首页 > 医学论文 > spss数据分析医学论文结论

spss数据分析医学论文结论

发布时间:

spss数据分析医学论文结论

对模型整体情况进行分析:包括模型拟合情况(R²),是否通过F检验等。

前面的几个表是回归分析的结果,主要看系数,表示自变量增加一个单位,因变量平均增加个单位。后面的sig值小于,说明系数和0的差别显著。

B,看模型系数,然后看B后面的SIG,发现公司道德变量不显著;再看R2,看模型拟合度,可以看出,模型拟合效果很差;多元回归模型还要看方差分析,发现模型整体有效。

Stepwise Regression逐步回归

在处理多个自变量时,可以使用这种形式的回归。在这种技术中,自变量的选择是在一个自动的过程中完成的,其中包括非人为操作。这一壮举是通过观察统计的值,如R-square,t-stats和AIC指标,来识别重要的变量。逐步回归通过同时添加/删除基于指定标准的协变量来拟合模型。向后剔除法与模型的所有预测同时开始,然后在每一步消除最小显著性的变量。

以上内容参考:百度百科-回归分析

首先来说明各个符号,B也就是beta,代表回归系数,标准化的回归系数代表自变量也就是预测变量和因变量的相关,为什么要标准化,因为标准化的时候各个自变量以及因变量的单位才能统一,使结果更精确,减少因为单位不同而造成的误差。T值就是对回归系数的t检验的结果,绝对值越大,sig就越小,sig代表t检验的显著性,在统计学上,sig<一般被认为是系数检验显著,显著的意思就是你的回归系数的绝对值显著大于0,表明自变量可以有效预测因变量的变异,做出这个结论你有5%的可能会犯错误,即有95%的把握结论正确。回归的检验首先看anova那个表,也就是F检验,那个表代表的是对你进行回归的所有自变量的回归系数的一个总体检验,如果sig<,说明至少有一个自变量能够有效预测因变量,这个在写数据分析结果时一般可以不报告然后看系数表,看标准化的回归系数是否显著,每个自变量都有一个对应的回归系数以及显著性检验最后看模型汇总那个表,R方叫做决定系数,他是自变量可以解释的变异量占因变量总变异量的比例,代表回归方程对因变量的解释程度,报告的时候报告调整后的R方,这个值是针对自变量的增多会不断增强预测力的一个矫正(因为即使没什么用的自变量,只要多增几个,R方也会变大,调整后的R方是对较多自变量的惩罚),R可以不用管,标准化的情况下R也是自变量和因变量的相关希望对您有用

SPSS数据分析心得小结_数据分析心得分享

学习数据分析之spss分析工具,可真的不是一般的功夫,真的要很认真和很细心才能做得好spss。下面我来和大家分享一下关于SPSS数据分析心得小结,希望大家从这数据分析心得分享中能得到一些启示和指导。心得1:拿到一份数据,或者在看到国内外某个学者的文章有想法而自己手里的数据刚好符合这个想法可以做时,在整理好数据后不要急于建模。一定要对数据做缺失值处理、异常值处理。在数据预处理的基础上再进一步建模,否则可能得到错误的结果。心得2:承接心得1,数据预处理怎么做。一是缺失值的处理。我个人有几个看法:一是数据样本量足够大,在删除缺失值样本的情况下不影响估计总体情况,可考虑删除缺失值;二是数据样本量本身不大的情况下,可从以下两点考虑:1是采用缺失值替换,SPSS中具体操作为“转换”菜单下的“替换缺失值”功能,里面有5种替换的方法。若数据样本量不大,同质性比较强,可考虑总体均值替换方法,如数据来自不同的总体(如我做农户调研不同村的数据),可考虑以一个小总体的均值作为替换(如我以一个村的均值替换缺失值)。2是根据原始问卷结合客观实际自行推断估计一个缺失值的样本值,或者以一个类似家庭的值补充缺失值。心得3:承接心得1,数据预处理第二点异常值的处理。我大概学了两门统计软件SPSS和Stata,SPSS用的时间久些,熟悉一下,Stata最近才学,不是太熟。关于这点我结合着来说。关于异常值的处理可分为两点,一是怎么判定一个值是异常值,二是怎么去处理。判定异常值的方法我个人认为常用的有两点:1是描述性统计分析,看均值、标准差和最大最小值。一般情况下,若标准差远远大于均值,可粗略判定数据存在异常值。2是通过做指标的箱图判定,箱图上加“*”的个案即为异常个案。发现了异常值,接下来说怎么处理的问题。大概有三种方法:一是正偏态分布数据取对数处理。我做农户微观实证研究,很多时候得到的数据(如收入)都有很大的异常值,数据呈正偏态分布,这种我一般是取对数处理数据。若原始数据中还有0,取对数ln(0)没意义,我就取ln(x+1)处理;二是样本量足够大删除异常值样本;三是从stata里学到的,对数据做结尾或者缩尾处理。这里的结尾处理其实就是同第二个方法,在样本量足够大的情况下删除首尾1%-5%的样本。缩尾指的是人为改变异常值大小。如有一组数据,均值为50,存在几个异常值,都是500多(我这么说有点夸张,大概是这个意思),缩尾处理就是将这几个500多的数据人为改为均值+3标准差左右数据大小,如改为100。总结而言,我个人认为做数据变换的方式比较好,数据变换后再做图或描述性统计看数据分布情况,再剔除个别极端异常值。心得4:如何做好回归分析。经过多次实战,以及看了N多视频,上了N多课,看了N多专业的书。我个人总结做回归的步奏如下:1是承接心得1-3,对数据进行预处理,替换缺失值和处理异常值;2是将单个自变量分别与因变量做散点图和做回归,判定其趋势,并做好记录(尤其是系数正负号,要特别记录);3是自变量和因变量一起做相关系数,看各个变量相关关系强弱,为下一步检验多重共线性做准备;4是自变量多重共线性诊断。若变量存在多重共线性,可采用主成分回归,即先将存在多重共线性的变量做主成分分析合并为1个变量,然后再将合并成的新变量和其余自变量一起纳入模型做回归;5是做残差图,看残差图分布是否均匀(一般在+-3个单位之间均匀分布就比较好);6是报告相应结果。心得5:看到论坛上有网友问为什么他(她)老师不建议采用后向步进法处理变量多重共线性。记得张文彤老师说过他有个同学做过一个研究,即采用后向步进法剔除变量的方式去做回归,得到的结果犯错的几率比较大。张老师也不建议用这个方法处理多重共线性。处理多重共线性比较好的方法是做主成分回归。心得6:有个朋友问我在报到回归结果时用未标准化的回归系数好,还是用标准化后的回归系数好。我个人觉得这个问题仁者见仁智者见智,要看想表达什么。具体而言,如果想表达在其它条件不变的情况下,自变量X每变化1个单位,因变量变化多少个单位,这种情况用未标准化回归系数就好;如果想比较各个自变量对因变量影响的相对大小,即判断相对而言,哪个变量对因变量影响更大。这时需要消除量纲的影响,看标准化后的回归系数。心得7:这是投稿一篇SSCI外审专家提出的意见。我做的是无序多分类logistic回归模型。因变量分了5类,有一类个数比较多,达到300多,有1-2类个案比较少,只有30左右。专家提到了要做稳健性检验。这个用stata软件编程加一个robust即可解决问题。不知道在SPSS里面怎么做。欢迎知道的朋友一起讨论下。我个人认为这是一个好问题的。不做稳健性检验模型可能受一些极端值的影响,结果不稳定。可能本来显著的变量剔除1-2个样本后就变得不显著了。所以做回归分析稳健性检验也比较重要。PS:如果有可能,我希望在后面的心得中附上实际操作的步奏图和解释的。看看有没有人需要这个。不然可能说的一些东西需要的人能看明白,但还是不清楚怎么做。希望和大家一起交流学习。

以上是小编为大家分享的关于SPSS数据分析心得小结的相关内容,更多信息可以关注环球青藤分享更多干货

SPSS软件是“统计产品与服务解决方案”软件,是数据统计分析的一个重要的工具。下文是我为大家整理的关于spss统计分析论文的 范文 ,欢迎大家阅读参考!

统计分析软件SPSS的特点和应用分析

【摘要】通过文献资料法,介绍了统计分析软件SPSS的特点,并通过实例:用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的应用做了详细的介绍,旨在为学习SPSS软件的人们提供参考。

【关键词】统计分析软件;SPSS;独立样本;非参数检验

一、前言

统计分析软件SPSS是一款统计产品与服务解决方案的软件,其全称为“统计产品与服务解决方案(Statistical Product and Service Solutions)”。该软件是一款在统计中应用很广的统计分析软件,目前在各专业 毕业 论文经常可以看到它的身影,其应用范围广、方便快捷等特点吸引着众多的 爱好 者。本文通过对统计分析软件SPSS的功特点进行介绍,通过举例用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的操作用做了详细的介绍,为学习SPSS软件的人们提供参考。

二、SPSS软件的特点

(一)操作简便

SPSS软件的界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。

(二)编程方便

具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计 方法 的各种算法,即可得到需要的统计分析结果。对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。

(三)功能强大

具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。

(四)全面的数据接口

能够读取及输出多种格式的文件。比如由dBASE、FoxBASE、FoxPRO产生的*.dbf文件,文本编辑器软件生成的ASCⅡ数据文件, Excel 的*.xls文件等均可转换成可供分析的SPSS数据文件。能够把SPSS的图形转换为7种图形文件。结果可保存为*.txt,word,PPT及html格式的文件。

(五)灵活的功能模块组合

SPSS for Windows软件分为若干功能模块。用户可以根据自己的分析需要和计算机的实际配置情况灵活选择。

(六)针对性强

SPSS针对初学者、熟练者及精通者都比较适用。并且现在很多群体只需要掌握简单的操作分析,大多青睐于SPSS,像薛薇的《基于SPSS的数据分析》一书也较适用于初学者。而那些熟练或精通者也较喜欢SPSS,因为他们可以通过编程来实现更强大的功能。

三、实例分析――两个独立样本的检验(Test for Two Independent Sample)

例题:为了调查甲、乙两地土壤对 种植 同一种西瓜有没有影响,从这两个产地分别随机抽取同种的8只和7只西瓜,称重后得重量(市斤)如下:

甲(斤):、、、、、、、

乙(斤):、、、、、、

问:根据样本数据检验两地的土壤对种植西瓜在重量上是否有显著差异?

解:建立假设 H0:甲乙两地的西瓜重量没有显著差异;

H1:甲乙两地的西瓜重量有没有显著差异。

然后根据上面给出的数据建立数据文件,注意数据文件中有一个表示重量数据的变量和一个表示地区分组的变量。最后在数据编辑窗口进行检验。检验的具 体操 作过程如下:

第一步:单击Analyze Nonparametric Test 2 Independent Sample,打开Two-Independent-Sample对话框(见图1)。

第二步:选择检验的变量进入检验框中,选择分组变量进入Grouping Variable框中,单击Define Group键,打开Define Group对话框,将分组变量值分别键入两个框中,单击Continue返回主对话框(见图2):

第三步:在Test Type栏中,确定检验方法。

SPSS中提供了四种检验方式,几种检验方法侧重点不同,但都是先把两样本数据混合排序,再从不同的角度分析并检验两个独立总体的分布是否有显著的差异。有时这几种检验结果可能不一样,所以要结合数据的探索分析考察数据的分布状况作出结论。本文选择了常用的Mann-Whitney U曼―惠特尼检验和Kolmogorov-Smirnov Z K-S检验。

第四步:选择输出的结果形式及缺失值处理方式;

第五步:单击OK,得输出结果。

所以,以上两种检验结论是一致的。也就是说在两地种植的同一种西瓜地重量没有显著差异。

参考文献

[1]杜志渊.常用统计分析方法―SPSS应用[M].山东人民出版社,2011.

[2]刘宁元.运用SPSS对高职专业课程成绩进行相关分析[J].电脑与电信,2007(3).

[3]井海立.SPSS在数学试卷统计分析中的应用[J].科技信息(学术版),2006(10).

试谈SPSS软件在考试数据统计分析中的应用

摘要: SPSS软件是数据统计分析的一个重要的工具。本文作者利用SPSS软件对考试数据的相关性、检验假设进行了统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤,文中的方法对考试研究人员具有一定的指导意义。

关键词: SPSS软件 考试数据 统计分析 操作步骤

1. 引言

一份好的试卷须有好的测量指标来表明它的优良程度,试题有难度和区分度指标,试卷有效度和信度指标,这些是评价考试最主要的测量指标,但是仅有这些指标不足以反映一份试卷的实际测量效果,考试研究人员希望从考生的试卷统计分析中获取更多的信息来评价一份试卷。在计算机未普及的年代,考试成绩统计主要依靠人工阅卷,考试数据无法电子化存储,对考试数据分析统计难以实现。随着计算机的普及和信息化的推广,各种分析数据的软件应运而生,这些软件中汇集了统计学和测量学的分析工具,使得应用电子信息技术分析统计考试成绩数据成为可能,这些统计信息可以为教研部门、考试行政部门进行行政决策等提供非常重要的帮助。在众多的统计分析软件当中,SPSS是应用最多、影响最广泛的分析工具之一。在本文中,我们以SPSS软件为工具,对 教育 招生考试成绩的数据进行统计分析,分析主要着重于考试数据的相关性、假设检验等几个方面。

2. SPSS分析软件简介

“SPSS统计分析软件”的英文名称为“Statistical Package for the Social Science”,中文名称为“社会科学统计软件包”,它是世界著名的统计分析软件之一,在自然科学、社会科学的各个领域均有非常广泛的应用。SPSS是一个组合式软件包,它集数据整理、分析于一身,主要功能包括数据管理、统计分析、图表分析、输出管理等,该软件的统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类。

下面我们利用SPSS软件对考试数据的相关性、检验假设进行统计分析,介绍使用SPSS进行统计分析的一般方法和步骤。

3. 相关性分析

教育考试中,考试结果的信度,试题的区分度,每个题目得分与试卷总分的关系,以及题目之间的关系,等等,都是考试研究的重要内容,最主要的研究方法就是数据的相关性分析。在众多的教育考试数据的相关性分析方法中,Pearson相关系数法、Spearman相关系数法和Cronbach α信度系数法是比较常用的几种方法。

Pearson相关系数法计算公式:

式中x为第i个考生第j题的得分,y为第i个考生第k题的得分,为第j题的平均分,为第k题的平均分,n为测试样本量。该公式既可以计算两个连续变量之间的相关性,又可以计算一个双歧变量与一个连续变量之间的相关性。

Spearman相关系数法计算公式:

r=1-(2)

式中D为两个变量的秩序之差,n为样本容量。

Cronbach a信度系数法计算公式:

α= 1-(3)

式中n为试题数,s为第i题的标准差,s为总分的标准差。该公式实际上就是将考试中所有试题间相关系数的平均值(又称内部一致性)作为α信度系数。

对于给定的一组考生成绩数据,利用SPSS统计分析软件可以非常容易地定量分析考生某学科试卷总分和该学科某道题的相关性,以及各个题目之间的相关性。我们以Pearson相关系数分析为例,利用SPSS软件进行统计分析。

数据统计分析的对象是某省高考数学6道解答题的得分情况(不是整张试卷),数据源于该省的高考数据成绩。研究的目的是测量6道解答题每两个题目之间的相关性。

我们以SPSS 版本的软件为例,介绍利用SPSS进行数据统计分析的步骤(以Pearson相关系数法为例):

(1)将考试数据导入SPSS软件,在SPSS数据窗口中,顺序点击【Analyze】→【Correlate】→【Bivariate...】,系统弹出变量相关系数设置对话框。

(2)在该对话框中,将待计算的变量从左侧的变量列表中导入到右侧的“Variables”变量列表中,在本例中导入t1、t2、t3、t4、t5、t6共6个变量(t1―t6是6道解答题的变量名称)。在“Correlation Coefficients”相关系数选项中,选取“Pearson”复选框。

(3)在该对话框的“Test of Significance”设置区域,可以点选“Two-tailed”选项或者“One-tailed”,我们采用系统默认值。

(4)对话框中的 其它 选项取软件系统的默认值,点击【OK】,开始相关系数计算,系统弹出新的窗体输出运算的结果。本次输出的情况如下:

上表的统计结果可用于题目之间相关性的分析。表中的大部分题目的相关系数都比较适中,但题目T4和题目T5之间的相关程度远高于其它几个题目,我们可以确信这两者之间一定存在着比其他题目之间更紧密的关系,这是我们通过分析获取的重要信息,该信息表明这两个题目之间的相关性高于其他几个题目之间的相关性,这在大规模考试中是不应该出现的,需要在以后的命题考试中加以改进。

Spearman相关系数分析方法和上述分析方法类似,只需要在上述SPSS操作的第二个骤中选取“Pearson”复选框,程序就会按Pearson相关系数法进行统计分析,如果同时选中“Spearman”和“Pearson”复选框,程序将会同时计算按两种分析方法统计分析的数据,并会以不同的图表进行显示,而Cronbach a信度系数法计算方法与上述方法略有不同,其操作步骤如下:

(1)在SPSS数据窗口中,顺序点击【Analyze】→【Scale】→【Reliability Analysis...】,系统弹出“Reliability Analysis”信度分析设置对话框。

(2)将待计算的变量从左列的变量列表中导入到右侧的“items”变量中,在左下列的“model”选择项的下拉列表中确保选中“Alpha”(信度系数),点击“Statistics”选择项可以进行更为详细的参数设置,我们采用系统的默认值即可。

(3)参数设置完毕之后,点击【OK】,软件开始相关系数计算并输出运算结果。

4. 选择题的选项分析

在目前的教育招生考试中选择题是一种较常见的题型,考试研究人员关注较多的是对选择题基本特征、测量功能及其优缺点的理论探讨[1][2],对选择题干扰项的设计及其施测后的实际效果关注甚少,事实上施测后对题目各选项的有效性作出判断可为评价试题质量提供重要参考依据。我们利用统计中χ检验假设,对试卷中常见的选择题选择项进行统计分析。

教育考试的单项选择项一般设置为4个,其中仅有1个选择项是正确的。命题人员在设计选择项时,应当也必然对每道题目所有的选择项(正确选择项和干扰选择项)的考生作答情况作出预测,对考生作答的分布情况作出预估。考试结束后,研究人员应该对实测的情况与命题教师预测的情况进行对比分析,以检验考试效果是否达到了预测的目标。这和χ拟合度检验的思想具有一致性,因此可以尝试使用χ检验假设进行分析。

我们依据文献[3][4]的方法来介绍χ检验假设在考试数据分析中应用的基本原理,设变量E是命题者对某道试题的期望值,E=nP,n为样本容量,P为期望的相对频率,引入以下统计量:∑(O-E)/E,其中O为观察频数。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

我们需要进行的假设检验是:零假设H:选项的实测分布与期望分布相同;非零假设H:选项的实测分布与期望分布不同。

检验假设的思想:拟合度检验的统计量在确定的某种显著性水平下如果零假设是真,则检验统计量∑(O-E)/E呈近似χ分布,其自由度为研究变量的可能值减1;如果实测分布与期望的分布相当吻合,就不排除零假设,否则就排除零假设;最后对检验假设的结果进行解释。

数据分析的目的是判断考生实际的应答结果(实测数据)与命题期望的选择概率(期望数据)是否一致。我们随机抽取某省5542个高考考生的数学有效数据构成分析样本,利用SPSS进行统计分析。

SPSS数据统计分析的步骤如下:

(1)将考试数据导入SPSS软件,依次点击【Analyze】→【Nonparametric Tests】→【Chi-Square...】,弹出“Chi-Square Tests”对话框。

(2)将变量列表中待分析的题目序号导入到“Test Variables List”(检验变量列表)中,本例中题目的序号为t7。

(3)将对选择试题的每个选项的期望值依次输入到“Expected Values”所属的方框,具体操作方法是选中单选框“Values”,输入具体的期望数值,点击“Add”按钮,依次重复上述的步骤直至所有的选项的期望值输入完毕。

(4)点击【OK】,输出软件运算结果。

我们需要进行的假设检验,H:选项的实测分布与期望分布相同;H:选项的实测分布与期望分布不同。

假设检验的显著性水平为α=,χ=∑(O-E)/E,自由度为df=4-1=3,查χ分布表或利用相关软件可得P=,由于P>α,因此不能拒绝零假设,即选项的实测分布与期望分布相同。因此,检验结果在显著性水平时,没有足够的证据拒绝零假设,即可认为本题选项的实测分布与期望分布相同,也就是说本题的实际测试效果与命题教师预测的效果是一致的,命题教师准确地估计了考生的实际水平,这是分析获得的很重要的结论。

5. 结语

SPSS软件在考试数据统计分析中应用广泛,但大部分是集中在试题难度、均值、方差统计、考试数据的图表显示等几个方面,本文从一个新的角度利用SPSS软件对考试数据的相关性、检验假设等几个方面进行了尝试性统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤。从上述分析来看,软件操作步骤和统计分析过程十分简单、快捷,对于测量学和统计学基础不太好的数据分析统计人员来说,只要遵循一定的操作步骤,就可以进行分析。

参考文献:

[1]王孝玲.教育测量(修订版)[M].上海:华东师范大学出版社,2006.

[2]雷新勇.大规模教育考试:命题与评价[M].上海:华东师范大学出版社,2006.

[3]李伟明,冯伯麟,余仁胜.考试的统计分析方法[M].北京:高等教育出版社,1990.

[4]雷新勇.考试数据的统计分析和解释[M].上海:华东师范大学出版社,2007.

猜你喜欢:

1. 统计学数据分析论文

2. spss统计分析实习心得

3. 统计学学年论文

4. 统计学分析论文

医学论文数据分析spss

用spss分析数据的具体操作如下:

1、首先,在spss中画散点图,点击【图形】---【旧对话框】---【散点/点状】:

2、然后,选择【简单分布】,并在出现的对话框中点击【定义】:

3、之后,在接下来的弹出框中设置x轴和y轴,然后点击确定:

4、接着,点击【分析】---【回归】---【线性】:

5、最后、spss就已经完成了数据的汇总分析:

亲,可以来我们这里了解代做流程及报价,我们团队写手比较准成的

这要看你的数据量,如果巨大,可能是要用SPSS。如果数据量不是很大,EXCEL也是可以的,只是要自己运用函数额处理。

录入完数据后,你可以先进行基础的数据统计--描述性统计。然后根据你的数据结果再看是否需要相关回归或者其他分析。spss里面的描述统计主要在analyze——descriptive里面,其中有描述统计、频数统计、交叉分析。 描述性统计分析是统计分析的第一步,先选择analyze,你就能看到descriptive,然后鼠标再选Descriptive 菜单中,最常用的是列在最前面的四个过程:Frequencies过程的特色是产生频数表;Descriptives过程则进行一般性的统计描述;Explore过程用于对数据概况不清时的探索性分析;Crosstabs过程则完成计数资料和等级资料的统计描述和一般的统计检验。先选择analyze,---再选descriptive打开任意的分析窗口后,你把想分析的数据选入,可以一起按鼠标左键选中按中间按钮加入,然后选择单击后弹出Statistics对话框,用于定义需要计算的其他描述统计量。你可以分析均数(Mean)、中位数(Median)、众数(Mode)、总和(Sum)等等。 然后还可以点Charts对话框,选择直方图、饼图等来绘图。都确定好后,选择单击Continue钮 ,然后选择OK。就可以了。直接就会有输出结果。你可以先看看描述性统计的结果,有没有什么缺失值或者不符合实际的数据出现。要是有,你需要纠正数据,再用描述统计进行分析。我觉得说的挺详细的了。呵呵~~~~

spss数据分析医学论文

spss数据分析论文写法如下:

1、适用于自变量为定类数据且仅为两组时。

2、适用于因变量为定量数据。

3、各个观察值相互独立,不能相互影响,即满足独立性。这个一般根据专业背景考察,如遗传性疾病、传染性疾病的数据就可能存在非独立性问题,也就是不同数据会相互影响,而不同学生身高可认为相互独立,彼此不相互影响。

4、各个样本均来自正态分布的总体,即满足正态性。独立样本t建议对于数据资料的正态性存在一定的耐受能力,一般认为样本量大于30即可满足正态分布。

5、各个样本所在总体方差相等,即满足方差齐性。很多同学对于这个概念不太了解,这没有关系,在SPSS进行独立样本t检验时,自动会进行使用Levene’s检验来方差齐性,我们只需要根据相应结果解读数据即可。

撰写摘要注意事项:

1、不得简单重复题名中已有的信息,忌讳把引言中出现的内容写入摘要,不要照搬论文正文中的小标题(目录)或论文结论部分的文字,也不要诠释论文内容。

2、尽量采用文字叙述,不要将文中的数据罗列在摘要中;文字要简洁,应排除本学科领域已成为常识的内容,应删除无意义的或不必要的字眼;内容不宜展开论证说明,不要列举例证,不介绍研究过程。

3、摘要的内容必须完整,不能把论文中所阐述的主要内容(或观点)遗漏,应写成一篇可以独立使用的短文。

4、摘要一般不分段,切忌以条列式书写法。陈述要客观,对研究过程、方法和成果等不宜作主观评价,也不宜与别人的研究作对比说明。

SPSS软件主要用于对数据做统计学方面的一些分析和检验,是用于对数据进行一些基本处理、分析,以及做一些统计检验的软件,使用SPSS分析数据通常有以下几步:导入数据——>数据基本处理——>数据分析——>总结并得出结论。打开SPSS后会出现两个界面,如下图;图一是数据处理分析区,包括数据视图(数据处理区)和变量视图(数据包含各字段编辑区);图二是分析结果区,分析的各类结果都会在此显示。导入数据:在数据处理区左上方选择“文件”——>“导入数据”,导入相应格式的数据,此处我以csv文件格式为例。点击之后,出现如下对话框,选择好要处理的数据,点击“打开”,对要导入数据数据按需要进行预处理,再点击确定。

医学论文spss数据分析

1、选取在理论上有一定关系的两个变量,如用X,Y表示,数据输入到SPSS中。

2、从总体上来看、X和Y的趋势有一定的一致性。

3、为了解决相似性强弱用SPSS进行分析、从分析-相关-双变量。

4、打开双变量相关对话框,将X和Y选中导入到变量窗口。

5、然后相关系数选择Pearson相关系数,也可以选择其他两个。

6、点击确定在结果输出窗口显示相关性分析结果。

spss数据分析论文写法如下:

1、适用于自变量为定类数据且仅为两组时。

2、适用于因变量为定量数据。

3、各个观察值相互独立,不能相互影响,即满足独立性。这个一般根据专业背景考察,如遗传性疾病、传染性疾病的数据就可能存在非独立性问题,也就是不同数据会相互影响,而不同学生身高可认为相互独立,彼此不相互影响。

4、各个样本均来自正态分布的总体,即满足正态性。独立样本t建议对于数据资料的正态性存在一定的耐受能力,一般认为样本量大于30即可满足正态分布。

5、各个样本所在总体方差相等,即满足方差齐性。很多同学对于这个概念不太了解,这没有关系,在SPSS进行独立样本t检验时,自动会进行使用Levene’s检验来方差齐性,我们只需要根据相应结果解读数据即可。

撰写摘要注意事项:

1、不得简单重复题名中已有的信息,忌讳把引言中出现的内容写入摘要,不要照搬论文正文中的小标题(目录)或论文结论部分的文字,也不要诠释论文内容。

2、尽量采用文字叙述,不要将文中的数据罗列在摘要中;文字要简洁,应排除本学科领域已成为常识的内容,应删除无意义的或不必要的字眼;内容不宜展开论证说明,不要列举例证,不介绍研究过程。

3、摘要的内容必须完整,不能把论文中所阐述的主要内容(或观点)遗漏,应写成一篇可以独立使用的短文。

4、摘要一般不分段,切忌以条列式书写法。陈述要客观,对研究过程、方法和成果等不宜作主观评价,也不宜与别人的研究作对比说明。

SPSS软件主要用于对数据做统计学方面的一些分析和检验,是用于对数据进行一些基本处理、分析,以及做一些统计检验的软件,使用SPSS分析数据通常有以下几步:导入数据——>数据基本处理——>数据分析——>总结并得出结论。打开SPSS后会出现两个界面,如下图;图一是数据处理分析区,包括数据视图(数据处理区)和变量视图(数据包含各字段编辑区);图二是分析结果区,分析的各类结果都会在此显示。导入数据:在数据处理区左上方选择“文件”——>“导入数据”,导入相应格式的数据,此处我以csv文件格式为例。点击之后,出现如下对话框,选择好要处理的数据,点击“打开”,对要导入数据数据按需要进行预处理,再点击确定。

SPSS医学论文数据分析

用spss分析数据的具体操作如下:

1、首先,在spss中画散点图,点击【图形】---【旧对话框】---【散点/点状】:

2、然后,选择【简单分布】,并在出现的对话框中点击【定义】:

3、之后,在接下来的弹出框中设置x轴和y轴,然后点击确定:

4、接着,点击【分析】---【回归】---【线性】:

5、最后、spss就已经完成了数据的汇总分析:

录入完数据后,你可以先进行基础的数据统计--描述性统计。然后根据你的数据结果再看是否需要相关回归或者其他分析。spss里面的描述统计主要在analyze——descriptive里面,其中有描述统计、频数统计、交叉分析。 描述性统计分析是统计分析的第一步,先选择analyze,你就能看到descriptive,然后鼠标再选Descriptive 菜单中,最常用的是列在最前面的四个过程:Frequencies过程的特色是产生频数表;Descriptives过程则进行一般性的统计描述;Explore过程用于对数据概况不清时的探索性分析;Crosstabs过程则完成计数资料和等级资料的统计描述和一般的统计检验。先选择analyze,---再选descriptive打开任意的分析窗口后,你把想分析的数据选入,可以一起按鼠标左键选中按中间按钮加入,然后选择单击后弹出Statistics对话框,用于定义需要计算的其他描述统计量。你可以分析均数(Mean)、中位数(Median)、众数(Mode)、总和(Sum)等等。 然后还可以点Charts对话框,选择直方图、饼图等来绘图。都确定好后,选择单击Continue钮 ,然后选择OK。就可以了。直接就会有输出结果。你可以先看看描述性统计的结果,有没有什么缺失值或者不符合实际的数据出现。要是有,你需要纠正数据,再用描述统计进行分析。我觉得说的挺详细的了。呵呵~~~~

spss数据分析论文写法如下:

1、适用于自变量为定类数据且仅为两组时。

2、适用于因变量为定量数据。

3、各个观察值相互独立,不能相互影响,即满足独立性。这个一般根据专业背景考察,如遗传性疾病、传染性疾病的数据就可能存在非独立性问题,也就是不同数据会相互影响,而不同学生身高可认为相互独立,彼此不相互影响。

4、各个样本均来自正态分布的总体,即满足正态性。独立样本t建议对于数据资料的正态性存在一定的耐受能力,一般认为样本量大于30即可满足正态分布。

5、各个样本所在总体方差相等,即满足方差齐性。很多同学对于这个概念不太了解,这没有关系,在SPSS进行独立样本t检验时,自动会进行使用Levene’s检验来方差齐性,我们只需要根据相应结果解读数据即可。

撰写摘要注意事项:

1、不得简单重复题名中已有的信息,忌讳把引言中出现的内容写入摘要,不要照搬论文正文中的小标题(目录)或论文结论部分的文字,也不要诠释论文内容。

2、尽量采用文字叙述,不要将文中的数据罗列在摘要中;文字要简洁,应排除本学科领域已成为常识的内容,应删除无意义的或不必要的字眼;内容不宜展开论证说明,不要列举例证,不介绍研究过程。

3、摘要的内容必须完整,不能把论文中所阐述的主要内容(或观点)遗漏,应写成一篇可以独立使用的短文。

4、摘要一般不分段,切忌以条列式书写法。陈述要客观,对研究过程、方法和成果等不宜作主观评价,也不宜与别人的研究作对比说明。

1、选取在理论上有一定关系的两个变量,如用X,Y表示,数据输入到SPSS中。

2、从总体上来看、X和Y的趋势有一定的一致性。

3、为了解决相似性强弱用SPSS进行分析、从分析-相关-双变量。

4、打开双变量相关对话框,将X和Y选中导入到变量窗口。

5、然后相关系数选择Pearson相关系数,也可以选择其他两个。

6、点击确定在结果输出窗口显示相关性分析结果。

  • 索引序列
  • spss数据分析医学论文结论
  • 医学论文数据分析spss
  • spss数据分析医学论文
  • 医学论文spss数据分析
  • SPSS医学论文数据分析
  • 返回顶部