首页 > 医学论文 > 医学论文中采用x2检验

医学论文中采用x2检验

发布时间:

医学论文中采用x2检验

×2检验的理论依据:根据样本的频数分布来推断总体的分布。

×2检验就是统计样本的实际观测值与理论推算值之间的偏离程度的数值。对样本的频数分布所来自的总体分布是否服从某种理论分布或某种假设分布所作的假设检验。

实际观测值与理论推算值之间的偏离程度就决定其×2值的大小。理论值与实际值之间偏差越大,×2值就越大,越不符合;偏差越小,×2值就越小,越趋于符合;若两值完全相等时,×2值就为0,表明理论值完全符合。

×2检验的用途:

一、适合性检验(吻合度检验)

是指对样本的理论数先通过一定的理论分布推算出来,然后用实际观测值与理论数相比较,从而得出实际观测值与理论数之间是否吻合。因此又叫吻合度检验。

二、独立性检验

是指研究两个或两个以上的计数资料或属性资料之间是相互独立的或者是相互联系的假设检验,通过假设所观测的各属性之间没有关联,然后证明这种无关联的假设是否成立。

三、同质性检验

在连续型资料的假设检验中,对一个样本方差的同质性检验,也需进行×2检验。

绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。

(1)首先应分清是两样本率比较的四格表资料还是配对设计的四格表资料。(2)对于两样本率比较的四格表资料,就根据各格的理论值T和总例数n的大小选择不同的χ2计算公式:①当n≥40且所有的T≥5时,用χ2检验的基本公式χ2=或四格表资料检验的专用公式χ2=[(ad-bc)2*n]/[(a+b)(c+d)(a+c)(b+d)];②当n≥40但有1≤T<5时,用四格表资料χ2检验的校正公式χc2=Σ[(|A-T|)/T]或改用四格表资料的Fisher确切概率法;③当n<40或T<1时,用四格表资料的Fisher确切概率法。或资料满足两样本率的u检验的条件,也可用u检验。(3)对于配对设计的四格表资料,若检验两种方法的检测结果无差别时:①当(b+c)≥40时,χ2=(b-c)2/(b+c);②当(b+c)<40时,χc2=(|b-c|-1)2/(b+c)。

医学统计学当中用星号表示的一般是χ2检验。

医学统计学当中用星号表示的一般是χ2检验,其中χ2检验是反应变量和分组变量都为二分类变量或多分类(无序)变量时,两变量间关系的分析方法。

所谓等级资料是将观察单位按某个指标量的大小分成等级或按某种属性的不同程度分成等级后分组计数。同学们要明白其中分类汇总各组观察单位数后而得到的资料。其变量值具有半定量性质,表现为等级大小或属性程度。

医学论文统计方法之X2检验

医学论文中计数资料最常用的统计方法为X2检验,计量资料最常用的统计方法为t检验。值得注意的是,各种假设检验方法均有其适用条件,应根据资料特点来选用最适当的方法,避免统计方法选择与使用不当。

同学们要注意的是必要时,研究设计阶段也应该有统计专业的人员参与,从最源头进行控制和修正,以免降低研究的水平,以至于造成整个研究的失败。

医学论文中x2检验和t检验

卡方近似于万能吧,定量数据应用卡方会损失好多信息,本来挺准确的搞成大概了。应用范围越广的,意义也就越小

绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。

x∧2检验是定性资料的比较t检验,f检验是定量资料的比较

医学论文中常用统计分析方法的合理选择目前,不少医学论文中的统计分析存在较多的问题。有报道,经两位专家审稿认为可以发表的稿件中,其统计学误用率为90%-95%。为帮助广大医务工作者提高统计分析水平,本文将介绍医学论文中常用统计分析方法的选择原则及应用过程中的注意事项。 检验t检验是英国统计学家 1908年根据t分布原理建立起来的一种假设检验方法,常用于计量资料中两个小样本均数的比较。理论上,t检验的应用条件是要求样本来自正态分布的总体,两样本均数比较时,还要求两总体方差相等。但在实际工作中,与上述条件略有偏离,只要其分布为单峰且近似正态分布,也可应用[2]。常用的t检验有如下三类:①单个样本t检验:用于推断样本均数代表的总体均数和已知总体均数有无显著性差别。当样本例数较少(n<60)且总体标准差未知时,选用t检验;反之当样本例数较多或样本例数较少、总体标准差已知时,则可选用u检验 [3]。②配对样本t检验:适用于配对设计的两样本均数的比较,在选用时应注意两样本是否为配对设计资料。常用的配对设计资料主要有如下三种情况:两种同质受试对象分别接受两种不同的处理;同一受试对象或同一样本的两个部分,分别接受不同的处理;同一受试对象处理前后的结果比较。③两独立样本t检验:又称成组t检验,适用于完全随机设计的两样本均数的比较。与配对t检验不同的是,在进行两独立样本t检验之前,还必须对两组资料进行方差齐性检验。若为小样本且方差齐,则选用t检验;反之若方差不齐,则选用校正t检验(t’检验),或采用数据变换的方法(如取对数、开方、倒数等)使两组资料具有方差齐性后再进行t检验,或采用非参数检验[4]。此外,当两组样本例数较多(n1、n2均>50)时,这时应用t检验的计算比较繁琐,可选用u检验[5]。 2.方差分析方差分析适用于两组以上计量资料均数的比较,其应用条件是各组资料取自正态分布的总体且各组资料具有方差齐性。因此,在应用方差分析之前,同样和成组t检验一样需要对各组资料进行正态性检验、方差齐性检验。常用的方差分析有如下几类:①完全随机设计的方差分析:主要用于推断完全随机设计的多个样本均数所代表的总体均数之间有无显著性差别。完全随机设计是将观察对象随机分为两组或多组,每组接受一种处理,形成两个或多个样本。②随机区组设计的方差分析:随机区组设计首先是将全部受试对象按某种或某些特性分为若干区组,然后区组内的每个研究对象接受不同的处理,通过这种设计,既可以推断处理因素又可以推断区组因素是否对试验效应产生作用。此外,由于这种设计还使每个区组内研究对象的水平尽可能地相近,减少了个体间差异对研究结果的影响,比成组设计更容易检验出处理因素间的差别。③析因设计的方差分析:将两个或两个以上处理因素的各种浓度水平进行排列组合、交叉分组的试验设计。它不仅可以检验每个因素各水平之间是否有差异,还可以检验各因素之间是否有交互作用,同时还可以找到处理因素的各种浓度水平之间的最佳组合。此外,还有正交设计、拉丁方设计等多种方差分析法,实验者在应用时可以参考相关的统计学著作。目前,某些医学论文中有这样的情况,就是用t 检验代替方差分析对实验数据进行统计学处理,这是不可取的。t 检验只适用于推断两个小样本均数之间有无显著性差别,而采用t 检验对多组均数进行两两比较,会增加犯I 型错误的概率,即可能把本来无差别的两个总体均数判为有差别,使结论的可信度降低[6]。对多个样本均数进行比较时,正确的方法是先进行方差分析,若检验统计量有显著性意义时,再进行多个样本均数的两两(多重)比较。3.卡方检验(χ2检验)χ2检验是一种用途比较广泛的假设检验方法,但是在医学论文中常用于分类计数资料的假设检验,即用于两个样本率、多个样本率、样本内部构成情况的比较,样本率与总体率的比较,某现象的实际分布与其理论分布的比较。但是当样本满足正态近似条件时,如样本例数n与样本率p满足条件np与n(1— p)均大于5,则可以计算假设检验统计量u值来进行判断。常用的χ2检验分为如下几类:①2×2表χ2检验:适用于两个样本率或构成比的比较,在应用时,当整个试验的样本例数n≥40且某个理论频数1≤T<5时,需对χ2值进行连续性校正。因为T值太小,会导致χ2值增大,易出现假阳性结论。此外,若样本例数n<40,或有某个T值<1,此时即使采用校正公式计算的χ2值也有偏差,需要用2×2表χ2检验的确切概率检验法(Fisher确切检验法)。②配对资料χ2检验:适用于配对设计的两个样本率或构成比的比较,即通过单一样本的数据推断两种处理结果有无显著性差别。在应用时,如果甲处理结果为阳性而乙处理结果为阴性的样本例数n1与甲处理结果为阴性而乙处理结果为阳性的样本例数n2之和<40,需要对计算的χ2值进行校正。③R×C表χ2检验:适用于多个样本率或构成比的比较。在R×C表χ2检验中,若检验统计量有显著性意义时,还需要对多个样本率或构成比进行两两比较,即分割R×C表,使之成为非独立的四格表,并对每两个率之间有无显著性差别作出结论。 2×2表资料在应用时可分为如下几种类型:横断面研究设计的2×2表资料、队列研究设计的2×2表资料、病例-对照研究设计的2×2表资料、配对研究设计的2×2表资料。研究者应注意不同类型的2×2表资料的统计分析方法略有差别,比如在分析队列研究设计的2×2表资料时,如果用χ2公式计算得到P<,研究者则应再计算相对危险度(RR)并检验总体RR与1之间的差异是否具有统计学意义。此外,在进行R×C表χ2检验时,还有如下两个主要的注意事项:首先,T值最好不要<5,若有1/5的T值<5,χ2检验结论是不可靠的,解决的办法有三种:增大样本量;删去T值太小的行和列;将T值太小的行或列与性质相近的邻行或邻列的实际频数合并。其次,不同类型的R×C表资料选择的统计分析方法是不一样。①双向无序的R×C表资料:可以选用一般的χ2公式计算。②单向有序的R×C表资料:如果是原因变量为有序变量的单向有序R×C表资料,可以将其视为双向无序的R×C表资料而选用一般的χ2检验公式计算,但如果是结果变量为有序变量的单向有序R×C表资料,选用的统计分析方法有秩和检验、Radit分析和有序变量的logistic回归分析等。③双向有序且属性不同的R×C表资料:对于这类资料采用的统计分析方法不能一概而论,应根据研究者的分析目而合理选择。如果研究者只关心原因变量与结果变量之间的差异是否具有统计学意义时,此时,原因变量的有序性就显得无关紧要了,可将其视为结果变量为有序变量的单向有序R×C表资料进行分析。如果研究者希望考察原因变量与结果变量之间是否存在线性相关关系,此时需要选用处理定性资料的相关分析方法如Spearman秩相关分析方法等。如果两个有序变量之间的相关关系具有统计学意义,研究者希望进一步了解这两个有序变量之间的线性关系,此时宜选用线性趋势检验。如果研究者希望考察列联表中各行上的频数分布是否相同,此时宜选用一般的χ因此,对于适用参数检验的资料,最好还是用参数检验。秩和检验是最常用的非参数检验,它包括如下几类:①配对资料的符号秩和检验(Wilcoxon配对法):是配对设计的非参数检验。当n≤25时,可通过秩和检验对实验资料进行分析;当n>25时,样本例数超出T界值表的范围,可按近似正态分布用u检验对实验资料进行分析。②两样本比较的秩和检验(Wilcoxon Mann-Whitney检验):适用于比较两样本分别代表的总体分布位置有无差异。如果样本甲的例数为n1,样本乙的例数为n2,且n1<n2;当n1≤10、n2—n1≤10时,可通过两样本比较的秩和检验对实验资料进行分析;当n1、n2超出T界值表的范围时,同样可按近似正态分布用u检验对实验资料进行分析。③多个样本比较的秩和检验(Wilcoxon Kruskal-Wallis检验):适用于比较各样本分别代表的总体的位置有无差别,它相当于单因素方差分析的非参数检验,计算方法主要有直接法和频数表法等。此外,在进行上述3类秩和检验(前两类秩和检验实际上已经被u检验替代)时,如果相同秩次较多,则需要对计算的检验统计量进行校正。公式计算。④双向有序且属性相同的R×C表资料:这类资料实际上就是配对设计2×2表资料的延伸,在分析这类资料时,实验者的目的主要是研究两种处理方法检测结果之间是否具有一致性,因此常用的统计分析方法为一致性检验或Kappa检验。4. 非参数检验非参数检验可不考虑总体的参数、分布而对总体的分布或分布位置进行检验。它通常适用于下述资料[2]:①总体分布为偏态或分布形式未知的计量资料(尤其样本例数n<30时);②等级资料;③个别数据偏大或数据的某一端无确定的数值;④各组离散程度相差悬殊,即各总体方差不齐。该方法具有适应性强等优点,但同时也损失了部分信息,使得检验效率降低。即当资料服从正态分布时,选用非参数检验法代替参数检验法会增大犯Ⅱ类错误的概率。

医学论文中x2

刚在那个什么 创新医学网 上看见过 医学论文 写作辅导的文章 这个知道是不是 你要的答案 统计资料的显著性检验(significant test)方法的选择是医学论文中常常遇见的问题,退稿原因中常有显著性检验方法选择不当。如t检验、u检验、χ2检验等,虽然各有其应用范围和要求,但也其共同之处。作者可根据统计资料的类型,选择一种或几种检验方法。但当作者在获得一组、两组或两组以上的数据资料时,选择何种显著性检验,是至关重要的问题。不同的资料类型其统计指标、统计检验的方法是不同的,见表1。 医学生物研究中,许多指标都是服从正态分布(u分布)的,而随着样本含量加大或自由度增大,t分布、χ2分布、F分布都趋向于正态分布见图1、图2。 在《中华创伤杂志》第12卷1~6期和增刊中文章所涉及的统计方法(表2),表明了正态分布的广泛性、常见性。 故当作者获得数据资料后,首先应进行正态性检眩�范ㄊ欠为标准正态分布(或近似正态分布)或不属于正态分布。笔者首先推荐概率单位法。 当统计资料属于正态分布或近似正态分布时,差异显著性检验方法的选裕�诜合其应用条件下,一般可按表3进行选择。 显著性检验应用时的主要注意事项:(1)率值或均值在进行显著性检验前,应注意样本的代表性和可比性。(2)检验结果接近显著性界限时:要多方面考虑,是否确实不存在差异;或是观察例数不够,而需加大样本例剩换是检验公式运用不当,可用其他检验印证。(3)多个样本比例数的χ2检验,差异显著性,只能说明多组比例数不同或不完全相同,而不能确定哪个比例数不同,要进一步进行显著性检验才能了解两个样本比例数是否构成相同。表1 一般情况下不同资料的统计指标与检验方法的关系资料类型 统计指标 统计检验方法 计量资料 均数、标准差 t检验、F检验等 计数资料 率、构成比 χ2检验等 半定量资料 率、构成比 秩和检验、Ridit分析表2 《中华创伤杂志》第12卷1~6期、 增刊显著性检验方法使用频数检验方法 应用次数 检验方法 应用次数 t检验 27 直线相关与回归分析 5 χ2检验 16 拟合线性回归 1 F检验 24 相关分析 6 Q检验 2 非参数统计 4 u检验 1 未注明方法 6表3 常用显著性检验方法的选择统计资料比较类型 显著性检验 小样本均数与总体均数相比较 t检验 小样本均数相比较 t检验、F检验 两个或多个大样本均数与 总体均数相比较 u检验、t检验 大样本均数相比较 u检验、t检验 配对计量资料 配对t检验 两个率的比较 u检验、χ2检验 多个样本率的的比较 χ2检验 配对计数资料两种属性的 相关分析及其差别的比较 χ2检验

绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。

医学论文中常用统计分析方法的合理选择目前,不少医学论文中的统计分析存在较多的问题。有报道,经两位专家审稿认为可以发表的稿件中,其统计学误用率为90%-95%。为帮助广大医务工作者提高统计分析水平,本文将介绍医学论文中常用统计分析方法的选择原则及应用过程中的注意事项。 检验t检验是英国统计学家 1908年根据t分布原理建立起来的一种假设检验方法,常用于计量资料中两个小样本均数的比较。理论上,t检验的应用条件是要求样本来自正态分布的总体,两样本均数比较时,还要求两总体方差相等。但在实际工作中,与上述条件略有偏离,只要其分布为单峰且近似正态分布,也可应用[2]。常用的t检验有如下三类:①单个样本t检验:用于推断样本均数代表的总体均数和已知总体均数有无显著性差别。当样本例数较少(n<60)且总体标准差未知时,选用t检验;反之当样本例数较多或样本例数较少、总体标准差已知时,则可选用u检验 [3]。②配对样本t检验:适用于配对设计的两样本均数的比较,在选用时应注意两样本是否为配对设计资料。常用的配对设计资料主要有如下三种情况:两种同质受试对象分别接受两种不同的处理;同一受试对象或同一样本的两个部分,分别接受不同的处理;同一受试对象处理前后的结果比较。③两独立样本t检验:又称成组t检验,适用于完全随机设计的两样本均数的比较。与配对t检验不同的是,在进行两独立样本t检验之前,还必须对两组资料进行方差齐性检验。若为小样本且方差齐,则选用t检验;反之若方差不齐,则选用校正t检验(t’检验),或采用数据变换的方法(如取对数、开方、倒数等)使两组资料具有方差齐性后再进行t检验,或采用非参数检验[4]。此外,当两组样本例数较多(n1、n2均>50)时,这时应用t检验的计算比较繁琐,可选用u检验[5]。 2.方差分析方差分析适用于两组以上计量资料均数的比较,其应用条件是各组资料取自正态分布的总体且各组资料具有方差齐性。因此,在应用方差分析之前,同样和成组t检验一样需要对各组资料进行正态性检验、方差齐性检验。常用的方差分析有如下几类:①完全随机设计的方差分析:主要用于推断完全随机设计的多个样本均数所代表的总体均数之间有无显著性差别。完全随机设计是将观察对象随机分为两组或多组,每组接受一种处理,形成两个或多个样本。②随机区组设计的方差分析:随机区组设计首先是将全部受试对象按某种或某些特性分为若干区组,然后区组内的每个研究对象接受不同的处理,通过这种设计,既可以推断处理因素又可以推断区组因素是否对试验效应产生作用。此外,由于这种设计还使每个区组内研究对象的水平尽可能地相近,减少了个体间差异对研究结果的影响,比成组设计更容易检验出处理因素间的差别。③析因设计的方差分析:将两个或两个以上处理因素的各种浓度水平进行排列组合、交叉分组的试验设计。它不仅可以检验每个因素各水平之间是否有差异,还可以检验各因素之间是否有交互作用,同时还可以找到处理因素的各种浓度水平之间的最佳组合。此外,还有正交设计、拉丁方设计等多种方差分析法,实验者在应用时可以参考相关的统计学著作。目前,某些医学论文中有这样的情况,就是用t 检验代替方差分析对实验数据进行统计学处理,这是不可取的。t 检验只适用于推断两个小样本均数之间有无显著性差别,而采用t 检验对多组均数进行两两比较,会增加犯I 型错误的概率,即可能把本来无差别的两个总体均数判为有差别,使结论的可信度降低[6]。对多个样本均数进行比较时,正确的方法是先进行方差分析,若检验统计量有显著性意义时,再进行多个样本均数的两两(多重)比较。3.卡方检验(χ2检验)χ2检验是一种用途比较广泛的假设检验方法,但是在医学论文中常用于分类计数资料的假设检验,即用于两个样本率、多个样本率、样本内部构成情况的比较,样本率与总体率的比较,某现象的实际分布与其理论分布的比较。但是当样本满足正态近似条件时,如样本例数n与样本率p满足条件np与n(1— p)均大于5,则可以计算假设检验统计量u值来进行判断。常用的χ2检验分为如下几类:①2×2表χ2检验:适用于两个样本率或构成比的比较,在应用时,当整个试验的样本例数n≥40且某个理论频数1≤T<5时,需对χ2值进行连续性校正。因为T值太小,会导致χ2值增大,易出现假阳性结论。此外,若样本例数n<40,或有某个T值<1,此时即使采用校正公式计算的χ2值也有偏差,需要用2×2表χ2检验的确切概率检验法(Fisher确切检验法)。②配对资料χ2检验:适用于配对设计的两个样本率或构成比的比较,即通过单一样本的数据推断两种处理结果有无显著性差别。在应用时,如果甲处理结果为阳性而乙处理结果为阴性的样本例数n1与甲处理结果为阴性而乙处理结果为阳性的样本例数n2之和<40,需要对计算的χ2值进行校正。③R×C表χ2检验:适用于多个样本率或构成比的比较。在R×C表χ2检验中,若检验统计量有显著性意义时,还需要对多个样本率或构成比进行两两比较,即分割R×C表,使之成为非独立的四格表,并对每两个率之间有无显著性差别作出结论。 2×2表资料在应用时可分为如下几种类型:横断面研究设计的2×2表资料、队列研究设计的2×2表资料、病例-对照研究设计的2×2表资料、配对研究设计的2×2表资料。研究者应注意不同类型的2×2表资料的统计分析方法略有差别,比如在分析队列研究设计的2×2表资料时,如果用χ2公式计算得到P<,研究者则应再计算相对危险度(RR)并检验总体RR与1之间的差异是否具有统计学意义。此外,在进行R×C表χ2检验时,还有如下两个主要的注意事项:首先,T值最好不要<5,若有1/5的T值<5,χ2检验结论是不可靠的,解决的办法有三种:增大样本量;删去T值太小的行和列;将T值太小的行或列与性质相近的邻行或邻列的实际频数合并。其次,不同类型的R×C表资料选择的统计分析方法是不一样。①双向无序的R×C表资料:可以选用一般的χ2公式计算。②单向有序的R×C表资料:如果是原因变量为有序变量的单向有序R×C表资料,可以将其视为双向无序的R×C表资料而选用一般的χ2检验公式计算,但如果是结果变量为有序变量的单向有序R×C表资料,选用的统计分析方法有秩和检验、Radit分析和有序变量的logistic回归分析等。③双向有序且属性不同的R×C表资料:对于这类资料采用的统计分析方法不能一概而论,应根据研究者的分析目而合理选择。如果研究者只关心原因变量与结果变量之间的差异是否具有统计学意义时,此时,原因变量的有序性就显得无关紧要了,可将其视为结果变量为有序变量的单向有序R×C表资料进行分析。如果研究者希望考察原因变量与结果变量之间是否存在线性相关关系,此时需要选用处理定性资料的相关分析方法如Spearman秩相关分析方法等。如果两个有序变量之间的相关关系具有统计学意义,研究者希望进一步了解这两个有序变量之间的线性关系,此时宜选用线性趋势检验。如果研究者希望考察列联表中各行上的频数分布是否相同,此时宜选用一般的χ因此,对于适用参数检验的资料,最好还是用参数检验。秩和检验是最常用的非参数检验,它包括如下几类:①配对资料的符号秩和检验(Wilcoxon配对法):是配对设计的非参数检验。当n≤25时,可通过秩和检验对实验资料进行分析;当n>25时,样本例数超出T界值表的范围,可按近似正态分布用u检验对实验资料进行分析。②两样本比较的秩和检验(Wilcoxon Mann-Whitney检验):适用于比较两样本分别代表的总体分布位置有无差异。如果样本甲的例数为n1,样本乙的例数为n2,且n1<n2;当n1≤10、n2—n1≤10时,可通过两样本比较的秩和检验对实验资料进行分析;当n1、n2超出T界值表的范围时,同样可按近似正态分布用u检验对实验资料进行分析。③多个样本比较的秩和检验(Wilcoxon Kruskal-Wallis检验):适用于比较各样本分别代表的总体的位置有无差别,它相当于单因素方差分析的非参数检验,计算方法主要有直接法和频数表法等。此外,在进行上述3类秩和检验(前两类秩和检验实际上已经被u检验替代)时,如果相同秩次较多,则需要对计算的检验统计量进行校正。公式计算。④双向有序且属性相同的R×C表资料:这类资料实际上就是配对设计2×2表资料的延伸,在分析这类资料时,实验者的目的主要是研究两种处理方法检测结果之间是否具有一致性,因此常用的统计分析方法为一致性检验或Kappa检验。4. 非参数检验非参数检验可不考虑总体的参数、分布而对总体的分布或分布位置进行检验。它通常适用于下述资料[2]:①总体分布为偏态或分布形式未知的计量资料(尤其样本例数n<30时);②等级资料;③个别数据偏大或数据的某一端无确定的数值;④各组离散程度相差悬殊,即各总体方差不齐。该方法具有适应性强等优点,但同时也损失了部分信息,使得检验效率降低。即当资料服从正态分布时,选用非参数检验法代替参数检验法会增大犯Ⅱ类错误的概率。

可以找专业的医学论文辅导机构啊。或者楼主就去“死缠”你的老师或者有经验的作者、医生吧。其实,我个人认为楼上这位朋友的回答挺好的。

医学论文常用检验

绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。

医学检验按照书本分为免疫检验,微生物检验,生化检验,临床检验,血液检验,输血检验,寄生虫检验等几本书。不知道你问的是不是这个。若按照标本性质可分为血液检验,尿液检验,粪便检验,体液检验等等。若问具体检验项目那就太多了,无法一一回答。

1,血象分析/血气分析2,尿液检验(肾及泌尿系疾病检验)3,粪检(消化系疾病检验)4,血糖检验5,肝功能检验6,病毒性检验7,艾滋病检验8,癌症血液蛋白筛查9,肿瘤分析10,传染源及过敏筛查11,细菌敏感性药物试验12,其它检验项目

刚在那个什么 创新医学网 上看见过 医学论文 写作辅导的文章 这个知道是不是 你要的答案 统计资料的显著性检验(significant test)方法的选择是医学论文中常常遇见的问题,退稿原因中常有显著性检验方法选择不当。如t检验、u检验、χ2检验等,虽然各有其应用范围和要求,但也其共同之处。作者可根据统计资料的类型,选择一种或几种检验方法。但当作者在获得一组、两组或两组以上的数据资料时,选择何种显著性检验,是至关重要的问题。不同的资料类型其统计指标、统计检验的方法是不同的,见表1。 医学生物研究中,许多指标都是服从正态分布(u分布)的,而随着样本含量加大或自由度增大,t分布、χ2分布、F分布都趋向于正态分布见图1、图2。 在《中华创伤杂志》第12卷1~6期和增刊中文章所涉及的统计方法(表2),表明了正态分布的广泛性、常见性。 故当作者获得数据资料后,首先应进行正态性检眩�范ㄊ欠为标准正态分布(或近似正态分布)或不属于正态分布。笔者首先推荐概率单位法。 当统计资料属于正态分布或近似正态分布时,差异显著性检验方法的选裕�诜合其应用条件下,一般可按表3进行选择。 显著性检验应用时的主要注意事项:(1)率值或均值在进行显著性检验前,应注意样本的代表性和可比性。(2)检验结果接近显著性界限时:要多方面考虑,是否确实不存在差异;或是观察例数不够,而需加大样本例剩换是检验公式运用不当,可用其他检验印证。(3)多个样本比例数的χ2检验,差异显著性,只能说明多组比例数不同或不完全相同,而不能确定哪个比例数不同,要进一步进行显著性检验才能了解两个样本比例数是否构成相同。表1 一般情况下不同资料的统计指标与检验方法的关系资料类型 统计指标 统计检验方法 计量资料 均数、标准差 t检验、F检验等 计数资料 率、构成比 χ2检验等 半定量资料 率、构成比 秩和检验、Ridit分析表2 《中华创伤杂志》第12卷1~6期、 增刊显著性检验方法使用频数检验方法 应用次数 检验方法 应用次数 t检验 27 直线相关与回归分析 5 χ2检验 16 拟合线性回归 1 F检验 24 相关分析 6 Q检验 2 非参数统计 4 u检验 1 未注明方法 6表3 常用显著性检验方法的选择统计资料比较类型 显著性检验 小样本均数与总体均数相比较 t检验 小样本均数相比较 t检验、F检验 两个或多个大样本均数与 总体均数相比较 u检验、t检验 大样本均数相比较 u检验、t检验 配对计量资料 配对t检验 两个率的比较 u检验、χ2检验 多个样本率的的比较 χ2检验 配对计数资料两种属性的 相关分析及其差别的比较 χ2检验

中国实用检验医学杂志

这标志着《实用临床医药杂志》的发展又跨上了一个新的台阶。几年来,《实用临床医药杂志》坚持走“精品化”之路,注重提高刊物的学术水平,在历次期刊评比中多次被评为优秀期刊,同时被国内多家重要数据库如中国期刊全文数据库(cjfd)、中国生物医学文献数据库(cmcc)、中国科技信息研究所万方数据-数字化期刊群、中文科技期刊数据库、中国核心期刊(遴选)数据库、中国学术期刊(光盘版)、中国医学文摘等全文收录。

我找别人要的名片。有你要找的吗?希望可以帮助你~

中国实用医药经国家新闻出版总署正式批准出版的国家级综合性医药卫生类学术专业期刊,国际标准连续出版物号ISSN1673-7555,国内统一连续出版物号CN11-5547/R创刊年是2006年10月,所以说现在还不确定是不是北大核心期刊,要看今年评出的结果

核心期刊

现设有临床微生物学、临床生物化学、临床免疫学、临床血液与检验学、分子生物学、实验室管理等专业的论著、论著摘要、讲座、综述、会议(座谈)纪要、经验交流、国内外学术动态、教学园地、新技术和新方法等。从1999年起开设 “专题”栏目,其内容新,信息量大,深受国内医学检验同道的好评。

扩展资料

《检验医学》(原《上海医学检验杂志》)为上海市卫生局主管、上海市临床检验中心主办的国内外公开发行的杂志,被列为中文核心期刊要目总览(临床医学类核心期刊)(1996版~2008版)、中国科技论文统计源核心期刊(中国科技核心期刊)。

被《中国学术期刊综合评价数据库》、《中国核心期刊(遴选)数据库》、《中国期刊全文数据库》、美国化学文摘(CA)、俄罗斯《文摘杂志》检索系统、波兰《哥白尼索引》检索系统、美国剑桥科学文摘社CSA-ProQuest数据库、美国《乌利希期刊指南》等国内外数据库收录。

自2002年起连续3届被评为华东地区优秀期刊,同时还荣获首届《CAJ-CD规范》执行优秀期刊奖、上海市科协系统优秀期刊提名奖、上海市科技期刊审读优秀奖。

本刊于1986年3月创刊,从1999年起由季刊改为双月刊,2009年起改为月刊。本刊坚持以实用为主,理论与实践、普及与提高、检验与临床三结合,报道本专业领域中的最新科研成果、实用技术的新进展、各种检验方法的性能和特点等内容。

就检验医学的方法学而言,新颖的自动化仪器及试剂,各种技术的日臻完善,加之小型化、简单化和即时检验(POCT)的发展,不断满足对患者快速诊断和自我诊断的需求,检验医学的发展使之成为临床医学中不可或缺的重要学科。

为了更广泛深入地传播检验医学新知识和现代信息,因此,本刊于2004年起,将《上海医学检验杂志》更名为《检验医学》。

本刊现设有临床微生物学、临床生物化学、临床免疫学、临床检验与血液学、分子生物学、实验室管理等专业的论著、论著摘要、讲座、综述、会议(座谈)纪要、经验交流、国内外学术动态、教学园地、新技术和新方法等。从1999年起本刊开设“专题”栏目,其内容新,信息量大,深受国内医学检验同道的好评。

本刊在国内检验医学领域期刊中率先实行开放存取(Open Access,OA)。2013年网站文章年点击量超过71万次(其中国内占、美国占、欧洲占、其他地区占。)。2013年全文下载量超过31万次;以中国()和美国()为主,分布于30个国家。

为了提高杂志质量,本刊于编委会换届之际聘请4位外籍专家作为杂志编委。这4位编委分别为:朱玉胜(美国南卡罗来纳医科大学病理及检验医学系临床化学及毒理学部主任)、李仕勇(美国埃默里大学医院病理与检验科流式细胞实验室主任)、郑晓天(美国芝加哥Ann & Robert 儿童医院微生物室主任)、杨治(美国新泽西医科和齿科大学细胞生物学与分子医学系教授)。这也为《检验医学》走出国门打下了坚实的基础。

参考资料来源:百度百科-检验医学

参考资料来源:检验医学_官方网站-《检验医学》(原《上海医学检验杂志》)简介

  • 索引序列
  • 医学论文中采用x2检验
  • 医学论文中x2检验和t检验
  • 医学论文中x2
  • 医学论文常用检验
  • 中国实用检验医学杂志
  • 返回顶部