首页 > 医学论文 > 医学论文中的T值范围是多少

医学论文中的T值范围是多少

发布时间:

医学论文中的T值范围是多少

在统计学中,一般是将p值设定在以下(通常是或),表示拒绝原假设的程度有足够的统计学意义。而T值的取值范围需要根据具体的数据、研究问题和假设检验方法来确定,不同的情况下T值的取值范围也会不同。在一般的t检验中,T值是指样本均值与总体均值之间的差距(或者是样本均值差距),除以标准误差得到的结果,表示样本均值与总体均值之间的差异程度。根据t分布的特性,当样本容量足够大时,t值的取值范围通常是从负无穷到正无穷。而当样本容量较小时,根据自由度的不同,t值的取值范围也会有所不同,可以通过查表或使用统计软件来确定。总之,T值的取值范围需要根据具体情况来确定,需要对数据进行假设检验并根据自由度和显著性水平进行计算和解释。

T值和Z值是骨密度报告单中最重要的两个指标。

1、T值

T值是用受检者的骨密度值与同性别正常青年人的骨密度平均值进行比较,即T值 =(受检者BMD值一青年人BMD均值/青年人BMD标准差,含义为受检者比青年人BMD的差异。

T值是一个相对的数值,临床上通常用T值来判断人体的骨密度是否正常。-1﹤ T值﹤1 示骨密度值正常;﹤T值﹤-1 表示骨量低、骨质流失;T值﹤表示骨质疏松症。

2、Z值

Z值是将受检者骨密度测得值与同年龄的人群比较得出的值,判断受检者与同龄人BMD的差异。

Z值也是一个相对的数值,其根据同年龄、同性别和同种族分组,将相应检测者的骨密度值与参考值作比较。-2﹤Z值表示骨密度值在正常同龄人范围内;Z值≤-2 表示骨密度低于正常同龄人。当出现低于参考值的Z值时,应引起病人和临床医生的注意。

而Z值正常并不能表明完全没有问题,例如老年人Z值正常不能代表其发生骨质疏松性骨折的可能性很小。因为同一年龄段的老年人随着骨量丢失,骨密度呈减少态势,其骨骼的脆性也进一步增加,此时更需要参照 T 值来准确判断骨密度情况。

扩展资料:

“骨密度”,全称“骨骼矿物质密度”,是骨骼强度的一个主要指标,以每平方厘米克(g/c㎡)表示,是一个绝对值。骨密度检查是通过调查中国北方汉族健康人的骨密度值做为标准,用每个人测出的数值去对比这个标准。

1、对于中老年人,T值更具有临床判定意义。当T值为-1到时,提示骨密度减低,当T值<时,提示为骨质疏松。

2、对于儿童、绝经前女性及小于50岁男性,更需要看Z值。但是与T值直接提示为骨质疏松不同的是,Z值即便<-2,也只是提示骨密度降低,“考虑”为骨质疏松,要确诊是否是骨质疏松,还要结合实际情况才能判断。

骨密度t值表示通过监测所得的骨密度与正常年轻人群的骨密度相比较,得到的高于正常的标准差,高出或低于用正负号来表示,是衡量骨质疏松症的常用指标。如脊柱t值正常值一般是。

而z值指的是将测得的骨密度值与同龄人的骨密度值相比较而得,可以反应骨质疏松的程度,脊柱骨密度z值正常值一般是,不同部位的的骨密度值会有所不同。

参考资料来源:百度百科-骨密度

应该不可以。不知你是指哪个T值。 如果是联通业务的,T即Text的首个字母,是文本内容的计价单位。如果是医疗方面的,T值是指睾酮同时也是检查睾丸的一种重要指标。在睾酮的指标上,正常值到之间。如果T值的变化很大就很有可能是身体内的一些疾病发生。最常见的就是男性的睾丸炎。

医学论文t值是多少

采用spss软件,单因素分组对照计算。

t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法

假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

t/F值是指t值或F值,两种不同的统计学方法中的参数指标;t值常见于t检验中,当t<(一般取为检验水准),即拒绝无效假设,认为差异具有统计学意义;取值范围0~1F值常见于方差分析中,当F<(一般取为检验水准),即拒绝无效假设,认为差异具有统计学意义;取值范围0~1对于适用的同一组资料t检验和方差分析的结果是等价的(结果指标F=t的平方)。

统计学中t值一般范围:r可以是相关系数-1到正1;P是概率值0到1;t是统计值,用于推断P的。

t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

学生t-分布

可简称为t分布。其推导由威廉·戈塞于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。之后t检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。

医学论文中的T值是什么

t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

1、选用的检验方法必须符合其适用条件(注意:t检验的前提:来自正态分布总体;随机样本;均数比较时,要求两样本总体方差相等,即具有方差齐性)。理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。

2、区分单侧检验和双侧检验。单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大。t检验中的p值是接受两均值存在差异这个假设可能犯错的概率。在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到t-检验的P值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧t检验概率。

专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)

t值指的是t检验,t检验分为单总体检验和双总体检验;单总体t检验时检验一个样本平均数与一个已知的总体平均数的差异是否显著,当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布;双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。

朋友或者是同学

一般医学论文中的p值是多少

p值小于被认为是确定实验数据可靠性的金标准。这个标准支持了大多数已发表的科学结论,违反这一标准的论文很难发表,而且也很难得到学术机构的资助。然而,即使是菲舍尔也明白,统计显著性的概念以及支撑它的p值具有相当大的局限性。

P值研究

P值经常被曲解,统计的显著性不等于实际的显著性。此外,为了让数据更漂亮,很多研究人员有意无意地将p值向上或向下调整。美国加利福尼亚大学洛杉矶分校的名誉教授、统计学家和流行病学家桑德·格林兰德(Sander Greenland)说:“你可以用统计学方法来证明任何事情。”

他是呼吁统计学改革的科学家之一。只依靠达到统计显著性的研究经常会得出不准确的科学结论,这种判断标准可以把真的事情判断为假的,也可以把假的事情判断成真的。在菲舍尔退休,移居澳大利亚后,有人问他,在漫长的职业生涯中他是否有任何遗憾,他明确回答道:“当初不该提出。”

可能显著,可能不显著。显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率(P)水平的选择。所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。

这个严谨的说,就直接对这个p=进行一个讨论 可能是显著 也可能是不显著,因此可以在以后的研究中扩大样本量进一步求证。  但实际是你双击以下 那个  肯定后面还有很多隐藏的位数。所以不可能是恰好等于,一般都是大于

扩展资料

如果P值小于某个事先确定的水平,理论上则拒绝零假设,反之,如果P值大于某个事先确定的水平,理论上则不拒绝零假设。常用的显著性水平是,和[1]。

不同的水平各有优缺点。水平越小,判定显著性的证据就越充分,但是不拒绝错误零假设的风险,犯第二类错误的可能性就越大,统计效力就越低。

选择水平不可避免地要在第一类错误和第二类错误之间做出权衡。如果犯第一类错误造成的后果不严重,比如在试探性研究中,我们可以将α水平定得高一些,如或。

如果研究样本很小,为了提高统计效力,我们在某些研究中也不妨提高口水平。但是,如果犯第一类错误造成的后果很严重,比如我们要基于某项研究发现决定是否在全国推行某项教学改革,我们则需要将α水平定得低一些,如或。

参考资料:百度百科-显著性检验

P值是采用假设检验的方法来计算的。举个例子来说明:比较两个样本的均数有没有差别,采用反证法,首先建立假设检验,H0:假设两组没有差别,H1:假设两组有差别。通过假设两组没有差别计算出其没有差别的概率,一般取P<作为临界值,若P<则代表随机抽取的两组均数没有差别的概率小于,为小概率事件,此时拒绝H0,接受H1。P>接受H0。但是P值的大小只能代表两者是否具有统计学差异,不能代表差异的大小。详细的计算方法要根据你采用的统计学方法具体计算,现在这步一般都采用统计软件SPSS、SAS等来完成。希望对你有所帮助。

医学论文中的t值p值是什么意思

t是T检验的值 p是概率,p<或p<0、001最好,可以拒绝原假设,表明差异显著

t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

1、t值

T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。

T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布 。

2、P值

P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。

P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

扩展资料

实用举例

1、t检验可用于比较男女身高是否存在差别

为了进行独立样本t检验,需要一个自(分组)变量(如性别:男、女)与一个因变量(如身高测量值)。根据自变量的特定值,比较各组中因变量的均值。用t检验比较下列男、女儿童身高的均值 。

假设

H0:男平均身高 = 女平均身高

H1:男平均身高 ≠ 女平均身高

选用双侧检验:选用α=的统计显著水平

2、P值

从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

如果P<,说明是较强的判定结果,拒绝假定的参数取值。

如果

如果P值>,说明结果更倾向于接受假定的参数取值。

参考资料来源:百度百科-t值

参考资料来源:百度百科-p值

采用spss软件,单因素分组对照计算。

t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法

假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

  • 索引序列
  • 医学论文中的T值范围是多少
  • 医学论文t值是多少
  • 医学论文中的T值是什么
  • 一般医学论文中的p值是多少
  • 医学论文中的t值p值是什么意思
  • 返回顶部