首页 > 医学论文 > 川崎病小鼠模型相关论文

川崎病小鼠模型相关论文

发布时间:

川崎病小鼠模型相关论文

Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes,if=, Science.  2018 Mar 2;359(6379):1037-1042. doi: 有两个关于IL-2的故事,一个是肿瘤研究中制作移植瘤的大鼠动物模型:NOD/SCID/IL2γ null mouse,其中将大鼠X染色体上的IL-2受体的γ链双敲除,该基因敲除之后,大鼠免疫力严重降低,成为制作移植瘤成功率最高的动物模型。另外一个是,肝脏移植术中使用舒莱预防急性排斥反应,舒莱又称巴利惜单抗,其针对的抗原是CD25,而CD25蛋白是IL-2受体的组成部分。急性排斥反应是T细胞介导的细胞免疫反应,IL-2作用于T细胞表面的IL-2R,可以促进T细胞的活化增殖,增强细胞免疫的杀伤作用。舒莱可以阻断IL-2R,抑制T细胞的活化增生,从而抑制急性排斥反应。本研究是IL-2在增强肿瘤免疫中的作用的应用。 另外本研究是关于CAR-T肿瘤免疫治疗的内容。chemeric antigen receptor T cell immunotherapy嵌合抗原受体T细胞免疫治疗,简单来说,将肿瘤患者的T细胞提取,体外通过基因工程改造,使得T细胞表面表达肿瘤相关抗原受体,然后再回输至患者体内,这些T细胞将识别肿瘤细胞,发挥细胞免疫杀伤作用。第一代CAR-T由于主要问题是:回输入体内后,不久CAR-T就逐渐死亡或凋亡消耗掉了,治疗持续时间短。于是有人想法在T细胞表面加入一些共刺激因子,让其在体内可以接受刺激,促进其活化增殖,以便提供持续动力。其中包括IL-2R,就是一类共刺激分子,可以增强CAR-T的存活和功能。但是IL-2作用比较广泛,CAR-T和IL-2共同输入,副反应太大。本研究即解决上述矛盾。 本研究的科学假设:同时改造CAR-T的共刺激受体IL-2R和输入的IL-2,使得只有改造的IL-2和CAR-T的IL-2R结合,而不与体内其他细胞表面的IL-2R结合,也就不会产生相关副作用了。 肯定得需要动物模型实验,制作移植瘤模型,给予CAR-T免疫治疗,然后分成两组,分别给予普通IL-2和orthognal IL-2,观察评价治疗疗效、副反应。疗效评价可以选用瘤体大小、肿瘤生长等指标。IL-2辅助免疫治疗的副反应如何评价?需要知道我们临床常见的副反应是什么,根据不良反应再来选择检测指标。 除了动物模型的表象功能之外,尚需要深入的分子互作研究。普通IL-2的分子互作机制什么?基因工程改造之后的orthognal IL-2能否与IL-2R结合,如何评价?orthognal IL-2和其他作用细胞共培养,检测哪些常规细胞因子,评价其不能引起相关副作用? IL-2刺激T细胞表面的IL-2Rβ,经过信号传导,引起细胞内STAT5的磷酸化,通过检测pSTAT5的表达水平,评估IL-2的生物学功能强弱。 IL-2和CD8+T细胞表面的IL-2R结合后,刺激细胞内转录因子STAT5磷酸化,激活下游通路,刺激细胞增生和细胞周期的前进。野生型IL-2、改装orthoIL-2(1G12和3A10)分别对野生型CD8+ T和改装orthoIL-2β的CD8+ T细胞作用,验证改装的orthoIL-2只对改装的T细胞有作用,而对野生型无作用。 制作黑色素瘤的动物模型(本部分主要探讨IL-2治疗的副作用,所以没有制作肿瘤动物模型,而是选用的品系稳定的BL6小鼠模型),分别过继输入野生型CD8+T和改装orthoIL-2Rβ的CD8+T细胞(论文中为mixture of wild-type and orthoIL-2Rβ CD8+ T cells),然后分别输入IL-2和ortho IL-2,观察两种IL-2分别对两种过继CD8+ T的影响。5天后取受体脾脏血液,评价受体中存活的供体CD8+ T细胞数量。发现常规IL-2和野生型CD8+ T细胞在过继后很快消耗,而改装过的ortho IL-2和ortho IL-2Rβ组,可以维持CD8+T数量在一个高水平。 评价IL-2对机体免疫功能的影响,可以检测受体小鼠脾脏重量以及脾脏内CD8+ memory phenotype T cell、CD4+ Treg、和NK细胞数量的变化。CD8+ MP( CD44+CD62L+)、CD4 Treg(CD25+Foxp3+)、NK (()。发现注射野生IL-2,对机体免疫功能影响很大。 检测受体小鼠体内IFN、IL-5、血小板计数;同样反应IL-2对机体的影响;另外从宏观水平上,可以观察注射IL-2之后小鼠生存率、体重变化等方面评价IL-2的疗效。 上一部分是证实传统IL-2注射后,对机体的副反应很大,用于临床患者不能耐受IL-2诱导的副反应,而作者改装的orthoIL-2/IL-2β则不会诱导副反应。本部分需要证实改装的orthoIL-2具有抗肿瘤效应。需要制作黑色素瘤的动物模型(B6-F10 mouse model of melanoma,B6-F10黑色素瘤细胞皮下注射C57BL/6J小鼠)。 首先评价过继T细胞分泌IFN-γ和细胞表面PD-1/TIM-3的表达水平变化,因为能分泌IFN-γ的过继T细胞更具杀伤力,而PD-1和TIM-3与过继T细胞的杀伤力呈反比。可以发现改装orthoIL-2可以刺激过继T细胞分泌IFN-γ,而不明显提高TIM-3的表达。 宏观水平,从移植瘤生长速度和移植瘤小鼠生存率两个指标观察治疗疗效。 本论文最后一部分,是针对过继T细胞对黑色素瘤治疗疗效的评价。那么如何产生针对黑色素留的过继T细胞呢? 黑色素瘤表达gp100抗原,制作识别pmel-1的TCR的CD8+ T细胞,可以识别黑色素瘤细胞,进而杀灭瘤细胞。B16-F10是小鼠黑色素瘤细胞系,可以皮下种植与C57BL/6J小鼠形成移植瘤。orthoIL-2Rβ pmel1 transgenic CD8+ Tcells:利用转基因制作的针对B6-F10黑色素瘤细胞抗原gp100的TCR 杀伤T细胞。

从简单地剪切致病基因,到开发出不再传播疾病的工程动物,基因编辑技术已经释放出巨大的潜力。随着研究的深入,科学界还发现,除了编辑具有遗传讯息的DNA片段,编辑RNA可以在不改变基因组的情况下,帮助调整基因表达方式,此外,RNA的寿命是相对短暂的,这也意味着它的变化是可以逆转的,从而避免基因工程中的巨大风险。

2017年10月,来自Broad研究所的张锋研究团队在《自然》期刊上发表了题为“RNA targeting with CRISPR-Cas13”的文章,首次将CRISPR-Cas13系统公之于众,证实了CRISPR-Cas13可以靶向哺乳动物细胞中的RNA。仅仅时隔三周,又一篇名为“RNA editing with CRISPR-Cas13”的力作发表于《科学》期刊。在该研究中,张锋研究团队再次展示了这一RNA编辑系统,能有效地对RNA中的腺嘌呤进行编辑。

在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a酶一大优势在于更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。但CRISPR-Cas13系统还有一个重要的问题,Cas13a酶本质上是一种相对较大的蛋白质,因此很难被包装到靶组织中,这也可能成为RNA编辑技术临床应用的一大障碍。

2018年3月16日,一项发表在《细胞》期刊的重磅成果为RNA编辑技术带来一大步飞跃,来自美国Salk研究所的科学家利用全新的CRISPR家族酶扩展了RNA编辑能力,并将这个新系统命名为“CasRx”。

CasRx(品红色)在人类细胞核中靶向RNA(灰色),Salk研究所

“生物工程师就像自然界的侦探一样,在DNA模式中寻找线索来帮助解决遗传疾病。CRISPR彻底改变了基因工程,我们希望将编辑工具从DNA扩展到RNA。”研究领导者Patrick Hsu博士表示,“RNA信息是许多生物过程的关键介质。在许多疾病中,这些RNA信息失去了平衡,因此直接靶向RNA的技术将成为DNA编辑的重要补充。”

除了高效性且无明显脱靶效应,新系统的一个关键特征是其依赖于一种比以前研究中物理尺寸更小的酶。 这对RNA编辑技术至关重要,这使得该编辑工具能够更容易被包装到病毒载体,并进入细胞进行RNA编辑。来自东京大学的科学家Hiroshi Nishimasu并未参与这项研究,他表示:“在这项研究中,研究人员发现了一种较Cas13d更加‘紧凑’的酶CasRx。从基础研究到治疗应用,我认为CasRx将成为非常有用的工具。”

此外,在这项研究中,研究人员还展示了利用这种新型RNA编辑系统来纠正RNA过程的能力。他们将CasRx包装到病毒载体中,并将其递送到利用额颞叶痴呆(FTD)患者干细胞中培养的神经细胞,最终使tau蛋白水平恢复到健康水平上,有效率达到80%。

Patrick Hsu博士最后说道:“基因编辑技术通过对DNA的切割带来基因序列的改变。在经过基因编辑的细胞中,其效果是永久的。虽然基因编辑技术能够很好地将基因完全关闭,但对调节基因的表达上并不那么优秀。展望未来,这一最新工具将在RNA生物学研究中发挥重要作用,并有望在未来凭借该技术对RNA相关疾病进行治疗。”

该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默。

3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默,证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性,通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向Pscsk9的sgRNA到小鼠肝脏,有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比,Cas13d没有脱靶)和敲除效率(Cas13d达到96%,shRNA达到65%)。而与Cas9介导的基因敲除技术相比,Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低Pten的质粒、尾静脉注射敲低Pcsk9的AAV8病毒、眼部注射敲低Vegfa的AAV病毒。对注射后的小鼠进行相应分析,分别得到Pten基因下调及其下游蛋白AKT的磷酸化上调,Pcsk9下调造成血清胆固醇下调;Vegfa下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

2020年3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向 Pten 基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了 Pten 的高效沉默, 证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性, 通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向 Pscsk9 的sgRNA到小鼠肝脏, 有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平 。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也 探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低 Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积**,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比, Cas13d没有脱靶)和敲除效率(Cas13d达到96% ,shRNA达到65%)。而与Cas9介导的基因敲除技术相比, Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的 ,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性 。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低 Pten 的质粒、尾静脉注射敲低 Pcsk9 的AAV8病毒、眼部注射敲低 Vegfa 的AAV病毒。对注射后的小鼠进行相应分析,分别得到 Pten 基因下调及其下游蛋白AKT的磷酸化上调, Pcsk9 下调造成血清胆固醇下调; Vegfa 下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

图1 CasRx介导的 Pten 体内体外的下调( Protein & Cell )

A.质粒示意图;细胞中 Pten 的下调;检测PTEN及AKT的表达; 与shRNA脱靶比较;E.尾静脉注射质粒示意图;.免疫荧光,qPCR,western分别检测 Pten 及p-AKT的表达

图2 血清胆固醇的调节以及 Pcsk9 的可逆调控( Protein & Cell )

A.针对 Pcsk9 的AAV8病毒注射示意图;B.肝组织中 Pcsk9 的表达量;C.血清 PCSK9 的表达量;D.血清胆固醇水平;.血清ALT和AST的测定;G.可逆调节注射示意图; H. Pcsk9 的动态调控。

图3 AAV介导CasRx减少了AMD小鼠模型中CNV的面积(National Science Review)

A.小鼠和人序列比较以及sgRNA示意图;.在293T和N2a细胞中敲低 Vegfa ;蛋白的表达;病毒质粒示意图;F.实验流程图;的mRNA表达水平;.激光烧伤之前或之后7天的 Vegfa mRNA水平;诱导3天后的VEGFA蛋白水平;K.激光烧伤7天后,用PBS或AAV-CasRx- Vegfa 注射的代表性CNV图像;面积统计。

2020 年 4 月 8 日, Cell 期刊在线发表了题为 《Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice》 的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室 杨辉 研究组完成。

该项研究通过运用最新开发的 RNA 靶向 CRISPR 系统 CasRx 特异性地在视网膜穆勒胶质细胞中敲低 Ptbp1 基因的表达,首次在成体中实现了视神经节细胞的再生,并且恢复了永久性视力损伤模型小鼠的视力。同时,该研究还证明了这项技术可以非常高效且特异地将纹状体内的星形胶质细胞转分化成多巴胺神经元,并且基本消除了帕金森疾病的症状。该研究将为未来众多神经退行性疾病的治疗提供一个新的途径。

人类的神经系统包含成百上千种不同类型的神经元细胞。在成熟的神经系统中,神经元一般不会再生,一旦死亡,就是永久性的。神经元的死亡会导致不同的神经退行性疾病,常见的有阿尔兹海默症和帕金森症。此类疾病的病因尚不明确且没有根治的方法,因此对人类的健康造成巨大威胁。据统计,目前全球大约有 1 亿多的人患有神经退行性疾病,而且随着老龄化的加剧,神经退行性疾病患者数量也将逐渐增多。

在常见的神经性疾病中,视神经节细胞死亡导致的永久性失明和多巴胺神经元死亡导致的帕金森疾病是尤为特殊的两类,它们都是由于特殊类型的神经元死亡导致。我们之所以能看到外界绚烂多彩的世界,是因为我们的眼睛和大脑中存在一套完整的视觉通路,而连接眼睛和大脑的神经元就是视神经节细胞。

作为眼睛和大脑的唯一一座桥梁,视神经节细胞对外界的不良刺激非常敏感。研究发现很多眼疾都可以导致视神经节细胞的死亡,急性的如缺血性视网膜病,慢性的如青光眼。视神经节细胞一旦死亡就会导致永久性失明。据统计,仅青光眼致盲的人数在全球就超过一千万人。

帕金森疾病是一种常见的老年神经退行性疾病。它的发生是由于脑内黑质区域中一种叫做多巴胺神经元的死亡,从而导致黑质多巴胺神经元不能通过黑质-纹状体通路将多巴胺运输到大脑的另一个区域纹状体。目前,全球有将近一千万人患有此病,我国尤为严重,占了大约一半的病人。 如何在成体中再生出以上两种特异类型的神经元,一直是全世界众多科学家努力的方向。

该研究中,研究人员首先在体外细胞系中筛选了高效抑制 Ptbp1 表达的 gRNA,设计了特异性标记穆勒胶质细胞和在穆勒胶质细胞中表达 CasRx 的系统。所有元件以双质粒系统的形式被包装在 AAV 中并且通过视网膜下注射,特异性地在成年小鼠的穆勒胶质细胞中下调 Ptbp1 基因的表达。

大约一个月后,研究人员在视网膜视神经节细胞层发现了由穆勒胶质细胞转分化而来的视神经节细胞,并且转分化而来的视神经节细胞可以像正常的细胞那样对光刺激产生相应的电信号。

研究人员进一步发现,转分化而来的视神经节细胞可以通过视神经和大脑中正确的脑区建立功能性的联系,并且将视觉信号传输到大脑。在视神经节细胞损伤的小鼠模型中,研究人员发现转分化的视神经细胞可以让永久性视力损伤的小鼠重新建立对光的敏感性。

为进一步发掘 Ptbp1 介导的胶质细胞向神经元转分化的治疗潜能,研究人员证明了该策略还能特异性地将纹状体中的星形胶质细胞非常高效的转分化为多巴胺神经元,并且证明了转分化而来的多巴胺神经元能够展现出和黑质中多巴胺神经元相似的特性。

在行为学测试中,研究人员发现这些转分化而来的多巴胺神经元可以弥补黑质中缺失的多巴胺神经元的功能,从而将帕金森模型小鼠的运动障碍逆转到接近正常小鼠的水平。

需要指出的是,虽然科学家们在实验室里取得了重要进展,但是要将研究成果真正应用于人类疾病的治疗,还有很多工作要做:人类的视神经节细胞能否再生?帕金森患者是否能通过该方法被治愈?这些问题有待全世界的科研工作者共同努力去寻找答案。

(上)CasRx 通过靶向的降解 Ptbp1 mRNA 从而实现 Ptbp1 基因表达的下调。

(中)视网膜下注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将视网膜穆勒胶质细胞转分化为视神经节细胞,转分化而来视神经节细胞可以和正确的脑区建立功能性的联系,并且提高永久性视力损伤模型小鼠的视力。

(下)在纹状体中注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将星形胶质细胞转分化为多巴胺神经元,从而基本消除了帕金森疾病模型小鼠的运动症状。

RNA-editing Cas13 enzymes have taken the CRISPR world by storm. Like RNA interference, these enzymes can knock down RNA without altering the genome , but Cas13s have higher on-target specificity. New work from Konermann et al. and Yan et al. describes new Cas13d enzymes that average only kb in size and are easy to package in low-capacity vectors! These small, but mighty type VI-D enzymes are the latest tools in the transcriptome engineering toolbox.

Microbial CRISPR diversity is impressive, and researchers are just beginning to tap the wealth of CRISPR possibilities. To identify Cas13d, both groups used very general bioinformatic screens that looked for a CRISPR repeat array near a putative effector nuclease. The Cas13d proteins they identified have little sequence similarity to previously identified Cas13a-c orthologs, but they do include HEPN nuclease domains characteristic of the Cas13 superfamily. Yan et al. proceeded to study orthologs from Eubacterium siraeum (EsCas13d) and Ruminococcus sp. (RspCas13d), while Konermann et al. characterized orthologs from “Anaerobic digester metagenome” (AdmCas13d) and Ruminococcus flavefaciens (nicknamed CasRx), as well as EsCas13d.

Like other Cas13 enzymes, the Cas13d orthologs described in these papers can independently process their own CRISPR arrays into guide RNAs. crRNA cleavage is retained in dCas13d and is thus HEPN-independent. These enzymes also do not require a protospacer flanking sequence, so you can target virtually any RNA sequence ! In bacteria, Cas13d-mediated cleavage promotes collateral cleavage of other RNAs. As with other Cas13s, this collateral cleavage does not occur when Cas13d is expressed in a mammalian system.

Since Cas13d is functionally similar to previously discovered Cas13 enzymes - what makes these orthologs so special? The first property is size - Cas13d enzymes have a median length of ~930aa - making them 17-26% smaller than other Cas13s and a whopping 33% smaller than Cas9! Their small size makes then easy to package in low-capacity vectors like AAV, a popular vector due to its low immunogenicity. But these studies also identified other advantages, including Cas13d-specific regulatory proteins and high targeting efficiency, both of which are described below.

The majority of Type VI-D loci contain accessory proteins with WYL domains (named for the three conserved amino acids in the domain). Yan et al. from Arbor Biotechnologies found that RspCas13d accessory protein RspWYL1 increases both targeted and collateral RNA degradation by RspCas13d. RspWYL1 also increased EsCas13d activity, indicating that WYL domain-containing proteins may be broader regulators of Cas13d activity. This property makes WYL proteins an intriguing counterpart to anti-CRISPR proteins that negatively modulate the activity of Cas enzymes, some of which are also functional in multiple species (read Arbor Biotechnologies' press release about their Cas13d deposit here ).

Not all Cas13d proteins are functional in mammalian cells, but Konermann et al. saw great results with CasRx and AdmCas13d fused to a nuclear localization signal (NLS). In a HEK293 mCherry reporter assay, CasRx and AdmCas13d produced 92% and 87% mCherry protein knockdown measured by flow cytometry, respectively. Cas13d CRISPR array processing is robust, with CasRx and either an unprocessed or processed gRNA array (22 nt spacer with 30 nt direct repeat) mediating potent knockdown. Multiplexing from the CRISPR array yielded >90% knockdown by CasRx for each of four targets, including two mRNAs and two nuclear long non-coding RNAs.

One interesting twist to Cas13d enzymes is their cleavage pattern: EsCas13d produced very similar cleavage products even when guides were tiled across a target RNA, indicating that this enzyme does not cleave at a predictable distance from the targeted region. Konermann et al. show that EsCas13d favors cleavage at uracils, but a more detailed exploration of this cleavage pattern is necessary.

Konermann et al. compared CasRx to multiple RNA regulating methods: small hairpin RNA interference, dCas9-mediated transcriptional inhibition (CRISPRi), and Cas13a/Cas13b RNA knockdown. CasRx was the clear winner with median knockdown of 96% compared to 65% for shRNA, 53% for CRISPRi, and 66-80% for other Cas13a and Cas13b effectors. Like previously characterized Cas13 enzymes, CasRx also displays very high on-target efficiency; where shRNA treatment produced 500-900 significant off-targets, CasRx displayed zero. Unlike Cas9, for which efficiency varies widely across guide RNAs, each guide tested with CasRx yielded >80% knockdown. It seems that CasRx may make it possible to target essentially any RNA in a cell.

Since catalytically dead dCasRx maintains its RNA-binding properties, Konermann et al. tested its ability to manipulate RNA species through exon skipping. Previous CRISPR exon-skipping approaches used two guide RNAs to remove a given exon from the genome, and showed success in models of muscular dystrophy . In this case, Konermann et al. targeted MAPT , the gene encoding dementia-associated tau, delivering dCasRx and a 3-spacer array targeting the MAPT exon 10 splice acceptor and two putative splice enhancers. After AAV-mediated delivery to iPS-derived cortical neurons, dCasRx-mediated exon skipping improved the ratio of pathogenic to non-pathogenic tau by nearly 50%, showing proof-of-concept for pre-clinical and clinical applications of dCasRx.

The identification of Type VI Cas13d enzymes is another win for bioinformatic data mining. As we continue to harness the natural diversity of CRISPR systems, only time will tell how large the genome and transcriptome engineering toolbox will be. It is, however, certain that the impact of CRISPR scientific sharing will continue to grow, and we at Addgene appreciate our depositors for making their tools available to the broader community.

References

Konermann, Silvana, et al. “Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.” Cell (2018) pii: S0092-8674(18)30207-1. PubMed PMID: 29551272

Yan, Winston X., et al. “Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.” Mol Cell. (2018) pii: S1097-2765(18)30173-4. PubMed PMID: 29551514

\1. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors

\2. CRISPR genetic editing takes another big step forward, targeting RNA

\3. How Editing RNA—Not DNA—Could Cure Disease in the Future

[ ](

川崎病相关论文

原因可能是他们感染的病毒里面有导致这种疾病的病毒,所以才会产生这样的后果。

1、川崎病一般指黏膜皮肤淋巴结综合征。黏膜皮肤淋巴结综合征(mucocutaneous lymph node syndrome,MCLS)又称川崎病,是1967年日本川崎富作医师首选报道,并以他的名字命名的疾病。本病是一种以全身血管炎为主要病变的急性发热出疹性小儿疾病。高发年龄为5岁以下婴幼儿,男多于女,成人及3个月以下小儿少见。临床多表现可有发热、皮疹、颈部非脓性淋巴结肿大、眼结合膜充血、口腔黏膜弥漫充血、杨梅舌、掌跖红斑、手足硬性水肿等。由于本病可发生严重心血管并发症而引起人们重视,未经治疗的患儿发生率达20%~25%。 2、病因: 本病的发病原因至今未明。根据以往数次小流行中,曾有家庭发病情况,临床上又有许多表现酷似急性感染,提示似有病原体存在。男婴发病较多,日本发病率高,至今未找到直接致病病原体,感染的说法不能完全确立。在所有病原菌中最受关注的是链球菌,但至今从未由患儿体内分离到链球菌。也有人提到一种在禽兽间致病的耶尔森(Yersinia)菌中的假结核型株感染似与黏膜皮肤淋巴结综合征相关,但也无法找到确实的证据。

[1] 张丽,安效先.中医药治疗儿童咳嗽变异性哮喘的研究进展[J].环球中医药.2013(03).[2]彭征屏,冀晓华,邓云龙,安效先.小儿止哮平喘颗粒对动物模型止咳化痰平喘作用的实验研究[J].中国中西医结合儿科学.2013(05).[3]安效先,冀晓华,彭征屏.中医药治疗小儿传染性单核细胞增多症临床研究[J].北京中医药.2008(12).[4]安效先.小儿肺炎从瘀论治[J].中国医药学报.1996(04).[5]安效先.中医治疗小儿肺炎研究进展[J].中国中西医结合杂志.1994(12).[6]安效先,刘长虹.小儿传染性单核细胞增多症87例分析[J].中国医药学报.1994(01).[7]安效先,魏佑莲,唐莉珍,刘长虹,尹学英.腹痛灵贴剂治疗小儿痉挛性肠绞痛的临床研究[J].中国医药学报.1995(02).[8]刘弼臣,宋祚民,安效先,杨梦兰.川崎病的中医证治[J].北京中医.1990(04).[9]安效先.治疗小儿腹泻应注意些什么?[J].中医杂志.1990(09).[10]安效先.中医药为主治疗小儿难治性肾病40例[J].陕西中医.1985(10).[11]安效先,海鸿,刘长虹,葛安霞.中医药为主治疗川崎病2例[J].中西医结合杂志.1985(11).[22]安效先.试论小儿为少阳之体[J].中国医药学报.1986(03).[23]安效先.小儿传染性单核细胞增多症辨证治疗[J].北京中医.1987(05).[14]安效先.小儿疑难病证二例治验[J].云南中医杂志.1987(05).[15]安效先.长期发热一例[J].北京中医.1988(01).[16]安效先.王伯岳老中医学术思想和医疗经验简介[J].北京中医.1988(02).[17]安效先,胡瑾,叶蕾,吕佳康.中药复儿康治疗小儿缺锌的临床观察[J].中医杂志.1988(01).[18]安效先.益气养阴为主治疗小儿肾病综合征50例[J].北京中医.1989(03).[19]安效先.蛋白尿辨治九法[J].云南中医杂志.1989(06).[20安效先.儿科治汗七法[J].陕西中医.1982(04).

原因是儿童在患有川崎病以后也会引起高热持续5天,还会伴有淋巴结的肿大,儿童的冠状动脉也会出现扩张,甚至会引起冠状动脉瘤的发生,所以有以上状况的,可能得了川崎病。

小鼠糖尿病模型论文

以间充质干细胞 (MSC) 为基础的治疗糖尿病相关代谢紊乱的方法受到细胞存活不足和高葡萄糖应激下治疗效果有限的阻碍。 2021年7月2日,清华大学杜亚楠团队在 Science Advances  在线发表题为“ Exendin-4 gene modification and microscaffold encapsulation promote self-persistence and antidiabetic activity of MSCs ”的研究论文,该研究 使用 Exendin-4(MSC-Ex-4)(一种胰高血糖素样肽 1(GLP-1)类似物)对 MSC 进行基因工程改造,并证明了它们在 2 型糖尿病 (T2DM) 小鼠模型中增强的细胞功能和抗糖尿病功效。 从机制上讲,MSC-Ex-4 通过 GLP-1R 介导的 AMPK 信号通路的自分泌激活实现了自我增强并提高了在高葡萄糖应激下的存活率。同时,MSC-Ex-4 分泌的 Exendin-4 通过内分泌作用抑制胰腺 β 细胞的衰老和凋亡,而 MSC-Ex-4 分泌的生物活性因子(例如,IGFBP2 和 APOM)则通过旁分泌增强胰岛素敏感性并通过 PI3K-Akt 激活减少肝细胞中的脂质积累。此外,该研究将 MSC-Ex-4 封装在 3D 明胶微支架中用于单剂量给药,以将治疗效果延长 3 个月。总之, 该研究结果提供了对 Exendin-4 介导的 MSCs 自我持续性和抗糖尿病活性的机制见解,为 T2DM 提供更有效的基于 MSC 的治疗。 迄今为止,全世界有超过 亿人患有糖尿病,预计到 2045 年这一数字将达到 7 亿。 2 型糖尿病 (T2DM) 约占糖尿病病例的 90%,其特征是胰岛素抵抗和高血糖,这是由肥胖、缺乏运动、不健康饮食和遗传引起的。当肝脏、肌肉和脂肪组织中的细胞对胰岛素无反应并导致葡萄糖摄取失败时,就会发生胰岛素抵抗。胰腺 β 细胞将通过增加胰岛素产生来补偿胰岛素抵抗,最终导致 β 细胞衰竭和不可逆的高血糖。因此, 长期暴露于慢性高血糖会抑制增殖并诱导 β 细胞凋亡,从而导致 β 细胞量减少和 β 细胞功能障碍。 此外, T2DM 与肝功能障碍密切相关,超过 90% 的 T2DM 肥胖患者患有代谢相关性脂肪肝 (MAFLD) 。 肝细胞通过将营养物质以糖原和甘油三酯 (TG) 的形式储存起来,在葡萄糖和脂质稳态中发挥着重要作用。在肝脏胰岛素抵抗状态下,胰岛素不能抑制糖异生,但会加速肝细胞中的脂肪酸合成,从而增加肝脏葡萄糖的产生和 TG 的积累。尽管存在 β 细胞和肝细胞功能障碍,但高血糖和高甘油三酯血症会加剧肌肉和脂肪组织的胰岛素抵抗状态,同时引起其他器官和组织的功能障碍。因此, T2DM 与多种并发症密不可分,包括冠心病、中风和视网膜病变。 除了改变生活方式外,还需应用降糖药物以更好地维持 T2DM 患者的正常血糖水平 。胰高血糖素样肽-1 (GLP-1) 是一种肠促胰岛素激素,通过与 GLP-1 受体 (GLP-1R) 相互作用来增加胰岛素和抑制胰高血糖素分泌,从而帮助控制血糖波动。然而,GLP-1 因其半衰期短而很少用于 T2DM 治疗,它会在几分钟内被二肽基肽酶-4 迅速降解。第一个获批用于 T2DM 治疗的 GLP-1R 激动剂 Exendin-4 是一种 39 个氨基酸的肽,是一种 GLP-1 类似物,半衰期较长,为 小时。它通过抑制细胞凋亡和促进细胞增殖来增强 β 细胞质量,从而增加胰岛素分泌量。此外,已证明 Exendin-4 是一种有效的候选药物,可减轻体重,改善糖尿病和 MAFLD。尽管 Exendin-4 在调节血糖和胰岛素反应方面有所改善,但由于肾脏消除,其血浆半衰期仍然有限。 因此,需要每天给药两次,这会导致血浆浓度的意外波动和 GLP-1R 的间歇性激活。  尽管上述降糖药物治疗带来了益处,但仍有部分患者无法恢复正常血糖或出现低血糖、腹泻、恶心、呕吐等多种副作用。 近年来,基于细胞的疗法已成为对抗包括 T2DM 在内的多种难治性疾病的替代方法。特别是,间充质干/基质细胞 (MSCs) 在一些临床前和临床尝试中已证明其对改善由 T2DM 引起的高血糖、胰岛素抵抗和全身炎症的治疗作用,从而为治疗 T2DM 提供了一种新方案。同时,技术进步仍然迫切需要将基于 MSC 的疗法成功转化为 T2DM 的临床治疗。 要克服的主要障碍之一是体内给药后 MSC 的增殖和存活率降低 。 因此,已 经研究了多种策略,例如生物材料封装、基因工程和 MSC 预处理 ,以提高存活率、延迟清除动力学和维持体内 MSC 分泌因子。 此外,优化 MSCs 的给药途径至关重要,因为静脉内给药的 MSCs 主要滞留在肺部和随后的组织中,导致治疗效果减弱。此外,对 MSCs 在 T2DM 中的治疗机制的全面了解仍然难以捉摸。MSCs 被证明可以促进内源性胰岛素的产生并刺激 β 细胞的增殖。此外, MSC 以其调节免疫反应的能力而闻名,这对于改善由 T2DM 引起的全身炎症至关重要 。 鉴于 Exendin-4 和 MSCs 在治疗 T2DM 方面的上述缺陷, 研究人员已经探索了如何协同 Exendin-4 和 MSCs 的治疗益处。 MSC 也已用 GLP-1 进行基因修饰,在 T2DM 治疗中显示出优于野生型 MSC 的治疗功效。然而,应该强调的是,这些组合疗法继承了许多缺陷。例如,当与 MSC 一起给药时,单剂量游离 Exendin-4 的治疗效果和持续时间是有限的。此外, 考虑到 GLP-1 的半衰期只有 2 分钟,而且治疗 T2DM 需要高有效剂量,预计 GLP-1 修饰的 MSCs 很难显著提高 MSCs 的治疗效果。 在这里,在发现人MSCs表达GLP-1R的基础上,该研究通过慢病毒转导系统构建了Exendin-4基因工程MSCs(MSC-Ex-4)来验证MSC-Ex- 4 分泌的Exendin-4可以通过 GLP-1R 介导的自分泌激活 AMPK 信号通路,从而通过延长其在高糖应激下的存活时间和增强抗糖尿病功效来潜在地促进自我持久性。该研究还探索了有关 MSC-Ex-4 保护胰腺 β 细胞的内分泌作用和 MSC-Ex-4 改善肝细胞功能的旁分泌作用的潜在机制。除了 MSC-Ex-4 分泌的 Exendin-4 外,推测 MSC-Ex-4 的其他分泌组可以减少细胞衰老和凋亡,同时促进胰腺 β 细胞的增殖,以及提高胰岛素敏感性和减少脂质积累。最后,该研究系统地提供了 多剂量的游离 MSC-Ex-4,并用可注射的三维 (3D) 明胶微支架 (GMs) 作为细胞封装和递送载体来辅助 MSC-Ex-4,以实现长效治疗效果单剂量局部给药。  总之, 该研究结果提供了对 Exendin-4 介导的 MSCs 自我持续性和抗糖尿病活性的机制见解,为 T2DM 提供更有效的基于 MSC 的治疗。 WOSCI沃斯编辑,耶鲁大学博士团队匠心打造,专注最新科学动态并提供各类科研学术指导,包括:前沿科学新闻、出版信息、期刊解析、SCI论文写作技巧、学术讲座、SCI论文润色等。

Gut:粪便病毒组移植(FVT)对2型糖尿病和肥胖小鼠模型的缓解作用 近年来,粪便移植已成为治疗由梭状芽胞杆菌引起的严重腹泻的流行方法。最近,丹麦哥本哈根大学Dennis Nielsen课题组在一项小鼠中进行的试验表明,通过粪便病毒组移植减轻肥胖症和2型糖尿病(Type 2 diabetes mellitus, T2DM)患者的临床症状。 研究目的 : 肥胖症和2型糖尿病(T2DM)的发生发展与肠道微生物群(gut microbiota, GM)的改变有关。噬菌体(phages)是一种以宿主特异性方式攻击细菌的病毒,其拮抗作用有可能改变肠道菌群,作为概念验证,Dennis课题组通过较瘦供体粪便病毒组移植(Fecal virome transplantation,FVT)将 转变 肥胖小鼠转变为较瘦小鼠表型,证明FVT对2型糖尿病和肥胖症干预的有效性。 实验设计 : 图1:实验设计流程图。40只5周龄的雄性C57BL/6NTac小鼠分为低脂(Low Fat, LF)饮食、高脂(High Fat, HF)饮食、HF +氨苄青霉素(ampicillin, Amp)、HF+Amp+FVT和HF+FVT 5组:(图1)。在13周内,小鼠被随意喂食HF饲料(研究饲料D12492,美国)和LF饲料(研究饲料D12450J,美国)。在不同方案喂食6周后,HF+FVT和HF+Amp+FVT组的小鼠分别用 mL肠溶酶间隔1周(第6、7周)灌胃进行两次FVT,。第一次接种FVT前一天,HF+Amp和HF+Amp+FVT小鼠在饮用水中给予单剂量Amp(1 g/L)。从18只C57BL/6N小鼠的盲肠含量中提取并混合用于FVT的病毒体,这些小鼠代表3个不同的供体,饲喂LF饲料14周。来自不同供应商的个体小鼠代表了独特和多样的病毒概况。应用的FVT 病毒组的滴度约为2×1010病毒样颗粒/mL。在研究的第20周,对小鼠进行口服葡萄糖耐量试验(OGTT),并监测食物摄入量和小鼠体重。 项目流程 : 结果: 1.  瘦供体FVT降低了DIO小鼠的体重增速,使血糖耐量恢复正常 小鼠分别在FVT前1-2周和FVT后间隔1-2周称量体重。在第一次FVT 后,第4和第6周(15、17周龄)时,HF+FVT小鼠(p<)和HF+Amp小鼠(p<)的体重增加明显低于HF小鼠(图2)。LF和HF+FVT小鼠OGTT无显著差异(p>),而HF小鼠OGTT水平显著升高与LF组和HF+FVT组比较(p<),显示FVT已使HF+FVT小鼠的血糖耐量正常化(图2B)。此外,HF+Amp+FVT的OGTT与HF小鼠相当(p>),说明在HF+Amp+FVT小鼠中,Amp对细菌组成的初始破坏有可能抵消了FVT的作用, 。 这同时表明,与FVT相关的影响是通过肠道菌群成分的改变而发生的。除糖化血红蛋白(HbA1c)水平和每只小鼠的食物消耗量外,还定期测定非禁食血糖。 图2. (A)第一次FVT后2、4、6周(分别为13、15、17周)体重增加的条形图。首次FVT后6周(17周龄)测定OGTT水平。数值是基于tAUC相对于单个小鼠的血糖水平。图中排除了第一次FVT后第4周和第6周两两比较的显著差异,以增加图像的可视性。*P<,**P<, ***P<, ****P< 。Amp,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著; OGTT, 口服葡萄糖耐量试验; tAUC, 曲线下总面积。 2.  FVT 增强了全身能量稳态相关基因的表达 以肝脏和回肠组织中与肥胖和T2D相关的基因为目标,检测HF+FVT与HF小鼠中相关基因的表达是否有显著差异,并与LF小鼠具有相似性。结果显示,FVT降低了HF饮食引起的基因表达差异,从而形成与健康LF小鼠相似的表达水平。 图3:肝脏和回肠组织中与肥胖和T2D相关的基因表达水平(18周龄)。(A) Ffar2Ileum ,(B) LeprLiver ,(C) KlbLiver ,(D) Ppargc1aLiver ,(E) Igfbp2Liver ,(F) Socs3Liver ,(G) MycLiver 。采用以HF或LF为对照组的线性模型计算组间显著性。样本质检表达量的差异倍数取log2是对相对基因表达的一种度量,它是基于log2转化的表达值归一化到最小值的样本。 Ffar2Ileum ,游离脂肪酸受体; LeprLiver ,胰岛素样生长因子结合蛋白; KlbLiver ,β-klotho; Ppargc1aLiver ,瘦素细胞因子受体; Igfbp2Liver ,过氧化物酶体增殖物激活受体γ共激活剂1-α; Socs3Liver ,细胞因子信号传导抑制因子; MycLiver 转录因子。FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著; 3.  FVT 介导肠道菌群转移 盲肠样本16S rRNA基因拷贝数/g在×1010 ~×1010之间变化。LF小鼠的细菌Shannon多样性指数明显高于HF小鼠(p<),但与HF+FVT小鼠相似(p=)。与HF小鼠相比,盲肠中HF+FVT的Shannon多样性指数也显著增加(p<),但在结肠中Shannon多样性指数没有明显增加。Amp治疗后7周,Amp处理过的HF+Amp小鼠的Shannon多样性指数最低(p<),而FVT提高了Amp干预后的HF+Amp+FVT小鼠的Shannon多样性指数(p<)(图4A)。FVT对病毒Shannon多样性指数无影响(p>),而Amp的处理显著(p<)增加了病毒Shannon多样性指数(图4B和线上补充表S5),其原因可能是由于噬菌体的诱导。 根据Bray-   Curtis差异测定法,FVT对细菌组成(图5A, p<)和病毒组成(图5B,P<)都有强烈的影响,如HF+FVT与HF小鼠、HF+Amp+FVT与HF+Amp小鼠的明显分离。 FVT受体的GM特征与供体的GM特征不完全相似,这表明供体病毒组只有部分在接种6周后建立。此外,所有实验组在病毒和细菌群落中两两显著分离(p<),包括LF和HF+FVT (p<)。该研究发现,无论是否经过Amp处理,FVT都强烈地影响和部分重塑了GM的组成。rCCA表明,某些细菌(拟杆菌目和梭菌目)和病毒(尾病毒目,微病毒科和未鉴定的病毒)之间存在强(r>)正或负相关性的潜在宿主-噬菌体对关系。 图4.供体和盲肠(A)细菌和(B)终止时(18周龄)的Shannon多样性指数。括号表示图中每一组的样本数量,灰色点表示异常值。供体是从三个不同供体的盲肠内容物中提取的细菌或菌体的1:1:1混合而成。各组的两两比较见线上补充表S5。*P<。Amp,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著。 图5:PCoA图,基于Bray-Curtis不同度测量,取供体和盲肠(A)细菌群落和(B)18周龄病毒群落。Bray- Curtis不同度量的相似度分析(ANOSIM)显示在表中。供体是从三个不同供体的盲肠内容物中提取的细菌或菌体的1:1:1混合而成。各组的两两比较见线上补充表,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。 图6.说明所有五个实验组细菌(A)和病毒(B)概况的热图,以及某些细菌和病毒簇之间的强烈相关性(C)。 4.  FVT 介导的血浆代谢组谱的改变 采用非靶向UPLC- MS分析血浆样品,测定FVT对宿主代谢组的影响。基于数据集建立了PCA模型,比较LF、HF和HF+FVT的概况(图7,所有组的在线上补充图S111)。与其他测量方法一致,HF+FVT小鼠的血浆谱位于HF和LF小鼠之间。两两建立OPLS-DA模型,所有模型(LF vs HF、LF vs HF+FVT、HF vs HF+FVT)均具有统计学意义(p<),支持三组分离。在筛选出的VIP评分为>2的特征中,仅对与相关基因表达相关(基于rCCA)和细菌或病毒丰度相关的特征进行进一步检测以进行注释。研究的特征主要包括饱和/不饱和溶血磷脂(LysoPC)和/或磷脂磷脂胆碱(PCs), 而 其余的特征包括各种氨基酸或无法识别的代谢物。总体而言,与LF小鼠相比,HF小鼠的LysoPC(18:2)、LysoPC(22:2)、PC(16:0/22:6)水平更高,血浆LysoPC(22:4)和PC (18:1/O-18:2)水平更低。与LF小鼠相比,HF+FVT小鼠循环LysoPC(16:0)、LysoPC(18:2)和PC(16:0/22:6)水平升高,而LysoPC(22:4)和PC (18:1/O-18:2)水平降低。与HF小鼠相比,HF+FVT小鼠的LysoPC(16:0)、LysoPC(18:0)和PC (18:1/O-18:2)水平更高。 图分析图,原始数据各维度和每个主成分的相关度由电喷雾电离(ESIZ)+UPLC-MS处理的终止妊娠(18周龄)时LF、HF和HF+FVT(R2=和Q2=)得到,表包括由两两比较生成的监督的OPLS-DA模型。HF,高脂;LF,低脂;OPLS- DA,潜结构正交投影判别分析;PCA,主成分分析;UPLC- MS,超高效液相色谱-质谱分析。 结论 : ①   对高脂喂养的小鼠进行粪便病毒组移植(FVT),移植来源为低脂喂养14周的瘦小鼠的盲肠病毒组;② FVT 后第 6 周,受体小鼠的体重增长显著降低,且 葡萄糖耐受性 OGTT与 瘦 低脂喂养的对照组小鼠相似,没有出现 发生 因高脂喂养诱发 引起 的糖耐受损;③与此一致的是,FVT 显著改变了小鼠的肠道细菌和病毒组成、血浆代谢物以及与肥胖和 2 型糖尿病相关基因的表达水平;④ 但在 FVT 前进行抗生素预处理,反而会削弱 FVT 的有益效果。这项研究说明,噬菌体介导的疗法或能用来治疗肥胖和糖尿病等肠道菌群相关疾病。

我们这里用65mg/kg STZ对一定种属动物的胰岛β细胞有选择性破坏作用,而使许多动物产生糖尿病。最常用的是大鼠模型。一般常用的诱导方法如下:将大鼠禁食12h,按60mg/kg体重腹腔注射STZ,每日1次,连续2次,成功制备Ⅰ型糖尿病大鼠模型,并且该模型具有高血糖、体重减轻、多饮多食多尿的特点,与临床Ⅰ型糖尿病吻合;但在此实验中,若造模组只腹腔注射STZ一次,并给予高热量饲料饲养12周,则可制备Ⅱ型糖尿病动物模型,且按该法制备出的模型具有超重、糖耐量减低、血脂升高、血清胰岛素升高及胰岛素受体结合力降低伴胰岛素抵抗的特点,类似于Ⅱ型糖尿病病人的临床特征。Ⅰ型糖尿病与Ⅱ型糖尿病动物模型的制备可能与STZ注射的剂量有关系:大剂量(常为120mg/kg)注射时,由于直接引起胰岛β细胞的广泛破坏,可造成Ⅰ型糖尿病模型;而注射较少量STZ时,由于只是破坏一部分胰岛β细胞的功能,造成外周组织对胰岛素不敏感,同时给予高热量饲料喂养,两者结合便诱导出病理、生理改变都接近于人类Ⅱ型糖尿病的动物模型。 也有研究表明,用STZ按90mg/kg体重处理过的新生大鼠长至成鼠后,表现出糖耐量异常、胰岛素分泌下降、体重下降等特征。其主要机制是新生鼠出生后一周内β细胞对STZ敏感性不同,以及再生力不同,导致成鼠后β细胞数量相对减少。故大鼠出生后一周内注射STZ ,其β细胞坏死及增生可使成鼠β细胞数量及生化特点稳定。这说明该方法稳定性好,是研究非肥胖型非胰岛素依赖性糖尿病的理想载体。

糖尿病小鼠模型论文

以间充质干细胞 (MSC) 为基础的治疗糖尿病相关代谢紊乱的方法受到细胞存活不足和高葡萄糖应激下治疗效果有限的阻碍。 2021年7月2日,清华大学杜亚楠团队在 Science Advances  在线发表题为“ Exendin-4 gene modification and microscaffold encapsulation promote self-persistence and antidiabetic activity of MSCs ”的研究论文,该研究 使用 Exendin-4(MSC-Ex-4)(一种胰高血糖素样肽 1(GLP-1)类似物)对 MSC 进行基因工程改造,并证明了它们在 2 型糖尿病 (T2DM) 小鼠模型中增强的细胞功能和抗糖尿病功效。 从机制上讲,MSC-Ex-4 通过 GLP-1R 介导的 AMPK 信号通路的自分泌激活实现了自我增强并提高了在高葡萄糖应激下的存活率。同时,MSC-Ex-4 分泌的 Exendin-4 通过内分泌作用抑制胰腺 β 细胞的衰老和凋亡,而 MSC-Ex-4 分泌的生物活性因子(例如,IGFBP2 和 APOM)则通过旁分泌增强胰岛素敏感性并通过 PI3K-Akt 激活减少肝细胞中的脂质积累。此外,该研究将 MSC-Ex-4 封装在 3D 明胶微支架中用于单剂量给药,以将治疗效果延长 3 个月。总之, 该研究结果提供了对 Exendin-4 介导的 MSCs 自我持续性和抗糖尿病活性的机制见解,为 T2DM 提供更有效的基于 MSC 的治疗。 迄今为止,全世界有超过 亿人患有糖尿病,预计到 2045 年这一数字将达到 7 亿。 2 型糖尿病 (T2DM) 约占糖尿病病例的 90%,其特征是胰岛素抵抗和高血糖,这是由肥胖、缺乏运动、不健康饮食和遗传引起的。当肝脏、肌肉和脂肪组织中的细胞对胰岛素无反应并导致葡萄糖摄取失败时,就会发生胰岛素抵抗。胰腺 β 细胞将通过增加胰岛素产生来补偿胰岛素抵抗,最终导致 β 细胞衰竭和不可逆的高血糖。因此, 长期暴露于慢性高血糖会抑制增殖并诱导 β 细胞凋亡,从而导致 β 细胞量减少和 β 细胞功能障碍。 此外, T2DM 与肝功能障碍密切相关,超过 90% 的 T2DM 肥胖患者患有代谢相关性脂肪肝 (MAFLD) 。 肝细胞通过将营养物质以糖原和甘油三酯 (TG) 的形式储存起来,在葡萄糖和脂质稳态中发挥着重要作用。在肝脏胰岛素抵抗状态下,胰岛素不能抑制糖异生,但会加速肝细胞中的脂肪酸合成,从而增加肝脏葡萄糖的产生和 TG 的积累。尽管存在 β 细胞和肝细胞功能障碍,但高血糖和高甘油三酯血症会加剧肌肉和脂肪组织的胰岛素抵抗状态,同时引起其他器官和组织的功能障碍。因此, T2DM 与多种并发症密不可分,包括冠心病、中风和视网膜病变。 除了改变生活方式外,还需应用降糖药物以更好地维持 T2DM 患者的正常血糖水平 。胰高血糖素样肽-1 (GLP-1) 是一种肠促胰岛素激素,通过与 GLP-1 受体 (GLP-1R) 相互作用来增加胰岛素和抑制胰高血糖素分泌,从而帮助控制血糖波动。然而,GLP-1 因其半衰期短而很少用于 T2DM 治疗,它会在几分钟内被二肽基肽酶-4 迅速降解。第一个获批用于 T2DM 治疗的 GLP-1R 激动剂 Exendin-4 是一种 39 个氨基酸的肽,是一种 GLP-1 类似物,半衰期较长,为 小时。它通过抑制细胞凋亡和促进细胞增殖来增强 β 细胞质量,从而增加胰岛素分泌量。此外,已证明 Exendin-4 是一种有效的候选药物,可减轻体重,改善糖尿病和 MAFLD。尽管 Exendin-4 在调节血糖和胰岛素反应方面有所改善,但由于肾脏消除,其血浆半衰期仍然有限。 因此,需要每天给药两次,这会导致血浆浓度的意外波动和 GLP-1R 的间歇性激活。  尽管上述降糖药物治疗带来了益处,但仍有部分患者无法恢复正常血糖或出现低血糖、腹泻、恶心、呕吐等多种副作用。 近年来,基于细胞的疗法已成为对抗包括 T2DM 在内的多种难治性疾病的替代方法。特别是,间充质干/基质细胞 (MSCs) 在一些临床前和临床尝试中已证明其对改善由 T2DM 引起的高血糖、胰岛素抵抗和全身炎症的治疗作用,从而为治疗 T2DM 提供了一种新方案。同时,技术进步仍然迫切需要将基于 MSC 的疗法成功转化为 T2DM 的临床治疗。 要克服的主要障碍之一是体内给药后 MSC 的增殖和存活率降低 。 因此,已 经研究了多种策略,例如生物材料封装、基因工程和 MSC 预处理 ,以提高存活率、延迟清除动力学和维持体内 MSC 分泌因子。 此外,优化 MSCs 的给药途径至关重要,因为静脉内给药的 MSCs 主要滞留在肺部和随后的组织中,导致治疗效果减弱。此外,对 MSCs 在 T2DM 中的治疗机制的全面了解仍然难以捉摸。MSCs 被证明可以促进内源性胰岛素的产生并刺激 β 细胞的增殖。此外, MSC 以其调节免疫反应的能力而闻名,这对于改善由 T2DM 引起的全身炎症至关重要 。 鉴于 Exendin-4 和 MSCs 在治疗 T2DM 方面的上述缺陷, 研究人员已经探索了如何协同 Exendin-4 和 MSCs 的治疗益处。 MSC 也已用 GLP-1 进行基因修饰,在 T2DM 治疗中显示出优于野生型 MSC 的治疗功效。然而,应该强调的是,这些组合疗法继承了许多缺陷。例如,当与 MSC 一起给药时,单剂量游离 Exendin-4 的治疗效果和持续时间是有限的。此外, 考虑到 GLP-1 的半衰期只有 2 分钟,而且治疗 T2DM 需要高有效剂量,预计 GLP-1 修饰的 MSCs 很难显著提高 MSCs 的治疗效果。 在这里,在发现人MSCs表达GLP-1R的基础上,该研究通过慢病毒转导系统构建了Exendin-4基因工程MSCs(MSC-Ex-4)来验证MSC-Ex- 4 分泌的Exendin-4可以通过 GLP-1R 介导的自分泌激活 AMPK 信号通路,从而通过延长其在高糖应激下的存活时间和增强抗糖尿病功效来潜在地促进自我持久性。该研究还探索了有关 MSC-Ex-4 保护胰腺 β 细胞的内分泌作用和 MSC-Ex-4 改善肝细胞功能的旁分泌作用的潜在机制。除了 MSC-Ex-4 分泌的 Exendin-4 外,推测 MSC-Ex-4 的其他分泌组可以减少细胞衰老和凋亡,同时促进胰腺 β 细胞的增殖,以及提高胰岛素敏感性和减少脂质积累。最后,该研究系统地提供了 多剂量的游离 MSC-Ex-4,并用可注射的三维 (3D) 明胶微支架 (GMs) 作为细胞封装和递送载体来辅助 MSC-Ex-4,以实现长效治疗效果单剂量局部给药。  总之, 该研究结果提供了对 Exendin-4 介导的 MSCs 自我持续性和抗糖尿病活性的机制见解,为 T2DM 提供更有效的基于 MSC 的治疗。 WOSCI沃斯编辑,耶鲁大学博士团队匠心打造,专注最新科学动态并提供各类科研学术指导,包括:前沿科学新闻、出版信息、期刊解析、SCI论文写作技巧、学术讲座、SCI论文润色等。

Gut:粪便病毒组移植(FVT)对2型糖尿病和肥胖小鼠模型的缓解作用 近年来,粪便移植已成为治疗由梭状芽胞杆菌引起的严重腹泻的流行方法。最近,丹麦哥本哈根大学Dennis Nielsen课题组在一项小鼠中进行的试验表明,通过粪便病毒组移植减轻肥胖症和2型糖尿病(Type 2 diabetes mellitus, T2DM)患者的临床症状。 研究目的 : 肥胖症和2型糖尿病(T2DM)的发生发展与肠道微生物群(gut microbiota, GM)的改变有关。噬菌体(phages)是一种以宿主特异性方式攻击细菌的病毒,其拮抗作用有可能改变肠道菌群,作为概念验证,Dennis课题组通过较瘦供体粪便病毒组移植(Fecal virome transplantation,FVT)将 转变 肥胖小鼠转变为较瘦小鼠表型,证明FVT对2型糖尿病和肥胖症干预的有效性。 实验设计 : 图1:实验设计流程图。40只5周龄的雄性C57BL/6NTac小鼠分为低脂(Low Fat, LF)饮食、高脂(High Fat, HF)饮食、HF +氨苄青霉素(ampicillin, Amp)、HF+Amp+FVT和HF+FVT 5组:(图1)。在13周内,小鼠被随意喂食HF饲料(研究饲料D12492,美国)和LF饲料(研究饲料D12450J,美国)。在不同方案喂食6周后,HF+FVT和HF+Amp+FVT组的小鼠分别用 mL肠溶酶间隔1周(第6、7周)灌胃进行两次FVT,。第一次接种FVT前一天,HF+Amp和HF+Amp+FVT小鼠在饮用水中给予单剂量Amp(1 g/L)。从18只C57BL/6N小鼠的盲肠含量中提取并混合用于FVT的病毒体,这些小鼠代表3个不同的供体,饲喂LF饲料14周。来自不同供应商的个体小鼠代表了独特和多样的病毒概况。应用的FVT 病毒组的滴度约为2×1010病毒样颗粒/mL。在研究的第20周,对小鼠进行口服葡萄糖耐量试验(OGTT),并监测食物摄入量和小鼠体重。 项目流程 : 结果: 1.  瘦供体FVT降低了DIO小鼠的体重增速,使血糖耐量恢复正常 小鼠分别在FVT前1-2周和FVT后间隔1-2周称量体重。在第一次FVT 后,第4和第6周(15、17周龄)时,HF+FVT小鼠(p<)和HF+Amp小鼠(p<)的体重增加明显低于HF小鼠(图2)。LF和HF+FVT小鼠OGTT无显著差异(p>),而HF小鼠OGTT水平显著升高与LF组和HF+FVT组比较(p<),显示FVT已使HF+FVT小鼠的血糖耐量正常化(图2B)。此外,HF+Amp+FVT的OGTT与HF小鼠相当(p>),说明在HF+Amp+FVT小鼠中,Amp对细菌组成的初始破坏有可能抵消了FVT的作用, 。 这同时表明,与FVT相关的影响是通过肠道菌群成分的改变而发生的。除糖化血红蛋白(HbA1c)水平和每只小鼠的食物消耗量外,还定期测定非禁食血糖。 图2. (A)第一次FVT后2、4、6周(分别为13、15、17周)体重增加的条形图。首次FVT后6周(17周龄)测定OGTT水平。数值是基于tAUC相对于单个小鼠的血糖水平。图中排除了第一次FVT后第4周和第6周两两比较的显著差异,以增加图像的可视性。*P<,**P<, ***P<, ****P< 。Amp,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著; OGTT, 口服葡萄糖耐量试验; tAUC, 曲线下总面积。 2.  FVT 增强了全身能量稳态相关基因的表达 以肝脏和回肠组织中与肥胖和T2D相关的基因为目标,检测HF+FVT与HF小鼠中相关基因的表达是否有显著差异,并与LF小鼠具有相似性。结果显示,FVT降低了HF饮食引起的基因表达差异,从而形成与健康LF小鼠相似的表达水平。 图3:肝脏和回肠组织中与肥胖和T2D相关的基因表达水平(18周龄)。(A) Ffar2Ileum ,(B) LeprLiver ,(C) KlbLiver ,(D) Ppargc1aLiver ,(E) Igfbp2Liver ,(F) Socs3Liver ,(G) MycLiver 。采用以HF或LF为对照组的线性模型计算组间显著性。样本质检表达量的差异倍数取log2是对相对基因表达的一种度量,它是基于log2转化的表达值归一化到最小值的样本。 Ffar2Ileum ,游离脂肪酸受体; LeprLiver ,胰岛素样生长因子结合蛋白; KlbLiver ,β-klotho; Ppargc1aLiver ,瘦素细胞因子受体; Igfbp2Liver ,过氧化物酶体增殖物激活受体γ共激活剂1-α; Socs3Liver ,细胞因子信号传导抑制因子; MycLiver 转录因子。FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著; 3.  FVT 介导肠道菌群转移 盲肠样本16S rRNA基因拷贝数/g在×1010 ~×1010之间变化。LF小鼠的细菌Shannon多样性指数明显高于HF小鼠(p<),但与HF+FVT小鼠相似(p=)。与HF小鼠相比,盲肠中HF+FVT的Shannon多样性指数也显著增加(p<),但在结肠中Shannon多样性指数没有明显增加。Amp治疗后7周,Amp处理过的HF+Amp小鼠的Shannon多样性指数最低(p<),而FVT提高了Amp干预后的HF+Amp+FVT小鼠的Shannon多样性指数(p<)(图4A)。FVT对病毒Shannon多样性指数无影响(p>),而Amp的处理显著(p<)增加了病毒Shannon多样性指数(图4B和线上补充表S5),其原因可能是由于噬菌体的诱导。 根据Bray-   Curtis差异测定法,FVT对细菌组成(图5A, p<)和病毒组成(图5B,P<)都有强烈的影响,如HF+FVT与HF小鼠、HF+Amp+FVT与HF+Amp小鼠的明显分离。 FVT受体的GM特征与供体的GM特征不完全相似,这表明供体病毒组只有部分在接种6周后建立。此外,所有实验组在病毒和细菌群落中两两显著分离(p<),包括LF和HF+FVT (p<)。该研究发现,无论是否经过Amp处理,FVT都强烈地影响和部分重塑了GM的组成。rCCA表明,某些细菌(拟杆菌目和梭菌目)和病毒(尾病毒目,微病毒科和未鉴定的病毒)之间存在强(r>)正或负相关性的潜在宿主-噬菌体对关系。 图4.供体和盲肠(A)细菌和(B)终止时(18周龄)的Shannon多样性指数。括号表示图中每一组的样本数量,灰色点表示异常值。供体是从三个不同供体的盲肠内容物中提取的细菌或菌体的1:1:1混合而成。各组的两两比较见线上补充表S5。*P<。Amp,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著。 图5:PCoA图,基于Bray-Curtis不同度测量,取供体和盲肠(A)细菌群落和(B)18周龄病毒群落。Bray- Curtis不同度量的相似度分析(ANOSIM)显示在表中。供体是从三个不同供体的盲肠内容物中提取的细菌或菌体的1:1:1混合而成。各组的两两比较见线上补充表,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。 图6.说明所有五个实验组细菌(A)和病毒(B)概况的热图,以及某些细菌和病毒簇之间的强烈相关性(C)。 4.  FVT 介导的血浆代谢组谱的改变 采用非靶向UPLC- MS分析血浆样品,测定FVT对宿主代谢组的影响。基于数据集建立了PCA模型,比较LF、HF和HF+FVT的概况(图7,所有组的在线上补充图S111)。与其他测量方法一致,HF+FVT小鼠的血浆谱位于HF和LF小鼠之间。两两建立OPLS-DA模型,所有模型(LF vs HF、LF vs HF+FVT、HF vs HF+FVT)均具有统计学意义(p<),支持三组分离。在筛选出的VIP评分为>2的特征中,仅对与相关基因表达相关(基于rCCA)和细菌或病毒丰度相关的特征进行进一步检测以进行注释。研究的特征主要包括饱和/不饱和溶血磷脂(LysoPC)和/或磷脂磷脂胆碱(PCs), 而 其余的特征包括各种氨基酸或无法识别的代谢物。总体而言,与LF小鼠相比,HF小鼠的LysoPC(18:2)、LysoPC(22:2)、PC(16:0/22:6)水平更高,血浆LysoPC(22:4)和PC (18:1/O-18:2)水平更低。与LF小鼠相比,HF+FVT小鼠循环LysoPC(16:0)、LysoPC(18:2)和PC(16:0/22:6)水平升高,而LysoPC(22:4)和PC (18:1/O-18:2)水平降低。与HF小鼠相比,HF+FVT小鼠的LysoPC(16:0)、LysoPC(18:0)和PC (18:1/O-18:2)水平更高。 图分析图,原始数据各维度和每个主成分的相关度由电喷雾电离(ESIZ)+UPLC-MS处理的终止妊娠(18周龄)时LF、HF和HF+FVT(R2=和Q2=)得到,表包括由两两比较生成的监督的OPLS-DA模型。HF,高脂;LF,低脂;OPLS- DA,潜结构正交投影判别分析;PCA,主成分分析;UPLC- MS,超高效液相色谱-质谱分析。 结论 : ①   对高脂喂养的小鼠进行粪便病毒组移植(FVT),移植来源为低脂喂养14周的瘦小鼠的盲肠病毒组;② FVT 后第 6 周,受体小鼠的体重增长显著降低,且 葡萄糖耐受性 OGTT与 瘦 低脂喂养的对照组小鼠相似,没有出现 发生 因高脂喂养诱发 引起 的糖耐受损;③与此一致的是,FVT 显著改变了小鼠的肠道细菌和病毒组成、血浆代谢物以及与肥胖和 2 型糖尿病相关基因的表达水平;④ 但在 FVT 前进行抗生素预处理,反而会削弱 FVT 的有益效果。这项研究说明,噬菌体介导的疗法或能用来治疗肥胖和糖尿病等肠道菌群相关疾病。

我们这里用65mg/kg STZ对一定种属动物的胰岛β细胞有选择性破坏作用,而使许多动物产生糖尿病。最常用的是大鼠模型。一般常用的诱导方法如下:将大鼠禁食12h,按60mg/kg体重腹腔注射STZ,每日1次,连续2次,成功制备Ⅰ型糖尿病大鼠模型,并且该模型具有高血糖、体重减轻、多饮多食多尿的特点,与临床Ⅰ型糖尿病吻合;但在此实验中,若造模组只腹腔注射STZ一次,并给予高热量饲料饲养12周,则可制备Ⅱ型糖尿病动物模型,且按该法制备出的模型具有超重、糖耐量减低、血脂升高、血清胰岛素升高及胰岛素受体结合力降低伴胰岛素抵抗的特点,类似于Ⅱ型糖尿病病人的临床特征。Ⅰ型糖尿病与Ⅱ型糖尿病动物模型的制备可能与STZ注射的剂量有关系:大剂量(常为120mg/kg)注射时,由于直接引起胰岛β细胞的广泛破坏,可造成Ⅰ型糖尿病模型;而注射较少量STZ时,由于只是破坏一部分胰岛β细胞的功能,造成外周组织对胰岛素不敏感,同时给予高热量饲料喂养,两者结合便诱导出病理、生理改变都接近于人类Ⅱ型糖尿病的动物模型。 也有研究表明,用STZ按90mg/kg体重处理过的新生大鼠长至成鼠后,表现出糖耐量异常、胰岛素分泌下降、体重下降等特征。其主要机制是新生鼠出生后一周内β细胞对STZ敏感性不同,以及再生力不同,导致成鼠后β细胞数量相对减少。故大鼠出生后一周内注射STZ ,其β细胞坏死及增生可使成鼠β细胞数量及生化特点稳定。这说明该方法稳定性好,是研究非肥胖型非胰岛素依赖性糖尿病的理想载体。

川崎病有哪些相关论文

发热五天以上+皮肤(2)+粘膜(2)+淋巴结+冠状动脉 发病年龄:婴幼儿多见,五岁以下者占,高发年龄6月到18月。川崎病一种以全身血管炎为主要病变的急性发热出疹性小儿疾病。由于本病可发生严重心血管并发症,未经治疗的患儿发生率达20%到25%,已取代风湿热成为儿科最常见的后天心脏病。 发病率男童多于女童(:1),与免疫系统的启动点男女有别有关,男性易患感染性疾病,女性自身免疫性疾病发病率高于男性。 发病机制: 病毒感染 免疫系统活化状态 易感基因(亚裔发病率高于白人) 病理分期: 九版儿科学和实用儿科学有区别。 临床表现: 发热:从稽留热或弛张热,抗生素治疗无效。 球结合膜充血:3到4天出现,双侧,无脓性分泌物,热退后消退。 唇及口腔:唇充血皲裂,口腔黏膜弥漫充血,草莓舌。 手足:急性期手足硬性水肿和掌趾(zhi)红斑。恢复期,甲下和皮肤交界处膜状脱皮,指甲横沟(beau线),甲可脱落。 皮肤:多在第一周出现多形性红斑和猩红热样皮疹。会阴肛周皮肤潮红脱屑。 接种卡介苗的瘢痕处再现红斑(接种后三个月—三年内易出现)对不完全行川崎病的诊断有重要价值。 颈部淋巴结肿大:单侧或双侧,表面不红,无化脓,可有触痛。 冠状动脉改变:心血管并发症,最早在发病第3天出现,第2—3周检出率最高,第8周之后很少出现新的病变,多数于3—6个月内消退。实验室检查 : 急性期末梢血:白细胞计数、中型粒细胞百分数升高、轻度贫血,反应蛋白明显升高、血沉增快,血小板在第二周开始升高,数月恢复;尿白细胞或蛋白尿, 转氨酶升高, 免疫球蛋白均升高。 并发症: 心血管并发症高发时间: 最早在发病第3天出现,第2—3周检出率最高,第8周之后很少出现新的病变。 发病15—45天。 心血管并发症高危因素:延误诊断或未应用丙球,男孩,发热超过10天,首次应用IVIG无反应,贫血,白细胞总数、血沉、血小板、C反应蛋白明显升高。 有不典型心肌梗死的症状 :并发冠状动脉瘤患儿可出现苍白、乏力、胸痛、腹痛及无诱因哭、闹晕厥等症状,需格外注意。 其他:间质性肺炎、无菌性脑膜炎、消化系统症状、关节炎等。 休克 :表现为血压减低20%及循环灌注不良是可致命的严重并发症。 巨噬细胞及T细胞大量活化增生: 发生率极低,但有致命危险,表现为血小板消耗性减低。嗜血细胞综合症:极少数患儿在急性期发生,可危及生命。冠状动脉内径正常值: 既往沿用北京儿童医院标准: —3岁<2. 5mm —9岁< —14岁 冠状动脉病变严重程度分为四度: 正常: 无扩张(<3mm) 轻度:内径<4mm 中度:内径4—7mm 重度:内径>8mm Z值 国外研究显示正常儿童冠脉内径与体表面积呈线性关系,美国建议用测量冠状动脉内径的Z值代表大小。Z值>代表冠脉扩张。 建议选取Z值在+-2之间为冠状动脉正常值范围。 分别测量患儿冠脉内径及体表面积,对照曲线图即可得到其冠脉Z值。 急性期治疗 IVIG治疗 :2g/kg,10—12h输入。(九版8—12h) 用药时间:发病后5—10天,5天之内用药发生无反应性几率更高,10天后用冠脉发生率增加。 阿司匹林 : 30—80mg/ ,分3—4次,连续14天,以后减至3—5mg/,顿服,也可以热退三天后减为小剂量口服。大剂量阿司匹林可减轻急性炎症过程,小剂量抗血小板聚集及抗凝。 (九版儿科学:阿司匹林30—50mg/,分2—3次,热退3天后逐渐减量,2周左右减至3—5mg/) IVIG无反应性治疗: 发病10天内接受IVIG等标准治疗后 48小时, 患儿体温仍高于38℃;或给药2—7天,甚至2周内,再次发热,并至少仍有一项川崎病临床表现,称为丙球无反应。IVIG无反应性治疗有争议,共识是再次应用IVIG2g/kg。若仍无反应,用激素、血浆置换等。 激素 :用于丙球无反应性的二线治疗。 30mg/kg,2—3h,1—3d(实用儿科学) (9版儿科学:醋酸泼尼松1—2mg/,用2—4周,逐渐减量。 因糖皮质激素可促进血栓形成,增加发生冠状动脉病变风险影,响冠状动脉病变修复,故不宜单独应用,可与阿司匹林和双嘧达莫联合应用。) 恢复期治疗: 阿司匹林:5mg/,顿服,用至血沉、血小板恢复正常。如果冠状动脉无病变,一般 8到12 周。冠状动脉有病变,使用至冠状动脉完全恢复正常或更长。 阿司匹林不能耐受者可用双嘧达莫。 (9版儿科学:阿司匹林小剂量维持6—8周,如有冠状动脉病变,应延长用药时间,直至冠状动脉恢复正常。) 随访: 1、3、6月,1—2年复查,体格检查、心电图、心脏彩超。川崎病在临床中并不少见,早期诊断的线索非常重要。 出现冠状动脉扩张的病例并不多见。 对IVIG无反应性川崎病很陌生,当然也不希望遇上。其具体的治疗方案存在争议性(在指南上有关于激素、低分子肝素等的用法),希望有争议的内容,考试题不要出。 看起来很平常的一个疾病,细节确是非常多的,普通人与高人之间的区别或许正在于细节之间。 这个题目促使我把川崎病相关的知识详细捋顺一遍,更有利于临床工作。

原因是儿童在患有川崎病以后也会引起高热持续5天,还会伴有淋巴结的肿大,儿童的冠状动脉也会出现扩张,甚至会引起冠状动脉瘤的发生,所以有以上状况的,可能得了川崎病。

是一种急性出疹性疾病;患者一般会出现发热,淋巴肿大,皮疹,血管炎,皮肤红斑等症状;可能会引发胆囊积液,关节炎,冠状动脉瘤,无菌性脑脊髓膜炎,肺血管炎等疾病。

[1] 张丽,安效先.中医药治疗儿童咳嗽变异性哮喘的研究进展[J].环球中医药.2013(03).[2]彭征屏,冀晓华,邓云龙,安效先.小儿止哮平喘颗粒对动物模型止咳化痰平喘作用的实验研究[J].中国中西医结合儿科学.2013(05).[3]安效先,冀晓华,彭征屏.中医药治疗小儿传染性单核细胞增多症临床研究[J].北京中医药.2008(12).[4]安效先.小儿肺炎从瘀论治[J].中国医药学报.1996(04).[5]安效先.中医治疗小儿肺炎研究进展[J].中国中西医结合杂志.1994(12).[6]安效先,刘长虹.小儿传染性单核细胞增多症87例分析[J].中国医药学报.1994(01).[7]安效先,魏佑莲,唐莉珍,刘长虹,尹学英.腹痛灵贴剂治疗小儿痉挛性肠绞痛的临床研究[J].中国医药学报.1995(02).[8]刘弼臣,宋祚民,安效先,杨梦兰.川崎病的中医证治[J].北京中医.1990(04).[9]安效先.治疗小儿腹泻应注意些什么?[J].中医杂志.1990(09).[10]安效先.中医药为主治疗小儿难治性肾病40例[J].陕西中医.1985(10).[11]安效先,海鸿,刘长虹,葛安霞.中医药为主治疗川崎病2例[J].中西医结合杂志.1985(11).[22]安效先.试论小儿为少阳之体[J].中国医药学报.1986(03).[23]安效先.小儿传染性单核细胞增多症辨证治疗[J].北京中医.1987(05).[14]安效先.小儿疑难病证二例治验[J].云南中医杂志.1987(05).[15]安效先.长期发热一例[J].北京中医.1988(01).[16]安效先.王伯岳老中医学术思想和医疗经验简介[J].北京中医.1988(02).[17]安效先,胡瑾,叶蕾,吕佳康.中药复儿康治疗小儿缺锌的临床观察[J].中医杂志.1988(01).[18]安效先.益气养阴为主治疗小儿肾病综合征50例[J].北京中医.1989(03).[19]安效先.蛋白尿辨治九法[J].云南中医杂志.1989(06).[20安效先.儿科治汗七法[J].陕西中医.1982(04).

  • 索引序列
  • 川崎病小鼠模型相关论文
  • 川崎病相关论文
  • 小鼠糖尿病模型论文
  • 糖尿病小鼠模型论文
  • 川崎病有哪些相关论文
  • 返回顶部