学的一门基础学科。人体寄生虫学由医学原虫学(medical protozoology)、医学蠕虫学(medical helminthology)和医学节肢动物学(medical arthropodology)三部分内容组成。学习本学科的目的是为了控制或消灭病原寄生虫所致人体寄生虫病,以及防制与疾病有关的医学节肢动物,保障人类健康。 第一章寄生虫对人类的危害性 寄生虫对人体的危害,主要包括其作为病原引起寄生虫病及作为疾病的传播媒介两方面。寄生虫病对人体健康和畜牧家禽业生产的危害均十分严重。在占世界总人口 77%的广大发展中国家、特别在热带和亚热带地区,寄生虫病依然广泛流行、威胁着儿童和成人的健康甚至生命。寄生虫病的危害仍是普遍存在的公共卫生问题。联合国开发计划署/世界银行/世界卫生组织联合倡议的热带病特别规划要求防治的6类主要热带病中,除麻风病外,其余5类都是寄生虫病,即疟疾(malaria)、血吸虫病(shistosomaiasis)、丝虫病(filariasis)、利什曼病(leishmaniasis)和锥虫病(trypanosomiasis)。按蚊传播的疟疾是热带病中最严重的一种寄生虫病。据估计约有21亿人生活在疟疾流行地区,每年有1亿临床病例,约有100万——200万的死亡人数。目前尚有3亿多人生活在未有任何特殊抗疟措施的非保护区,非洲大部分地区为非保护区。为此,仅在非洲每年至少有100万14岁以下的儿童死于伴有营养不良和其它健康问题的疟疾。 血吸虫病流行于76个国家和地区,大约有2亿血吸虫病人,5亿——6亿人受感染的威胁。蚊虫传播的淋巴丝虫病,有亿人受感染,其中班氏丝虫病是全球性的,居住在受威胁地区的居民约有9亿余,在东南亚、非洲、美洲和太平洋岛国的大部分热带国家尤为严重。蚋传播的盘尾丝虫引起皮肤丝虫病和河盲症,估计全世界有1760万病人,广泛分布在非洲、拉丁美洲,在严重地区失明的患者达15%。白蛉传播的利什曼病主要在热带和亚热带地区,呈世界性分布,每年新感染的患者大约有40万人,该病在东非正在扩散。锥虫病,其中非洲锥虫病(睡眠病)受感染威胁的人数约4500万;美洲锥虫病(恰加斯病)在南美受染人数至少达1000万人。 此外,肠道原虫和蠕虫感染(intestinal protozoal and helminthic infections)也在威胁人类健康,其重要种类,有全球性的阿米巴病、蓝氏贾第鞭毛虫病、蛔虫病、鞭虫病、钩虫病、蛲虫病等,还有一些地方性肠道蠕虫病,如猪带绦虫、牛带绦虫等。Peters(1989)估计全世界蛔虫、鞭虫、钩虫、蛲虫感染人数分别为亿、亿、亿和亿。在亚洲、非洲、拉丁美洲,特别是农业区,以污水灌溉,施用新鲜粪便,有利于肠道寄生虫病的传播;在营养不良的居民中,肠道寄生虫病更加严重影响其健康。在不发达地区,尤其农村的贫苦人群中,多种寄生虫混合感染也是常见的。肠道寄生虫病的发病率已被认为是衡量一个地区经济文化发展的基本指标。有人称寄生虫病是“乡村病”、“贫穷病”,它与社会经济和文化的落后互为因果。因此寄生虫病是阻碍第三世界国家发展的重要原因之一。 在经济发达国家,寄生虫病也是公共卫生的重要问题。如阴道毛滴虫的感染人数估计美国有250万、英国100万;蓝氏贾第鞭毛虫的感染在前苏联特别严重,美国也几乎接近流行。许多人兽共患寄生虫病给经济发达地区的畜牧业造成很大损失,也危害人群的健康。此外,一些本来不被重视的寄生虫病,如弓形虫病(toxoplasmosis)、隐孢子病(cryptosporidiasis)、肺孢子虫病(pneumocystiasis)等与艾滋病有关的原虫病,在一些经济发达国家,包括日本、荷兰、英国、法国与美国等开始出现流行现象。 当前寄生虫对人类危害的严重性还表现在已经出现恶性疟抗药株,媒介昆虫抗药性的复杂问题。因此,随着寄生虫病的化学防治及媒介昆虫化学的防制将会出现更多的新问题;人类活动范围扩大,不可避免地将许多本来和人类没有关系或极少接触的寄生虫从自然界带到居民区而进入人群,造成新的公共卫生问题;人类交往越来越频繁,本来在别国危害性很大的寄生虫病或媒介节肢动物可输入本国,并在一定条件下传播流行;现代工农业建设造成的大规模人口流动和生态环境平衡的破坏,也可能引起某些寄生虫病的流行;近代一些医疗措施、如长期用免疫抑制剂、可造成人体医源性免疫受损,使机会致病性寄生虫异常增殖和致病力增强,这些寄生虫正以新的形式威胁着人类。 我国幅员辽阔、地跨寒、温、热三带,自然条件千差万别,人民的生活与生产习惯复杂多样,加以建国前政治、经济、文化等社会因素的影响,使我国成为寄生虫病严重流行国家之一,特别在广大农村,寄生虫病一直是危害人民健康的主要疾病。有的流行猖獗,如疟疾、血吸虫病、丝虫病、黑热病和钩虫病,曾经夺去成千上万人的生命,严重阻碍农业生产和经济发展,曾被称为“五大寄生虫病”。在寄生虫感染者中,混合感染普遍,尤其在农村同时感染种寄生虫者很常见,最多者一人感染9种寄生虫,有的5岁以下儿童感染寄生虫多达6种。此外,流行相当广泛的原虫病有:贾第虫病、阴道滴虫病、阿米巴病;蠕虫病有:旋毛虫病、华支睾吸虫病、并殖吸虫病、包虫病、带绦虫病和囊虫病等。近年机会致病性寄生虫病、如隐孢子虫病、弓形虫病、粪类圆线虫病的病例亦时有报告,且逐渐增加。 目前,由于市场开放、家畜和肉类、鱼类等商品供应渠道增加,城乡食品卫生监督制度不健全,加以生食、半生食的人数增加,使一些经食物感染的食物源性寄生虫病的流行程度在部分地区有不断扩大趋势,如旋毛虫病、带绦虫病、化支睾吸虫病的流行地区各有20余个省、市、区。由于对外交往和旅游业的发展,国外一些寄生虫和媒介节肢动物的输入,给我国人民健康带来新的威胁。总之,我国寄生虫种类之多,分布范围之广,感染人数之众,居世界各国之前列。面临严峻的事实,表明寄生虫病不仅是我国的一个严重的公共卫生问题,也是实现世界卫生组织提出“2000年人人享有卫生保健”的战略目标,不可忽视的重要方面。
1 宠物(犬、猫)人兽共患寄生虫病 主要种类 经文献检索,有记载的犬、猫人兽共患寄生虫病至少有39种,约占CPCMA的56%,其中原虫病9种(内脏利什曼病、皮肤利什曼病、皮肤黏膜利什曼病、肺孢子虫病、弓形虫病、非洲锥虫病、克氏锥虫病、等孢球虫病、贾第虫病)、吸虫病8种(血吸虫病、华支睾吸虫病、后睾吸虫病、双腔吸虫病、棘口吸虫病、片形吸虫病、异形吸虫病、并殖吸虫病)、绦虫病8种(猪绦虫/囊虫病、牛绦虫/囊虫病、棘球蚴病、泡球蚴病、裂头蚴病、裂头绦虫病、复孔绦虫病、细颈囊尾蚴病)、线虫病10种(钩虫病、膨结线虫病、毛细线虫病、麦地那龙线虫病、犬恶丝虫病、马来丝虫病、吸吮线虫病、颚口线虫病、粪类圆线虫病、旋毛虫病)、棘头虫病1种(猪巨吻棘头虫病)和节肢动物病3种(蝇蛆病、疥螨病、蠕形螨病),病原涉及80多种医学寄生虫和节肢动物〔3〕。 生活史类型〔2〕 直接型 病原生物通过接触或媒介直接传播给易感脊椎动物或人,传播过程中病原体不发育、繁殖。如疥螨病、蠕形螨病等,称之为直接人兽共患病。 循环型 完成生活史需要一个以上的脊椎动物宿主。如绦虫病、棘球蚴病等,称之为循环人兽共患病。 媒介型 病原体在传播媒介体内发育、繁殖或既发育又繁殖,然后传播给脊椎动物或人。如疟疾、丝虫病等,称之为媒介人兽共患病。 污染型 存在脊椎动物宿主与病原体发育或储集的非动物环境如水、食物、土壤、植物等,宿主的感染来源于被污染的非动物环境。如钩虫病、粪类圆线虫病等,称之为污染人兽共患病。 流行因素 传染源广 人兽共患寄生虫对宿主的选择性不严格,一种寄生虫可寄生于多种宿主。寄生宿主除人、犬和猫,还有多种哺乳类、禽类、鸟类、鱼类和爬行类等多种野生动物。感染宿主是重要的传染源,传染源广泛是CPCMA分布广、控制难的主要原因。 传播途径多 CPCMA的传播与流行,是生态系统中寄生虫种群流动时人和兽共同参与的过程。传播途径包括兽传兽、人传人、兽传人和人传兽,各种流行环节既相互独立,又相互联系、相互影响、相互制约。感染方式也多种多样,包括经口、经皮肤或黏膜、经接触、经飞沫、经胎盘、经节肢动物媒介传播等多种先天和后天感染方式。 宿主普遍易感 寄生虫感染的免疫力多属非消除性免疫,未感染宿主因缺乏特异性免疫而易感。当具有免疫力的感染宿主体内的寄生虫被清除后,这种特异性获得免疫也将逐渐消失,重新处于易感状态,很易发生再感染。对某些寄生虫的易感性除与免疫有关外,还与宿主的食性、生活习性等因素有关。 防治原则 CPCMA的防治常根据流行情况和流行规律,制定相应的法规监督管理制度,将控制传染源、切断传播途径和保护易感宿主有机结合起来,因地制宜,以防为主,综合防治。而免疫预防(immunoprophylaxis),应用疫苗接种的方法诱导宿主产生特异性免疫,以预防和控制寄生虫病已被国内外科学家认为是最安全、有效的防治措施,也是人们多年来共同追求的目标。2 宠物(犬、猫)人兽共患寄生虫疫苗研究 现状与需求 长期以来,无论对人或兽的寄生虫病防治都以药物驱虫为主,并取得了显著成效。过去的10年,驱虫药已成为动物药品市场中增长最快的领域,约占世界动物药品销售额(18万亿美元)的四分之一〔4〕。至今,药物驱虫仍然在治疗和控制寄生虫病中发挥着重要作用。但是,长期、大量化学药物的应用,出现了药物抗性寄生虫、化学药物残留以及药物残留引发的食品安全和环境污染等问题〔5〕。加之,寄生虫存在明显的再感染现象、抗虫新药研发周期长、投资巨大以及宠物主对疫苗预防的渴望和需求,这些都引起了研究者和商家的高度关注。一个寄生虫病疫苗防治的新领域正悄然兴起,一个潜在而巨大的宠物寄生虫疫苗商品市场将面临竞争。 疫苗研究进展 由于疫苗安全、无副作用、无残留、无污染,具有预防和治疗的双重功效,且易被消费者接受,所以人类对几乎所有传染病都提出疫苗防治的要求。虽然,寄生虫结构、抗原复杂、寄生部位和免疫机制特殊等原因给疫苗研制带来了重重困难,但是,消费者对健康和安全的需求以及盈利超过3万亿美元的宠物市场对疫苗的需求,对寄生虫疫苗的研究产生了巨大的动力。虽然,兽用寄生虫疫苗研究已取得明显进展,但至今,商品寄生虫疫苗绝大多数仍为活疫苗或致弱活疫苗。由于其存在保护率低、安全性差、产量低、成本高等问题,商业前景不容乐观(Bain,1999)〔6〕。而基因工程疫苗和核酸疫苗的研究,可使寄生虫疫苗的产业化和商品化成为现实,许多科学家对此寄予极大的期望(Alarcon等,1999)〔7〕。 原虫疫苗 原虫是引起CPCMA的重要病原。在医学研究领域人们在疟原虫、弓形虫、利什曼原虫和锥虫的研究中积累了大量的免疫学、基因组学和疫苗学知识,并利用这些知识研制了防治动物寄生虫病的贾第虫疫苗、弓形虫疫苗、隐孢子虫疫苗和球虫疫苗,目前已有几种疫苗上市销售(Olson等,2000;Augstine,2001)〔8,9〕。利什曼原虫疫苗的研究经历了全虫疫苗、重组疫苗和核酸疫苗的过程。1999年,研究证实LPG(lipophosphoglycan)是阻断传播中有希望的候选疫苗。目前,硕大利什曼原虫核酸疫苗保护性抗原基因有表面抗原gp63、LACK、PSA-2、表面抗原/gp46/M-2等。Handman等(2001)发现DNA疫苗也有治疗作用〔10〕,Mendez等(2001)用L. major对C57BL/6小鼠免疫实验研究,结果表明DNA疫苗接种可产生有效的保护性〔11〕。另外,还发现一种可诱导更高保护率的LACK蛋白,并在构建硕大利什曼原虫LACK DNA疫苗后,证实其能诱导Th1反应,可控制感染〔12〕。Fort Dodge动物卫生组织(1999)研制的贾第虫疫苗,能减少或阻止犬和猫肠道内贾第虫包囊脱囊,最终实现疫苗接种动物体内无滋养体感染(Olson等,2000)〔13〕。1993年,英特威公司以致弱S48株刚地弓形虫研制弓形虫DNA疫苗“Toxovax”,用其滴鼻预防绵羊弓形虫病取得有效的结果。有关弓形虫核酸疫苗的研究,Angus等(1996)用弓形虫SAGI重质粒免疫小鼠进行初步研究。周永安等(1999)用PcDNA3-p30真核表达质粒免疫小鼠,结果显示血清抗体升高,感染小鼠存活时间延长〔14〕。郭虹等(1999)将PcDNA-ROPI重组质粒以IFN-γ为佐剂免疫小鼠,结果显示NK细胞活性、CD8+T细胞明显增高,CD4+/CD8+比值明显降低〔15〕。预防球虫病的重组疫苗正在研究中,用沙门氏杆菌作为载体表达的球虫抗原EalA诱导免疫应答的研究也在实验中(Song等,2000)〔16〕。许多实验研究表明预防原虫感染的保护性免疫是可以人工建立的。 吸虫疫苗 人体吸虫均有脊椎动物保虫宿主,绝大多数都可在人和脊椎动物之间自然传播,目前对其疫苗的研究主要见于血吸虫和片形吸虫。血吸虫疫苗研究也已经历了全虫疫苗(死疫苗、活疫苗、同种致弱活疫苗和异种活疫苗)到分子疫苗(基因工程亚单位疫苗、合成肽疫苗和核酸疫苗)的发展过程。随着生物高新技术的发展,血吸虫疫苗候选抗原分子或抗原基因不断被发现和鉴定,基因工程疫苗已成为主要研究方向。1998年,WHO/TDR在两个独立的研究室对几种曼氏血吸虫(Sm)疫苗候选分子进行了平行实验,并提出6个最具潜力的疫苗候选分子,包括28kDa SmGST(谷胱甘肽-S-转移酶)、97kDaSm Paramyosin(副肌球蛋白)、IrV-5(致弱尾蚴免疫血清筛选的抗原分子)、TPI(丙糖-膦酸酯异构酶)、Sm23(膜相关抗原)和Sm14(脂肪酸结合蛋白)。其中,GST已进入临床Ι期试验,paramyosin、MAP-4/TPI和Sm14抗原将按GMP标准制备用于临床试验,而IrV-5和MAP-3/Sm23被推荐采用DNA免疫的形式继续研究〔2〕。1999年报道,肝片形吸虫分泌的组织蛋白酶L1和L2是重要的蛋白分子,参与免疫逃避、组织穿透和营养吸收等功能(Mulcahy等,1999;Spithill等,1999)〔17,18〕。用其接种牛,可减少虫负荷42%~69%,虫卵活力下降60%,若将其与高分子血红蛋白结合,保护率可增加至73%(McGonigle等,1995)。Piacenza等(1999)用其接种绵羊,保护率为60%,减卵率为71%~81%,将其与天然亮氨酸氨肽酶结合时,保护率可增加到79%〔19〕。肝片形吸虫其他蛋白分子,如谷胱甘肽S转移酶(GST)和多种脂肪酸结合蛋白(FABP)对牛的保护率分别是19%~67%和55%,但有关肝片形吸虫重组疫苗的试验未见报道(Spithill等,1999)〔20〕。 绦虫疫苗 绦虫也多引起人兽共患病,且中绦期幼虫寄生引起的囊尾蚴病和棘球蚴病对宿主的危害更严重。用于预防带属(囊尾蚴病)和棘球属(棘球蚴病)绦虫的重组疫苗研究已获成功。20世纪80年代,在中国、新西兰和澳大利亚、阿根廷分别实施的试验结果证明棘球蚴疫苗EG95对牛群感染的保护率达96%~100%。预防绵羊带绦虫感染的疫苗45W的保护率达92%以上,牛带绦虫疫苗预防牛的感染同样有效。EG95和45W抗原在六钩蚴表面表达,与抗体和补体结合,阻止六钩蚴逸出和移行,从而发挥保护免疫作用。其另一重要特性是能产生跨种保护,已证实绵羊带绦虫45W、To18t To16分子的复合物能诱导人工感染猪的保护率达93%。因此,在预防人类感染中有应用潜力(Lightowlers等,2000)〔21〕。Chabalgoity(2001)报道棘球绦虫六钩蚴的脂肪酸结合蛋白以致弱的鼠伤寒杆菌(LVRO1)表达形式口服接种犬,可产生有效的体液和细胞免疫应答,作者建议研究其他犬用候选疫苗时应用这种表达形式,因为鼠伤寒杆菌LCRO1对犬无害〔22〕。 线虫疫苗 钩虫疫苗的研究目标主要针对减轻虫负荷、减少宿主失血和增强交叉防御作用。早在30年代,Johns Hopkins公共卫生学院蠕虫学系用犬钩口线虫活的三期幼虫(L3)口服或皮下接种犬和鼠,可减轻虫负荷、减少肠出血。60年代,L3疫苗被研制成一种致弱活疫苗,70年代初投放市场。然而,因其不能抵御感染和再感染且价格昂贵而被淘汰。随后研究重点转向L3分泌抗原(Ancylostoma secreted protein, ASP)。目前,ASP-1和ASP-2类似蛋白在十二指肠钩口线虫、锡兰钩口线虫和美洲板口线虫已得到分离和克隆。并有证据表明,ASP是有前景的疫苗候抗原〔23〕。血矛属、奥斯特属和毛圆属消化道线虫,是牛、羊等动物最主要的寄生虫,在驱虫药市场中占有最大的份额,人们投入的研究精力也最多。有效的线虫疫苗是一种具氨肽酶A和M活性的110KDa的H11蛋白分子。H11在线虫微绒毛上表达并与抗体结合,可破坏线虫四期幼虫和成虫的摄食能力,对绵羊羔的保护率达90%以上。这种保护率与抗体滴度相关。因H11在自然感染时不具免疫原性,而被认为是一种“隐蔽抗原”(Newton等,1999)〔24〕。研究显示,捻转血矛线虫p100GA1在预防山羊异源感染时保护率为60%、虫卵减少率为50%。从众多的疫苗成分中提取能产生交叉保护的单一分子,或至少是少数几个分子已成为线虫疫苗研究的焦点。而“隐蔽抗原”被认为是最理想的候选物。另一挑战是通过重组DNA等技术使疫苗研究产业化,重组H11、H-gal-GP和TSBP的研究正在向这个方向发展(Knox等,2001)〔25〕。 节肢动物疫苗 目前的研究主要集中在与牛、绵羊等经济动物相关的节肢动物(蜱、螨、吸血蝇、毛虱等)。最具里程碑意义的是一种由大肠杆菌表达的Bm86基因工程疫苗〔TickGard (TM)〕,由澳大利亚生物技术所和联邦科学与工业研究组织(CSIRO)联合研制,用于预防牛的微小牛蜱(Willadsen,1995)〔26〕。此后,在酵母中也表达成功类似的重组疫苗〔Gavac (TM)〕并由古巴哈瓦那Heber生物技术科学院商品化生产(Garcia等,2000)〔27〕。该疫苗诱导的抗体可结合、溶解蜱肠细胞上的Bm86分子,从而干扰蜱的吸血行为,使其繁殖能力下降。1999年,澳大利亚生物技术所研制出第二代能产生强而持久免疫应答的微小牛蜱疫苗〔TickGard Plus(TM)〕。同年,加拿大批准一种预防牛纹皮蝇的蛋白酶“hypodermin A”重组疫苗上市销售(Pruett,1999)〔28〕。 寄生虫疫苗研究展望 上述证据表明,CPCMA种类多、流行因素复杂、防治难度大。人们试图寻找一种有效预防和消除这类疾病的新方法、新途径。大量研究结果证明,接种疫苗诱导宿主产生保护性免疫,以防治寄生虫和节肢动物对宿主的感染或侵害是可行的。尽管已有多种寄生虫疫苗候选抗原的研究取得明显进展,但大多数疫苗诱导的免疫保护率尚未令人满意。抗原分离与筛选、基因克隆与重组、高效表达、提高保护率交叉保护力等仍然是今后一段时间研究的重点。当然,寄生虫疫苗制剂的研究和商品化过程并非一朝一夕,它涉及寄生虫生物学、分子生物学、免疫学、疫苗试验、产业化和商品化等许多环节。我们相信,随着免疫学、基因组学和分子生物学等现代高新技术在寄生虫学研究领域的应用和发展,寄生虫疫苗必将在CPCMA的防制中发挥重要作用。
人兽共患病(zoonosis)主要由细菌、病毒和寄生虫这三大病原生物引起,有记载的人兽共患病约200种。我们将在人与脊椎动物之间自然传播的寄生虫病和寄生虫感染称为人兽共患寄生虫病(communicable parasitosis common to man and animal,CPCMA), 至今已报道70多种,在人兽共患病中占重要地位。其病原包括原虫、蠕虫和节肢动物中能钻入或进入宿主皮肤或体内寄生的种类共120多种〔1,2〕。随着世界经济的发展和人们生活水平的提高,在发达国家和发展中国家先后掀起了宠物热。我国近十年来,宠物业在全国迅猛发展,犬、猫、鱼、鸟等已进入百姓家庭。宠物,特别是与人关系最密切的犬、猫的饲养,既使人们的生活增添了乐趣,又给人类健康带来了威胁。它使宠物市场出现了前所未有的商机,也给人兽共患寄生虫病的防治带来了严峻挑战。为此,本文就宠物(犬、猫) CPCMA及其疫苗防治研究现状作一综述。1 宠物(犬、猫)人兽共患寄生虫病 主要种类 经文献检索,有记载的犬、猫人兽共患寄生虫病至少有39种,约占CPCMA的56%,其中原虫病9种(内脏利什曼病、皮肤利什曼病、皮肤黏膜利什曼病、肺孢子虫病、弓形虫病、非洲锥虫病、克氏锥虫病、等孢球虫病、贾第虫病)、吸虫病8种(血吸虫病、华支睾吸虫病、后睾吸虫病、双腔吸虫病、棘口吸虫病、片形吸虫病、异形吸虫病、并殖吸虫病)、绦虫病8种(猪绦虫/囊虫病、牛绦虫/囊虫病、棘球蚴病、泡球蚴病、裂头蚴病、裂头绦虫病、复孔绦虫病、细颈囊尾蚴病)、线虫病10种(钩虫病、膨结线虫病、毛细线虫病、麦地那龙线虫病、犬恶丝虫病、马来丝虫病、吸吮线虫病、颚口线虫病、粪类圆线虫病、旋毛虫病)、棘头虫病1种(猪巨吻棘头虫病)和节肢动物病3种(蝇蛆病、疥螨病、蠕形螨病),病原涉及80多种医学寄生虫和节肢动物〔3〕。 生活史类型〔2〕 直接型 病原生物通过接触或媒介直接传播给易感脊椎动物或人,传播过程中病原体不发育、繁殖。如疥螨病、蠕形螨病等,称之为直接人兽共患病。 循环型 完成生活史需要一个以上的脊椎动物宿主。如绦虫病、棘球蚴病等,称之为循环人兽共患病。 媒介型 病原体在传播媒介体内发育、繁殖或既发育又繁殖,然后传播给脊椎动物或人。如疟疾、丝虫病等,称之为媒介人兽共患病。 污染型 存在脊椎动物宿主与病原体发育或储集的非动物环境如水、食物、土壤、植物等,宿主的感染来源于被污染的非动物环境。如钩虫病、粪类圆线虫病等,称之为污染人兽共患病。 流行因素 传染源广 人兽共患寄生虫对宿主的选择性不严格,一种寄生虫可寄生于多种宿主。寄生宿主除人、犬和猫,还有多种哺乳类、禽类、鸟类、鱼类和爬行类等多种野生动物。感染宿主是重要的传染源,传染源广泛是CPCMA分布广、控制难的主要原因。 传播途径多 CPCMA的传播与流行,是生态系统中寄生虫种群流动时人和兽共同参与的过程。传播途径包括兽传兽、人传人、兽传人和人传兽,各种流行环节既相互独立,又相互联系、相互影响、相互制约。感染方式也多种多样,包括经口、经皮肤或黏膜、经接触、经飞沫、经胎盘、经节肢动物媒介传播等多种先天和后天感染方式。 宿主普遍易感 寄生虫感染的免疫力多属非消除性免疫,未感染宿主因缺乏特异性免疫而易感。当具有免疫力的感染宿主体内的寄生虫被清除后,这种特异性获得免疫也将逐渐消失,重新处于易感状态,很易发生再感染。对某些寄生虫的易感性除与免疫有关外,还与宿主的食性、生活习性等因素有关。 防治原则 CPCMA的防治常根据流行情况和流行规律,制定相应的法规监督管理制度,将控制传染源、切断传播途径和保护易感宿主有机结合起来,因地制宜,以防为主,综合防治。而免疫预防(immunoprophylaxis),应用疫苗接种的方法诱导宿主产生特异性免疫,以预防和控制寄生虫病已被国内外科学家认为是最安全、有效的防治措施,也是人们多年来共同追求的目标。2 宠物(犬、猫)人兽共患寄生虫疫苗研究 现状与需求 长期以来,无论对人或兽的寄生虫病防治都以药物驱虫为主,并取得了显著成效。过去的10年,驱虫药已成为动物药品市场中增长最快的领域,约占世界动物药品销售额(18万亿美元)的四分之一〔4〕。至今,药物驱虫仍然在治疗和控制寄生虫病中发挥着重要作用。但是,长期、大量化学药物的应用,出现了药物抗性寄生虫、化学药物残留以及药物残留引发的食品安全和环境污染等问题〔5〕。加之,寄生虫存在明显的再感染现象、抗虫新药研发周期长、投资巨大以及宠物主对疫苗预防的渴望和需求,这些都引起了研究者和商家的高度关注。一个寄生虫病疫苗防治的新领域正悄然兴起,一个潜在而巨大的宠物寄生虫疫苗商品市场将面临竞争。 疫苗研究进展 由于疫苗安全、无副作用、无残留、无污染,具有预防和治疗的双重功效,且易被消费者接受,所以人类对几乎所有传染病都提出疫苗防治的要求。虽然,寄生虫结构、抗原复杂、寄生部位和免疫机制特殊等原因给疫苗研制带来了重重困难,但是,消费者对健康和安全的需求以及盈利超过3万亿美元的宠物市场对疫苗的需求,对寄生虫疫苗的研究产生了巨大的动力。虽然,兽用寄生虫疫苗研究已取得明显进展,但至今,商品寄生虫疫苗绝大多数仍为活疫苗或致弱活疫苗。由于其存在保护率低、安全性差、产量低、成本高等问题,商业前景不容乐观(Bain,1999)〔6〕。而基因工程疫苗和核酸疫苗的研究,可使寄生虫疫苗的产业化和商品化成为现实,许多科学家对此寄予极大的期望(Alarcon等,1999)〔7〕。 原虫疫苗 原虫是引起CPCMA的重要病原。在医学研究领域人们在疟原虫、弓形虫、利什曼原虫和锥虫的研究中积累了大量的免疫学、基因组学和疫苗学知识,并利用这些知识研制了防治动物寄生虫病的贾第虫疫苗、弓形虫疫苗、隐孢子虫疫苗和球虫疫苗,目前已有几种疫苗上市销售(Olson等,2000;Augstine,2001)〔8,9〕。利什曼原虫疫苗的研究经历了全虫疫苗、重组疫苗和核酸疫苗的过程。1999年,研究证实LPG(lipophosphoglycan)是阻断传播中有希望的候选疫苗。目前,硕大利什曼原虫核酸疫苗保护性抗原基因有表面抗原gp63、LACK、PSA-2、表面抗原/gp46/M-2等。Handman等(2001)发现DNA疫苗也有治疗作用〔10〕,Mendez等(2001)用L. major对C57BL/6小鼠免疫实验研究,结果表明DNA疫苗接种可产生有效的保护性〔11〕。另外,还发现一种可诱导更高保护率的LACK蛋白,并在构建硕大利什曼原虫LACK DNA疫苗后,证实其能诱导Th1反应,可控制感染〔12〕。Fort Dodge动物卫生组织(1999)研制的贾第虫疫苗,能减少或阻止犬和猫肠道内贾第虫包囊脱囊,最终实现疫苗接种动物体内无滋养体感染(Olson等,2000)〔13〕。1993年,英特威公司以致弱S48株刚地弓形虫研制弓形虫DNA疫苗“Toxovax”,用其滴鼻预防绵羊弓形虫病取得有效的结果。有关弓形虫核酸疫苗的研究,Angus等(1996)用弓形虫SAGI重质粒免疫小鼠进行初步研究。周永安等(1999)用PcDNA3-p30真核表达质粒免疫小鼠,结果显示血清抗体升高,感染小鼠存活时间延长〔14〕。郭虹等(1999)将PcDNA-ROPI重组质粒以IFN-γ为佐剂免疫小鼠,结果显示NK细胞活性、CD8+T细胞明显增高,CD4+/CD8+比值明显降低〔15〕。预防球虫病的重组疫苗正在研究中,用沙门氏杆菌作为载体表达的球虫抗原EalA诱导免疫应答的研究也在实验中(Song等,2000)〔16〕。许多实验研究表明预防原虫感染的保护性免疫是可以人工建立的。 吸虫疫苗 人体吸虫均有脊椎动物保虫宿主,绝大多数都可在人和脊椎动物之间自然传播,目前对其疫苗的研究主要见于血吸虫和片形吸虫。血吸虫疫苗研究也已经历了全虫疫苗(死疫苗、活疫苗、同种致弱活疫苗和异种活疫苗)到分子疫苗(基因工程亚单位疫苗、合成肽疫苗和核酸疫苗)的发展过程。随着生物高新技术的发展,血吸虫疫苗候选抗原分子或抗原基因不断被发现和鉴定,基因工程疫苗已成为主要研究方向。1998年,WHO/TDR在两个独立的研究室对几种曼氏血吸虫(Sm)疫苗候选分子进行了平行实验,并提出6个最具潜力的疫苗候选分子,包括28kDa SmGST(谷胱甘肽-S-转移酶)、97kDaSm Paramyosin(副肌球蛋白)、IrV-5(致弱尾蚴免疫血清筛选的抗原分子)、TPI(丙糖-膦酸酯异构酶)、Sm23(膜相关抗原)和Sm14(脂肪酸结合蛋白)。其中,GST已进入临床Ι期试验,paramyosin、MAP-4/TPI和Sm14抗原将按GMP标准制备用于临床试验,而IrV-5和MAP-3/Sm23被推荐采用DNA免疫的形式继续研究〔2〕。1999年报道,肝片形吸虫分泌的组织蛋白酶L1和L2是重要的蛋白分子,参与免疫逃避、组织穿透和营养吸收等功能(Mulcahy等,1999;Spithill等,1999)〔17,18〕。用其接种牛,可减少虫负荷42%~69%,虫卵活力下降60%,若将其与高分子血红蛋白结合,保护率可增加至73%(McGonigle等,1995)。Piacenza等(1999)用其接种绵羊,保护率为60%,减卵率为71%~81%,将其与天然亮氨酸氨肽酶结合时,保护率可增加到79%〔19〕。肝片形吸虫其他蛋白分子,如谷胱甘肽S转移酶(GST)和多种脂肪酸结合蛋白(FABP)对牛的保护率分别是19%~67%和55%,但有关肝片形吸虫重组疫苗的试验未见报道(Spithill等,1999)〔20〕。 绦虫疫苗 绦虫也多引起人兽共患病,且中绦期幼虫寄生引起的囊尾蚴病和棘球蚴病对宿主的危害更严重。用于预防带属(囊尾蚴病)和棘球属(棘球蚴病)绦虫的重组疫苗研究已获成功。20世纪80年代,在中国、新西兰和澳大利亚、阿根廷分别实施的试验结果证明棘球蚴疫苗EG95对牛群感染的保护率达96%~100%。预防绵羊带绦虫感染的疫苗45W的保护率达92%以上,牛带绦虫疫苗预防牛的感染同样有效。EG95和45W抗原在六钩蚴表面表达,与抗体和补体结合,阻止六钩蚴逸出和移行,从而发挥保护免疫作用。其另一重要特性是能产生跨种保护,已证实绵羊带绦虫45W、To18t To16分子的复合物能诱导人工感染猪的保护率达93%。因此,在预防人类感染中有应用潜力(Lightowlers等,2000)〔21〕。Chabalgoity(2001)报道棘球绦虫六钩蚴的脂肪酸结合蛋白以致弱的鼠伤寒杆菌(LVRO1)表达形式口服接种犬,可产生有效的体液和细胞免疫应答,作者建议研究其他犬用候选疫苗时应用这种表达形式,因为鼠伤寒杆菌LCRO1对犬无害〔22〕。 线虫疫苗 钩虫疫苗的研究目标主要针对减轻虫负荷、减少宿主失血和增强交叉防御作用。早在30年代,Johns Hopkins公共卫生学院蠕虫学系用犬钩口线虫活的三期幼虫(L3)口服或皮下接种犬和鼠,可减轻虫负荷、减少肠出血。60年代,L3疫苗被研制成一种致弱活疫苗,70年代初投放市场。然而,因其不能抵御感染和再感染且价格昂贵而被淘汰。随后研究重点转向L3分泌抗原(Ancylostoma secreted protein, ASP)。目前,ASP-1和ASP-2类似蛋白在十二指肠钩口线虫、锡兰钩口线虫和美洲板口线虫已得到分离和克隆。并有证据表明,ASP是有前景的疫苗候抗原〔23〕。血矛属、奥斯特属和毛圆属消化道线虫,是牛、羊等动物最主要的寄生虫,在驱虫药市场中占有最大的份额,人们投入的研究精力也最多。有效的线虫疫苗是一种具氨肽酶A和M活性的110KDa的H11蛋白分子。H11在线虫微绒毛上表达并与抗体结合,可破坏线虫四期幼虫和成虫的摄食能力,对绵羊羔的保护率达90%以上。这种保护率与抗体滴度相关。因H11在自然感染时不具免疫原性,而被认为是一种“隐蔽抗原”(Newton等,1999)〔24〕。研究显示,捻转血矛线虫p100GA1在预防山羊异源感染时保护率为60%、虫卵减少率为50%。从众多的疫苗成分中提取能产生交叉保护的单一分子,或至少是少数几个分子已成为线虫疫苗研究的焦点。而“隐蔽抗原”被认为是最理想的候选物。另一挑战是通过重组DNA等技术使疫苗研究产业化,重组H11、H-gal-GP和TSBP的研究正在向这个方向发展(Knox等,2001)〔25〕。 节肢动物疫苗 目前的研究主要集中在与牛、绵羊等经济动物相关的节肢动物(蜱、螨、吸血蝇、毛虱等)。最具里程碑意义的是一种由大肠杆菌表达的Bm86基因工程疫苗〔TickGard (TM)〕,由澳大利亚生物技术所和联邦科学与工业研究组织(CSIRO)联合研制,用于预防牛的微小牛蜱(Willadsen,1995)〔26〕。此后,在酵母中也表达成功类似的重组疫苗〔Gavac (TM)〕并由古巴哈瓦那Heber生物技术科学院商品化生产(Garcia等,2000)〔27〕。该疫苗诱导的抗体可结合、溶解蜱肠细胞上的Bm86分子,从而干扰蜱的吸血行为,使其繁殖能力下降。1999年,澳大利亚生物技术所研制出第二代能产生强而持久免疫应答的微小牛蜱疫苗〔TickGard Plus(TM)〕。同年,加拿大批准一种预防牛纹皮蝇的蛋白酶“hypodermin A”重组疫苗上市销售(Pruett,1999)〔28〕。 寄生虫疫苗研究展望 上述证据表明,CPCMA种类多、流行因素复杂、防治难度大。人们试图寻找一种有效预防和消除这类疾病的新方法、新途径。大量研究结果证明,接种疫苗诱导宿主产生保护性免疫,以防治寄生虫和节肢动物对宿主的感染或侵害是可行的。尽管已有多种寄生虫疫苗候选抗原的研究取得明显进展,但大多数疫苗诱导的免疫保护率尚未令人满意。抗原分离与筛选、基因克隆与重组、高效表达、提高保护率交叉保护力等仍然是今后一段时间研究的重点。当然,寄生虫疫苗制剂的研究和商品化过程并非一朝一夕,它涉及寄生虫生物学、分子生物学、免疫学、疫苗试验、产业化和商品化等许多环节。我们相信,随着免疫学、基因组学和分子生物学等现代高新技术在寄生虫学研究领域的应用和发展,寄生虫疫苗必将在CPCMA的防制中发挥重要作用。
吸虫病由单殖亚纲﹑盾腹亚纲和复殖亚纲的内﹑外寄生虫引起的疾病总称。前两个亚纲的吸虫主要寄生于鱼类﹑两栖类﹑爬虫类和软件动物﹑甲壳动物。后一亚纲的复殖吸虫还寄生于哺乳动物和鸟类。 家畜吸虫病的病原均属复殖亚纲﹐常见的有片形吸虫﹑双腔吸虫﹑阔盘吸虫﹑裂体吸虫﹑姜片吸虫﹑枝睾吸虫和前殖吸虫﹐以及前后盘科各属的吸虫等。其中有的危害严重﹐呈现地方性流行﹐如肝片吸虫病和血吸虫病。 在发展中国家,人口稠密,生活水平较低,卫生条件较差,人类与家畜、家禽、野生动物及病原媒介的接触机会较多,因而感染人兽共患寄生虫病仍较普遍。寄生在肝脏的吸虫能引起急性或慢性肝炎﹐出现黄疸和消化不良﹔寄生在瘤胃和肠道的吸虫则导致消化障碍和腹泻﹔吸虫寄生于肺脏时出现咳嗽或胸膜炎﹐而当移行到皮下时则形成囊肿。
1、 [动物医学]猪场免疫程序的建立和正确使用疫苗 摘要:猪群的健康是经营猪场成败的重要关键。近几年来,养猪业不断向规模化、集约化发展,同时,由于畜禽及其产品的频繁流通和交易,猪的疫病比较严重。据估计规模化猪场因病死亡率平均在5%~20%不等。尽管养猪... 2、 [动物医学]猪瘟的诊断与防治方法的探讨 摘要:猪瘟可分为急性、亚急性、慢性、不典型或不明显型猪瘟。CSF由强毒引起:高发病率、高死亡率.不典型猪瘟由弱毒引起、表现不明显. 猪瘟严重威胁养猪业的发展。近两年来,猪瘟病的发生在我市养猪业中有流行... 3、 [动物医学]猪圆环病毒2型ORF2结构蛋白单克隆抗体的制备及鉴定 中文摘要猪圆环病毒2型(Porcine circovirus type 2,PCV2)是引起猪断奶后多系统衰竭综合征等相关疾病的重要病原。PCV2的ORF2基因编码该病毒结构蛋白,是区分PCV1和PC... 4、 [动物医学]动物剥制标本的创新应用 中 文 摘 要生物标本制作是一项具有多学科知识的专门技术,始于英国,至今已有300年的历史。我国的动物标本制作技术是在欧洲标本制作技术的基础上逐步发展起来的,早期形成了具有自己风格的两大派系,即南唐北... 口蹄疫简介 口蹄疫是一种以病毒为载体的疾病,主要受感对象为猪、牛等大型偶蹄兽类,老鼠和家兔也是高发种群,潜伏期有几天至半个月不等,接触、空气、食物等均可导致疾病传播,如遇大风或兽群的大批运输则传染更快。口蹄疫发病后一般不致死,但会导致病兽口、蹄部出现大量水泡、高烧不退,使实际产量锐减。另外,个别口蹄疫病毒的变种亦可传染给人。因此,每次爆发后只能屠宰和集体焚毁以绝后患。由于口蹄疫传播迅速,难于防治,补救措施少,被称为“头号杀手”。 口蹄疫可人畜共患。人因接触口蹄疫病畜及其污染的毛皮,或误饮病畜的奶,或误食病畜的肉品等途径感染。人一旦受到口蹄疫病毒传染,经2——18天潜伏期突然发病,表现为发烧、口腔干热、唇、齿、舌边颊部、咽部潮红、出现水泡(皮肤水泡见于手指尖、手掌、脚趾),同时伴有头痛、恶心、呕吐或腹泻,患者数天痊愈,有时可并发心肌炎,患者对人基本无传染性,但可把病毒传染给牲畜动物,再度引起畜间口蹄疫流行。 1 口蹄疫临床症状 1.1 本病以牛最易感 最初体温升高,精神沉郁,食欲减退或废绝,反刍缓慢或停止,不喜饮水,闭口呆立,开口时,大量流涎。病畜口腔黏膜、齿龈、唇部、舌部及趾间等发生水泡或糜烂。起初水泡只有豌豆大,继而融合增大或连成片状,1——2天破溃后,形成红色烂斑。很多病例出现条状,高低不平的水泡。用手抓取舌时,常能见大片地脱落,偶见有鼻镜、角茎、乳房上发生水泡。在发生口腔水泡后或同时在蹄冠、蹄踵和趾间发生水泡或烂斑,若破溃后被细菌污染,时发跛行严重,幼牛常并发严重的胃肠炎。 羊的感染率低 病羊口腔黏膜上可见到水泡、烂斑和弥漫性炎症变化。山羊比绵羊明显,但主要症状在蹄部,哺乳羔羊对口蹄疫特别敏感,常呈现出血性胃肠炎和心肌炎症状,发病急、死亡快。 2 防治 2.1 预防 病畜疑似口蹄疫时,应立即报告兽医机关,病畜就地封锁。所用器具及污染地面用2%苛性钠消毒,确认后,立即进行严格封锁、隔离、消毒及防治一系列工作,发病畜群扑杀后要无害化处理,工作人员外出要严格全面消毒,病畜吃剩的草料或饮水,要烧毁或深埋。畜舍及附近用2%苛性钠、1%——2%福尔马林喷洒、消毒,以免散毒。对疫区周围牛羊接种,选用与当地流行的毒型相同的疫苗、疫种。 2.2 治疗 口腔有溃疡时,用碘甘油合剂每天涂3——4次,用大蒜或10%食盐水也可。蹄部病变,可用消毒液洗净,涂甲紫溶液或碘甘油。并用绷带包裹,不可接触湿地。 对病畜要加强饲养管理及护理工作。每天要用盐水、硼酸溶液等洗涤口腔及蹄部,要喂以软草、软料或麸皮粥等。 晨报讯 据英国广播公司23日报道,有迹象表明,英国口蹄疫疫情有可能已经传染给人类。英国卫生部已开始对此进行调查。 报道说,口蹄疫疫情严重的坎布里亚郡一名屠宰工人可能已经传染上口蹄疫�这名屠宰工人曾多次接触受口蹄疫感染的牲畜。英国卫生部一位发言人透露,该屠宰工人患有牲畜口蹄疫的“所有症状”,包括手脚及口腔内起水泡等。如果病情得到确认的话,他将是英国历史上第二个患口蹄疫的人。但英国科学家指出,牲畜将口蹄疫传染给人类的可能性非常小。即使有人染上口蹄疫,病情也很轻,目前还没有口蹄疫疫情在人类中传播的记录。 英国1966年爆发口蹄疫疫情时,曾有一人感染了口蹄疫,但对他的健康没有带来任何影响 为你锝母猪默哀3秒....^-^
随着生活水平的提高,中国的宠物市场日益壮大,而种类繁多的宠物各需不同的生理环境。下面是我精心为你整理的宠物饲养的相关论文欣赏,一起来看看。
中国国内饲养宠物存在的问题
摘要:改革开放以后,随着人民生活水平的提高,宠物逐渐走进了中国人的生活之中。但相较于国外许多国家,我国的宠物文化起步较晚,因此难免存在许多问题。我们应该正确认识这些问题,才能以科学的方法去解决它们,善待身边的宠物。
关键词:宠物 中国 问题
随着人们生活水平的不断提高,越来越多人开始注重精神生活的追求,越来越多的宠物走进了各个家庭。根据2011年调查,在中国,平均每2户家庭至少曾尝试拥有过宠物,其种类比较繁多,从寻常的猫狗到蛇、蜥蜴等,有些家庭甚至拥有两只以上的宠物。21世纪以来,因为改革开放后的人民生活水品的不断提高,宠物也逐渐成为了许多家庭的一部分。
1 背景
日常生活中,我们常常拥有一些特殊的“朋友”,比如导盲犬等,这些“朋友”成为一部分人生活中必不可少的东西,它们就是宠物。
究竟什么是宠物?宠物一般是指家庭喂养的用于玩赏、给人们做伴的动物。宠物这个词,早在西汉年间便已经出现了,西汉时的匈奴民族喜欢将鹰作为自己的宠物,同时也将它作为身份和地位的象征。
由于历史的原因,中国的宠物真正进入普通民众的生活与其他国家相比起步较晚,无论是在种类方面看还是规模方面。在清朝,慈禧特别宠爱吉娃娃,甚至只允许皇室的成员饲养。新中国成立后,大约在70年代,宠物甚至被认为是“走资派”的行为,宠物文化在这段时间几乎在中国销声匿迹。改革开放后,百姓有了更好的经济基础和更多的文化积淀,市场上也出现了较为成熟的相关配套设施,为百姓饲养宠物提供了必备的基础和便利的条件。
2 存在的问题
与以前相比,虽然目前我国人民对宠物文化有了更加成熟、科学的认识,但实际上真正的“宠物产业”仍在起步阶段。该阶段属于一个不断探索发现,一个不断改正修正的时间点,所以也出现了许许多多的问题,等待着相关人员的妥善解决。
相关政策法规不够完善
近几个月以来,我们时常会在网络、报刊上发现“保护流浪狗、流浪猫、流浪小动物”的呼吁。对于一个千万人口的都市而言,每个昼夜都有成千上万只流浪的动物在城市的各个角落游荡。一些城市为了改善市容,曾制定过捉捕流浪动物的政策,但对于捉来的动物却并没有依照合理的政策对其进行管理或饲养。因为财政原因,流浪动物在收容所里往往不会得到善意且真诚的对待,同时,真正来收容所领养动物的市民也并不多。正因为这个原因,许多城市的宠物收容所都无法运营。目前比较著名的国内收容所都属于私人性质,依靠着来自民间团体或个人的募捐而艰难的运营着。
造成传染病的增加和传播
相对于人类较为完整的疾病侦测体系而言,对于宠物的疾病控制和研究仍然是相当基础的一个难题。虽然当今社会的医疗水平已到高度发达水平,但以狂犬病为例,每年中国国内仍然有数百人因此丧身。同时,宠物可能携带某些寄生虫,有些寄生虫对于人类的威胁是极其重大的。对于飞禽一类宠物,在禽流感时期甚至成为了重点的关注对象。
对周围环境造成影响
十年前曾风靡全国的巴西龟,由于其繁殖方便,饲养简单,生命力强的原因被我国某些动物商人引进,从此在华夏大陆上几乎随处可见它的身影。由于它没有什么天敌,且拥有极强的生命力,几乎对某些生态环境造成了不可估量的毁灭性的打击。这个问题均是由于人们管理宠物不善而造成的,许多人在饲养宠物的同时忽略了它们对于环境的影响,例如:允许宠物随地大小便等,这些也为社会增加了负担。
宠物行业不够普及,成本较高
据统计,在国内某些大型城市,平均每一平方公里仅有一家正规的宠物医院,对于某些小城市而言,几乎没有正规的、值得信赖的宠物医院。由于生产资料的匮乏,以及行业人才的紧缺,不仅是宠物去医院治病贵,连带的一些宠物用品也非常的昂贵。产生这样的原因是多样的,但主要的原因是国内宠物市场“僧少粥多”,消费者们对于例如“日常护理”“给宠物治病”是不可避免的必然情况,然而由于市场竞争小,且相关生产资料较为匮乏,政府也没有系统科学的定价措施和补贴,造成了饲养宠物成本较高的现象。
饲养人员责任意识匮乏
在这几年的新闻中,我们经常会发现虐猫虐狗事件,伴随而来的是人们的一系列谴责。谴责之后又是差不多的事件继续发生,周而复始。大多数饲养人员仅仅把他们的宠物当作“宠物”而已,必要的时候可以成为发气的对象,这也就造成了虐待事件的发生。与国内相比,国外的家庭大多数将宠物作为家庭的一员,给以必要的尊重以及充足的关爱。而在中国,毫不留情的说,很多人将宠物视为“奴隶”的一种,可以殴打,甚至遗弃。
3 总结
中国目前由于受教育程度的增加,宠物文化将不断科学,充足,但由于起步较晚,在宠物产业方面仍然存在着一些问题。我们应该正确认识这些问题,采取科学的办法去解决。如何的解决当今宠物资源的匮乏问题,是当下解决宠物问题的关键,一个科学发展的民族不仅需要科学的提升人民的生活水品,也应该兼顾宠物生活水品,因为它们是我们的朋友。
参考文献
[1] 赵晓静,韩若婵. 城市宠物饲养的现状与对策. 2010年6月.
[2] 中国人民政治协商会议北京市委员会. 关于尽快出台宠物饲养管理法规的建议. 2007年1月
宠物饲养及疾病预防的调查研究
摘 要:浅谈我国宠物饲养现状、市场管理体系以及宠物疾病的危害性与预防的重要性,并对当前宠物饲养方面存在的问题提出相应对策。
关键词:宠物饲养 管理体制 疾病 预防 对策
随着生活水平的提高,中国的宠物市场日益壮大,而种类繁多的宠物各需不同的生理环境。人们对宠物的认知局限为宠物饲养带来不小的压力,其中宠物疾病的爆发存在巨大的潜在威胁,因此疾病预防尤为重要。
1 宠物饲养和管理现状
现今中国,日益庞大的宠物市场已经成为一个多样性产业,包括了宠物饲养、宠物交易、宠物食品、宠物用品、宠物疾病防治、宠物美容、宠物训导等内容[1]。目前国内至少有1亿只家养宠物。然而,宠物伤人、宠物粪便污染、宠物扰民、虐待宠物、宠物保护、人畜共患病等问题在社会上引起的反响越来越强烈[2]。可见,我国对于宠物饲养管理方面的研究还远远跟不上当前饲养现状的脚步,尤其在宠物饲养管理的法律规制方面我国还没有一个国际化、标准化的平台来支撑。相对的,我国对于宠物疾病的医疗防治领域也相对薄弱,使得宠物病死,传染病流行等现象屡见不鲜。
2 宠物疾病
宠物疾病分类
宠物疾病大致可分为传染病、寄生虫病、内科病、外科病、产科病、营养代谢性疾病、皮肤病、中毒性疾病。其中人畜共患的传染病和寄生虫病多达数十种,如结核杆菌引起的“结核病”、炭疽杆菌引起的“炭疽”、由口蹄疫病毒引起的“口蹄疫”等。
常见宠物疾病概述
弓形虫病
一种寄生于猫狗体内的寄生虫,侵入人体后不能成熟,其幼虫在人体皮肤及器官中移行,可引起一系列的组织损伤,病程可长达半年至数年。最严重的是可以使孕妇出现流产、死产,甚至导致胎儿先天性畸形。
狂犬病
又称恐水症,是狂犬病病毒引起的中枢神经系统急性传染病。狂犬病最常见的传播途径就是咬伤.它的病死率高达百分之百.
猫抓病
亦叫猫抓热.它是由于被猫抓伤以后,一种巴冈体感染所引起的发烧、皮疹和淋巴结肿大的病状,亦有少数人会出现明显的发热、肌肉酸痛、肝脾肿大、黄疸等症状.
流行性出血热
肾综合征出血热,主要宿主为小型啮齿类动物,是由汉坦病毒引起的的自然疫源性疾病。主要临床表现有发热、出血、充血、低血压休克及肾脏损害。
鼠疫
鼠疫病原体为鼠疫杆菌,以鼠蚤传播为主,是一种烈性传染病,广泛流行于啮齿动物间。临床上表现为发热、严重毒血症症状、淋巴结肿大、肺炎、出血倾向等。鼠疫曾在世界各地有多次大流行,死者以千万计,病死率极高。鼠类比起刚才说的猫和狗,它带的病原体更多,它可能携带有200多种病原体,其中能使人致病的就有50多种。
预防措施
加强日常护理
通常情况下,类似于弓形虫病的病原体多为隐形感染,与猫类等易携带病原体的动物接触较易感染弓形虫病 [3] ,禁止宠物与易携带病原体的其他动物及其附属物接触。对于宠物的卫生条件的要求也应相应的提高,经常性的清理宠物的住所,清理宠物的排泄物以及食物残渣,为其提供良好的居住环境。
定期进行宠物健康检查
宠物的健康应该做到定期的监控和保养,可以对宠物进行定期的清洗,如洗澡,可以初期较多的油渍、污垢和细菌。定期的修剪指甲,防止宠物因为指甲过长变形而长到肉里,引发伤口感染过。进行适当的牙齿管理,动物的臭味产生来源之一就是口臭,口臭能引起内脏等器官的疾病,可以通过漱口或者咀嚼牙齿骨来预防口臭。
注射疫苗
通常情况下,宠物疫苗的注射能大大提高宠物对于疾病的抵抗能力,提前在特定的宠物预防机构注射疫苗。
3 我国宠物疾病预防存在的问题
目前我国由于经济发展所带来了宠物饲养量的增加,但是同时众多的人口是的宠物的生活空间局限于较为狭小的范围之内,宠物的运动机会以及运动量明显不足,营养过剩以及营养的不平衡所带来的健康问题一直是我国目前难以克服的宠物疾病预防问题。其次宠物治疗手段淡以你,多采用被动治疗的方式,通常只有在宠物生病之后才会进行一直,一来加重费用,二来是的宠物应得不到及时的治疗而加重期死亡率。因此宠物预防的困难重重,任务重重 [5] 。
建议
实施严格的卫生制度,消除致病微生物。
可用10%~20%的石灰水或2%来苏儿液喷洒睡觉处及周围环境,经常更换弄脏的垫草和垫料。当有个体患病时须及时隔离饲养,若患病动物因传染病而死亡,最好将其焚烧或深埋。
注射疫苗。
目前对这些传染病,尚无有效的治疗措施,除鹦鹉外均能通过注射疫苗的方法加以控制疾病的发展。
防治误食有毒食物,禁止给动物饲喂发霉变质的食物。
加强卫生管理。
伴侣动物的卫生管理是指为了防止动物疫病的传播,保护公共卫生和人民身体健康,按照防疫灭病的科学要求、建立、实施有关的管理制度、措施的全部活动。其中有一个必须重视的和解决的问题,及动物疫病有上百种,其中人畜共患的疾病达几十种。
致力于更有效的特殊动物防疫药物的研究。
如啮齿类动物至今没有专属疫苗,防治疾病时也只能使用兔类药物,这对于饲养鼠类宠物是一个较大的风险。因此研发出针对于各类动物的疫苗,药物等对预防宠物疾病有着重大意义。因此在卫生管理方面,对于所有饲养宠物要进行登记,很多私下的宠物交易没有登记档案,若传染病暴发会对追究病源造成阻碍,预防体系也不能很好的普及。
4 结论
宠物作为人类生活的一部分,既带来了经济效益,也存在一定社会隐患。一个合理完整的宠物管理体系对平衡宠物与自然、人类及社会见得关系有重大意义。宠物疾病对人类存在威胁,有效的防治是防止人畜共患流行病爆发的重要手段。要使人类社会和宠物市场和谐发展,中国还需要做出更大的努力。
参考文献:
[1]蒋宏 宠物和我宠物市场 [会议论文] 中国工程院工程科技论坛――宠物与人类健康 2011
[2]刘斌 宠物饲养的法律规制 [D] 中国社会科学院研究生院 2012
[3]梁红如,赖木海,江飙 弓形虫病的流行情况和预防 [J] 中国动物保健 2009 11
[4]田海燕 宠物美容与保健 [J] 中国比较医学杂志 2010(20)
[5]刘士茹; 王丽丽; 李晓宇; 徐牧; 徐永平 药效营养物质在宠物疾病防控中应用的研究[J]畜牧与兽医 2015 (01)
人兽共患寄生虫自然传播方式如下:一、 动物性食品为载体传播的病1.肉类食品为载体传播的病 如:猪带绦虫病、牛带绦虫病、旋毛虫、肉孢子虫病、弓形虫病。2,水产食品为载体传播的病 如:并殖吸虫病、华支睾吸虫病、后睾吸虫病、异形吸虫病、棘口吸虫病、裂头蚴病、裂头绦虫病、线中殖孔绦虫病、管圆线虫病、颚口线虫病、膨结线虫病。3.动物性非食品为载体传播的病 如:阔盘吸虫病、双腔吸虫病、复殖孔绦虫病、矮小膜壳绦虫病、缩小膜壳绦虫病、棘头虫病、简线虫病、龙线虫病。二、植物为载体经口感染的病兽医教学参考,兽医临床交流,犬病辅助诊断系如:姜片吸虫病、片形吸虫病、嗜眼吸虫病。三、水、土壤为载体经口感染的病.如:猪囊尾蚴病、棘球蚴病、多头蚴病、细颈囊尾蚴、毛细线虫病、毛圆线虫病、蛔虫病、食道口线虫病、舌形虫病、贾第虫病、隐孢子虫病、小袋虫病。四、经肤感染的病1.水、土壤为载体经肤感染的病 如:日本血吸虫病、东毕吸虫病、毛毕吸虫病及其尾蚴性皮炎、类圆线虫病、钩口线虫病。9M4n)U7B!h7Q+n6k"O兽医教学参考,兽医临床交流,犬病辅助诊断系统 2.蜱、昆虫为传播媒介的病 如:巴贝斯虫病、马米丝虫病、恶丝虫病、吸吮线虫病、内脏利什曼病。专业兽医人的交流平台网站,兽医教学参考,兽医临床技术交流,犬病辅助诊断系统:j6M'A#u$r$|$x"f3.蜱、螨、昆虫接触传播的病五、空气、飞沫为载体经呼吸道感染的病兽医教学参考,兽医临床交流,犬病辅助诊断系统;如:卡氏肺孢子虫病。
人兽共患病(zoonosis)主要由细菌、病毒和寄生虫这三大病原生物引起,有记载的人兽共患病约200种。我们将在人与脊椎动物之间自然传播的寄生虫病和寄生虫感染称为人兽共患寄生虫病(communicable parasitosis common to man and animal,CPCMA), 至今已报道70多种,在人兽共患病中占重要地位。其病原包括原虫、蠕虫和节肢动物中能钻入或进入宿主皮肤或体内寄生的种类共120多种〔1,2〕。随着世界经济的发展和人们生活水平的提高,在发达国家和发展中国家先后掀起了宠物热。我国近十年来,宠物业在全国迅猛发展,犬、猫、鱼、鸟等已进入百姓家庭。宠物,特别是与人关系最密切的犬、猫的饲养,既使人们的生活增添了乐趣,又给人类健康带来了威胁。它使宠物市场出现了前所未有的商机,也给人兽共患寄生虫病的防治带来了严峻挑战。为此,本文就宠物(犬、猫) CPCMA及其疫苗防治研究现状作一综述。1 宠物(犬、猫)人兽共患寄生虫病 主要种类 经文献检索,有记载的犬、猫人兽共患寄生虫病至少有39种,约占CPCMA的56%,其中原虫病9种(内脏利什曼病、皮肤利什曼病、皮肤黏膜利什曼病、肺孢子虫病、弓形虫病、非洲锥虫病、克氏锥虫病、等孢球虫病、贾第虫病)、吸虫病8种(血吸虫病、华支睾吸虫病、后睾吸虫病、双腔吸虫病、棘口吸虫病、片形吸虫病、异形吸虫病、并殖吸虫病)、绦虫病8种(猪绦虫/囊虫病、牛绦虫/囊虫病、棘球蚴病、泡球蚴病、裂头蚴病、裂头绦虫病、复孔绦虫病、细颈囊尾蚴病)、线虫病10种(钩虫病、膨结线虫病、毛细线虫病、麦地那龙线虫病、犬恶丝虫病、马来丝虫病、吸吮线虫病、颚口线虫病、粪类圆线虫病、旋毛虫病)、棘头虫病1种(猪巨吻棘头虫病)和节肢动物病3种(蝇蛆病、疥螨病、蠕形螨病),病原涉及80多种医学寄生虫和节肢动物〔3〕。 生活史类型〔2〕 直接型 病原生物通过接触或媒介直接传播给易感脊椎动物或人,传播过程中病原体不发育、繁殖。如疥螨病、蠕形螨病等,称之为直接人兽共患病。 循环型 完成生活史需要一个以上的脊椎动物宿主。如绦虫病、棘球蚴病等,称之为循环人兽共患病。 媒介型 病原体在传播媒介体内发育、繁殖或既发育又繁殖,然后传播给脊椎动物或人。如疟疾、丝虫病等,称之为媒介人兽共患病。 污染型 存在脊椎动物宿主与病原体发育或储集的非动物环境如水、食物、土壤、植物等,宿主的感染来源于被污染的非动物环境。如钩虫病、粪类圆线虫病等,称之为污染人兽共患病。 流行因素 传染源广 人兽共患寄生虫对宿主的选择性不严格,一种寄生虫可寄生于多种宿主。寄生宿主除人、犬和猫,还有多种哺乳类、禽类、鸟类、鱼类和爬行类等多种野生动物。感染宿主是重要的传染源,传染源广泛是CPCMA分布广、控制难的主要原因。 传播途径多 CPCMA的传播与流行,是生态系统中寄生虫种群流动时人和兽共同参与的过程。传播途径包括兽传兽、人传人、兽传人和人传兽,各种流行环节既相互独立,又相互联系、相互影响、相互制约。感染方式也多种多样,包括经口、经皮肤或黏膜、经接触、经飞沫、经胎盘、经节肢动物媒介传播等多种先天和后天感染方式。 宿主普遍易感 寄生虫感染的免疫力多属非消除性免疫,未感染宿主因缺乏特异性免疫而易感。当具有免疫力的感染宿主体内的寄生虫被清除后,这种特异性获得免疫也将逐渐消失,重新处于易感状态,很易发生再感染。对某些寄生虫的易感性除与免疫有关外,还与宿主的食性、生活习性等因素有关。 防治原则 CPCMA的防治常根据流行情况和流行规律,制定相应的法规监督管理制度,将控制传染源、切断传播途径和保护易感宿主有机结合起来,因地制宜,以防为主,综合防治。而免疫预防(immunoprophylaxis),应用疫苗接种的方法诱导宿主产生特异性免疫,以预防和控制寄生虫病已被国内外科学家认为是最安全、有效的防治措施,也是人们多年来共同追求的目标。2 宠物(犬、猫)人兽共患寄生虫疫苗研究 现状与需求 长期以来,无论对人或兽的寄生虫病防治都以药物驱虫为主,并取得了显著成效。过去的10年,驱虫药已成为动物药品市场中增长最快的领域,约占世界动物药品销售额(18万亿美元)的四分之一〔4〕。至今,药物驱虫仍然在治疗和控制寄生虫病中发挥着重要作用。但是,长期、大量化学药物的应用,出现了药物抗性寄生虫、化学药物残留以及药物残留引发的食品安全和环境污染等问题〔5〕。加之,寄生虫存在明显的再感染现象、抗虫新药研发周期长、投资巨大以及宠物主对疫苗预防的渴望和需求,这些都引起了研究者和商家的高度关注。一个寄生虫病疫苗防治的新领域正悄然兴起,一个潜在而巨大的宠物寄生虫疫苗商品市场将面临竞争。 疫苗研究进展 由于疫苗安全、无副作用、无残留、无污染,具有预防和治疗的双重功效,且易被消费者接受,所以人类对几乎所有传染病都提出疫苗防治的要求。虽然,寄生虫结构、抗原复杂、寄生部位和免疫机制特殊等原因给疫苗研制带来了重重困难,但是,消费者对健康和安全的需求以及盈利超过3万亿美元的宠物市场对疫苗的需求,对寄生虫疫苗的研究产生了巨大的动力。虽然,兽用寄生虫疫苗研究已取得明显进展,但至今,商品寄生虫疫苗绝大多数仍为活疫苗或致弱活疫苗。由于其存在保护率低、安全性差、产量低、成本高等问题,商业前景不容乐观(Bain,1999)〔6〕。而基因工程疫苗和核酸疫苗的研究,可使寄生虫疫苗的产业化和商品化成为现实,许多科学家对此寄予极大的期望(Alarcon等,1999)〔7〕。 原虫疫苗 原虫是引起CPCMA的重要病原。在医学研究领域人们在疟原虫、弓形虫、利什曼原虫和锥虫的研究中积累了大量的免疫学、基因组学和疫苗学知识,并利用这些知识研制了防治动物寄生虫病的贾第虫疫苗、弓形虫疫苗、隐孢子虫疫苗和球虫疫苗,目前已有几种疫苗上市销售(Olson等,2000;Augstine,2001)〔8,9〕。利什曼原虫疫苗的研究经历了全虫疫苗、重组疫苗和核酸疫苗的过程。1999年,研究证实LPG(lipophosphoglycan)是阻断传播中有希望的候选疫苗。目前,硕大利什曼原虫核酸疫苗保护性抗原基因有表面抗原gp63、LACK、PSA-2、表面抗原/gp46/M-2等。Handman等(2001)发现DNA疫苗也有治疗作用〔10〕,Mendez等(2001)用L. major对C57BL/6小鼠免疫实验研究,结果表明DNA疫苗接种可产生有效的保护性〔11〕。另外,还发现一种可诱导更高保护率的LACK蛋白,并在构建硕大利什曼原虫LACK DNA疫苗后,证实其能诱导Th1反应,可控制感染〔12〕。Fort Dodge动物卫生组织(1999)研制的贾第虫疫苗,能减少或阻止犬和猫肠道内贾第虫包囊脱囊,最终实现疫苗接种动物体内无滋养体感染(Olson等,2000)〔13〕。1993年,英特威公司以致弱S48株刚地弓形虫研制弓形虫DNA疫苗“Toxovax”,用其滴鼻预防绵羊弓形虫病取得有效的结果。有关弓形虫核酸疫苗的研究,Angus等(1996)用弓形虫SAGI重质粒免疫小鼠进行初步研究。周永安等(1999)用PcDNA3-p30真核表达质粒免疫小鼠,结果显示血清抗体升高,感染小鼠存活时间延长〔14〕。郭虹等(1999)将PcDNA-ROPI重组质粒以IFN-γ为佐剂免疫小鼠,结果显示NK细胞活性、CD8+T细胞明显增高,CD4+/CD8+比值明显降低〔15〕。预防球虫病的重组疫苗正在研究中,用沙门氏杆菌作为载体表达的球虫抗原EalA诱导免疫应答的研究也在实验中(Song等,2000)〔16〕。许多实验研究表明预防原虫感染的保护性免疫是可以人工建立的。 吸虫疫苗 人体吸虫均有脊椎动物保虫宿主,绝大多数都可在人和脊椎动物之间自然传播,目前对其疫苗的研究主要见于血吸虫和片形吸虫。血吸虫疫苗研究也已经历了全虫疫苗(死疫苗、活疫苗、同种致弱活疫苗和异种活疫苗)到分子疫苗(基因工程亚单位疫苗、合成肽疫苗和核酸疫苗)的发展过程。随着生物高新技术的发展,血吸虫疫苗候选抗原分子或抗原基因不断被发现和鉴定,基因工程疫苗已成为主要研究方向。1998年,WHO/TDR在两个独立的研究室对几种曼氏血吸虫(Sm)疫苗候选分子进行了平行实验,并提出6个最具潜力的疫苗候选分子,包括28kDa SmGST(谷胱甘肽-S-转移酶)、97kDaSm Paramyosin(副肌球蛋白)、IrV-5(致弱尾蚴免疫血清筛选的抗原分子)、TPI(丙糖-膦酸酯异构酶)、Sm23(膜相关抗原)和Sm14(脂肪酸结合蛋白)。其中,GST已进入临床Ι期试验,paramyosin、MAP-4/TPI和Sm14抗原将按GMP标准制备用于临床试验,而IrV-5和MAP-3/Sm23被推荐采用DNA免疫的形式继续研究〔2〕。1999年报道,肝片形吸虫分泌的组织蛋白酶L1和L2是重要的蛋白分子,参与免疫逃避、组织穿透和营养吸收等功能(Mulcahy等,1999;Spithill等,1999)〔17,18〕。用其接种牛,可减少虫负荷42%~69%,虫卵活力下降60%,若将其与高分子血红蛋白结合,保护率可增加至73%(McGonigle等,1995)。Piacenza等(1999)用其接种绵羊,保护率为60%,减卵率为71%~81%,将其与天然亮氨酸氨肽酶结合时,保护率可增加到79%〔19〕。肝片形吸虫其他蛋白分子,如谷胱甘肽S转移酶(GST)和多种脂肪酸结合蛋白(FABP)对牛的保护率分别是19%~67%和55%,但有关肝片形吸虫重组疫苗的试验未见报道(Spithill等,1999)〔20〕。 绦虫疫苗 绦虫也多引起人兽共患病,且中绦期幼虫寄生引起的囊尾蚴病和棘球蚴病对宿主的危害更严重。用于预防带属(囊尾蚴病)和棘球属(棘球蚴病)绦虫的重组疫苗研究已获成功。20世纪80年代,在中国、新西兰和澳大利亚、阿根廷分别实施的试验结果证明棘球蚴疫苗EG95对牛群感染的保护率达96%~100%。预防绵羊带绦虫感染的疫苗45W的保护率达92%以上,牛带绦虫疫苗预防牛的感染同样有效。EG95和45W抗原在六钩蚴表面表达,与抗体和补体结合,阻止六钩蚴逸出和移行,从而发挥保护免疫作用。其另一重要特性是能产生跨种保护,已证实绵羊带绦虫45W、To18t To16分子的复合物能诱导人工感染猪的保护率达93%。因此,在预防人类感染中有应用潜力(Lightowlers等,2000)〔21〕。Chabalgoity(2001)报道棘球绦虫六钩蚴的脂肪酸结合蛋白以致弱的鼠伤寒杆菌(LVRO1)表达形式口服接种犬,可产生有效的体液和细胞免疫应答,作者建议研究其他犬用候选疫苗时应用这种表达形式,因为鼠伤寒杆菌LCRO1对犬无害〔22〕。 线虫疫苗 钩虫疫苗的研究目标主要针对减轻虫负荷、减少宿主失血和增强交叉防御作用。早在30年代,Johns Hopkins公共卫生学院蠕虫学系用犬钩口线虫活的三期幼虫(L3)口服或皮下接种犬和鼠,可减轻虫负荷、减少肠出血。60年代,L3疫苗被研制成一种致弱活疫苗,70年代初投放市场。然而,因其不能抵御感染和再感染且价格昂贵而被淘汰。随后研究重点转向L3分泌抗原(Ancylostoma secreted protein, ASP)。目前,ASP-1和ASP-2类似蛋白在十二指肠钩口线虫、锡兰钩口线虫和美洲板口线虫已得到分离和克隆。并有证据表明,ASP是有前景的疫苗候抗原〔23〕。血矛属、奥斯特属和毛圆属消化道线虫,是牛、羊等动物最主要的寄生虫,在驱虫药市场中占有最大的份额,人们投入的研究精力也最多。有效的线虫疫苗是一种具氨肽酶A和M活性的110KDa的H11蛋白分子。H11在线虫微绒毛上表达并与抗体结合,可破坏线虫四期幼虫和成虫的摄食能力,对绵羊羔的保护率达90%以上。这种保护率与抗体滴度相关。因H11在自然感染时不具免疫原性,而被认为是一种“隐蔽抗原”(Newton等,1999)〔24〕。研究显示,捻转血矛线虫p100GA1在预防山羊异源感染时保护率为60%、虫卵减少率为50%。从众多的疫苗成分中提取能产生交叉保护的单一分子,或至少是少数几个分子已成为线虫疫苗研究的焦点。而“隐蔽抗原”被认为是最理想的候选物。另一挑战是通过重组DNA等技术使疫苗研究产业化,重组H11、H-gal-GP和TSBP的研究正在向这个方向发展(Knox等,2001)〔25〕。 节肢动物疫苗 目前的研究主要集中在与牛、绵羊等经济动物相关的节肢动物(蜱、螨、吸血蝇、毛虱等)。最具里程碑意义的是一种由大肠杆菌表达的Bm86基因工程疫苗〔TickGard (TM)〕,由澳大利亚生物技术所和联邦科学与工业研究组织(CSIRO)联合研制,用于预防牛的微小牛蜱(Willadsen,1995)〔26〕。此后,在酵母中也表达成功类似的重组疫苗〔Gavac (TM)〕并由古巴哈瓦那Heber生物技术科学院商品化生产(Garcia等,2000)〔27〕。该疫苗诱导的抗体可结合、溶解蜱肠细胞上的Bm86分子,从而干扰蜱的吸血行为,使其繁殖能力下降。1999年,澳大利亚生物技术所研制出第二代能产生强而持久免疫应答的微小牛蜱疫苗〔TickGard Plus(TM)〕。同年,加拿大批准一种预防牛纹皮蝇的蛋白酶“hypodermin A”重组疫苗上市销售(Pruett,1999)〔28〕。 寄生虫疫苗研究展望 上述证据表明,CPCMA种类多、流行因素复杂、防治难度大。人们试图寻找一种有效预防和消除这类疾病的新方法、新途径。大量研究结果证明,接种疫苗诱导宿主产生保护性免疫,以防治寄生虫和节肢动物对宿主的感染或侵害是可行的。尽管已有多种寄生虫疫苗候选抗原的研究取得明显进展,但大多数疫苗诱导的免疫保护率尚未令人满意。抗原分离与筛选、基因克隆与重组、高效表达、提高保护率交叉保护力等仍然是今后一段时间研究的重点。当然,寄生虫疫苗制剂的研究和商品化过程并非一朝一夕,它涉及寄生虫生物学、分子生物学、免疫学、疫苗试验、产业化和商品化等许多环节。我们相信,随着免疫学、基因组学和分子生物学等现代高新技术在寄生虫学研究领域的应用和发展,寄生虫疫苗必将在CPCMA的防制中发挥重要作用。
吸虫病由单殖亚纲﹑盾腹亚纲和复殖亚纲的内﹑外寄生虫引起的疾病总称。前两个亚纲的吸虫主要寄生于鱼类﹑两栖类﹑爬虫类和软件动物﹑甲壳动物。后一亚纲的复殖吸虫还寄生于哺乳动物和鸟类。 家畜吸虫病的病原均属复殖亚纲﹐常见的有片形吸虫﹑双腔吸虫﹑阔盘吸虫﹑裂体吸虫﹑姜片吸虫﹑枝睾吸虫和前殖吸虫﹐以及前后盘科各属的吸虫等。其中有的危害严重﹐呈现地方性流行﹐如肝片吸虫病和血吸虫病。 在发展中国家,人口稠密,生活水平较低,卫生条件较差,人类与家畜、家禽、野生动物及病原媒介的接触机会较多,因而感染人兽共患寄生虫病仍较普遍。寄生在肝脏的吸虫能引起急性或慢性肝炎﹐出现黄疸和消化不良﹔寄生在瘤胃和肠道的吸虫则导致消化障碍和腹泻﹔吸虫寄生于肺脏时出现咳嗽或胸膜炎﹐而当移行到皮下时则形成囊肿。
一般去的类 型比较多,kk6mm,C ° m