万涛空间设计
勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500). 实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库. 证明方法: 先拿四个一样的直角三角形。拼入一个(a+b)的正方形中,中央米色正方形的面积:c2 。图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2 , b2)。图(2)四个三角形面积不变,所以结论是:a2 + b2 = c2 勾股定理的历史: 商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期 西汉的数学著作 《周髀 算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四 ,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径 隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理. 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾 三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的. 赵爽: •东汉末至三国时代吴国人 •为《周髀算经》作注,并著有《勾股圆方图说》. 赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截,割,拼,补来证明代数式之间的恒 等关系,既具严密性,又具直观性,为中国古代以形证数,形数统一,代数和几何紧密结合,互不可分的 独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明 勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已. 中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中 体现出来的"形数统一"的思想方法,更具有科学创新的重大意义.事实上,"形数统一"的思想方法正 是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:"在中国的传统数学中,数量关系 与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思 想与方法在几百年停顿后的重现与继续." 中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段 一段丈量,那么怎样才能得到关于天地得到数据呢?" 商高回答说:"数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形'矩' 得到的一条直角边'勾'等于3,另一条直角边'股'等于4的时候,那么它的斜边'弦'就必定是5.这 个原理是大禹在治水的时候就总结出来的。
社会大学i
最近我们学习了“勾股定理”。它是初等几何中的一个基本定理,是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理虽然只有简单的一句话,但它却有着十分悠久的历史,尤其是它那“形数结合”、“形数统一”的思想方法,启迪和促进了我国乃至世界的数学发展。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代人民对这一数学定理的发现和应用,远比毕达哥拉斯要早得多。在我国最早的数学著作《周髀算经》的开头,有一段周公与商高的“数学对话”:周公问:“听说您对数学非常精通,我想请教一下:我们一没有登天的云梯,二没有丈量整个地球的尺子,那么我们怎样才能得到关于天地之间的数据呢?”商高回答说:“我们已经在实践中总结出了一些了解天地的好方法。如当直角三角形(矩)的一条直角边(勾)等于3,另一条直角边(股)等于4的时候,那么它的斜边(弦)就必定是5。这就叫做勾股弦定理,是在大禹治水的时候就总结出来的一个定理。”如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,这就比毕达哥拉斯要早五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。我国古代数学家们不仅很早就发现并应用了勾股定理,而且很早就尝试对勾股定理作出理论性的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。他创制了一幅“勾股圆方图”,用形数结合的方法,对勾股定理进行了详细的证明。在“勾股圆方图”中,以弦为边长得到正方形abde,它是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间那个小正方形的边长为b-a,则面积为(b-a)2。于是便有了如下的式子:a2+b2=c2。《九章算术》中的《勾股章》,对勾股定理的表述是:“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2)我国古代数学家对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数结合”、“形数统一”的思想方法,更具有科学创新的重大意义。正如我国当代数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”我们今天学习勾股定理,不但要学会利用它进行计算、证明和作图,更要学习和了解它的历史,了解其中体现出来的“形数结合”、“形数统一”的思想方法,这对我们今后的数学发展和科学创新都将具有十分重大的意义。
榜样的力量
勾股定理 最近我们学习了“勾股定理”。它是初等几何中的一个基本定理,是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理虽然只有简单的一句话,但它却有着十分悠久的历史,尤其是它那“形数结合”、“形数统一”的思想方法,启迪和促进了我国乃至世界的数学发展。 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代人民对这一数学定理的发现和应用,远比毕达哥拉斯要早得多。在我国最早的数学著作《周髀算经》的开头,有一段周公与商高的“数学对话”: 周公问:“听说您对数学非常精通,我想请教一下:我们一没有登天的云梯,二没有丈量整个地球的尺子,那么我们怎样才能得到关于天地之间的数据呢?” 商高回答说:“我们已经在实践中总结出了一些了解天地的好方法。如当直角三角形(矩)的一条直角边(勾)等于3,另一条直角边(股)等于4的时候,那么它的斜边(弦)就必定是5。这就叫做勾股弦定理,是在大禹治水的时候就总结出来的一个定理。” 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,这就比毕达哥拉斯要早五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。 现总结勾股定理证明方法如下: 证明方法一:取四个与Rt△ABC全等的直角三角形,把它们拼成如图所示的正方形。 如图,正方形ABCD的面积 = 4个直角三角形的面积 + 正方形PQRS的面积 ∴ ( a + b )2 = 1/2 ab × 4 + c2 a2 + 2ab + b2 = 2ab + c2 故 a2 + b2 =c2 证明方法二: 图1中,甲的面积 = (大正方形面积) - ( 4个直角三角形面积)。 图2中,乙和丙的面积和=(大正方形面积)-( 4个直角三角形面积)。 因为图1和图2的面积相等, 所以甲的面积=乙的面积+丙的面积 即:c2 = a2 + b2 证明方法三: 四个直角三角形的面积和 +小正方形的面积 =大正方形的面积, 2ab + ( a -b ) 2 = c2, 2ab + a2 - 2ab + b2 = c2 故 a2 + b2=c2 证明方法四: 梯形面积 = 三个直角三角形的面积和 1/2 × ( a + b ) × ( a + b ) = 2 × 1/2 × a × b + 1/2 × c × c (a + b )2 = 2ab + c2 a 2 + 2ab + b2 = 2ab + c2 故 a2 + b2=c2 这是常用的四种方法,下面是另外的四种方法: 【证法1】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,
吃了个肚歪
我们对三角形的定义是三条首尾相连的线段围成的封闭图形。但是三角形也分很多类,按照边来分类可以分成等腰三角形等等,用角来分类可以分为直角三角形,锐角三角形和钝角三角形。而这次我们要探究的“勾股定理”就隐藏在直角三角形中。 直角三角形中有一个直角,夹着直角的那两条边我们称之为直角边,而另外的一条边我们称之为斜边。通过三角形内角和为180度我们就可以知道。直角三角形的两个锐角是互余的。也就是可以说,我们通过三角形内角和为180度,可以得出直角三角形中各个角之间的关系。那在一个直角三角形中,各个边的关系又是怎么样的呢? 勾股定理其实也就是在说直角三角形中各个边之间的关系,就现在来说勾股定理只是我们的一个猜测,因为我们还没有证明。那我们为什么会提出这样的猜测呢?我们先看下图。 我们先看看一个特例,其实当我们想要探究在一个直角三角形中两个直角边和一条斜边的关系,其实就可以直接说是,探究我如图所画的三个正方形面积的关系。首先按如图的方式将正方形ABCD和正方形DEGF沿对角线切割成个三角形,将正方形BHIE沿对角线切割成4个三角形。 因为a和b都等于3,所以三角形ABC,三角形BCD,三角形DFE和三角形EFG这是全等的。因为三角形ABC的面积等于3×3×1/2所以这两个小正方形的面积相加也就等于4个三角形相加,也就是等于18. 而再看一下大正方形BHIE,大正方形由4个小三角形组成,每一个三角形的面积也是3×3再×1/2 所以大正方形的面积也等于18。这时我们就发现了两个小正方形相加等于这个大正方形。也就可以说是a方加b方等于c方了。这时,我们就对直角三角形的边的关系有了一个猜想,那就是两个直角边的平方和,等于斜边的平方。那这是否可以作为我们对勾股定理猜想的一个证明呢?其实是不能的,虽然我们也是用严谨的逻辑将它推理出来的,但是我们是用一个特例来进行证明的,而我们的定理则需要一定的普遍性。 那么,接下来我们将尝试证明一下勾股定理。 如图我们可知一个三角形的面积为1/2ab,大正方形的面积为a+b的平方。接下来我们就可以证明了,证明过程如下。 美国总统加菲尔德,也利用下面的方法证明出了勾股定理,但是我认为这样的证明方法不具有普遍性,因为他是通过等腰直角三角形来证明是勾股定理的,而不是所有的直角三角形都是三角形。 其实我们还是可以用等面积的方法来证明出勾股定理。证明过程如下 现在我们已经知道了,当一个三角形为直角三角形的时候,它的两个直角边的平方和等于它斜边的平方。那假如我们知道在一个三角形中它的两条边的平方和等于另外一条边的平方,那么我们能不能知道这个三角形是一个直角三角形呢?我们如何证明呢?证明过程如下。 这样我们就可以证明出如果三角形的三边长a、b、c满足 a方加 b方等于c方时,那么这个三角形就是一个直角三角形,我们称其为勾股定理之逆定理。 接着我们就可以通过勾股定理来解决很多实际的问题,我相信会有更多勾股定理的证明方法,我也有兴趣在之后继续去探究。在勾股定理这一章节中,让我感受到了其中的乐趣,并且我也有很大的成就感。这一章节也让我对八上的其他章节有了很大的兴趣。
哈布斯窗帘
具体如下:
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
公元前十一世纪,数学家商高(西周初年人)就提出“勾三、股四、弦五”。编写于公元前一世纪以前的《周髀算经》中记录着商高与周公的一段对话。商高说:“……故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用数形结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。
勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直
勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国
关于勾股定理 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要
勾股定理是数学史上一个伟大的定理,同时也是一个历史悠久的定理.下面我给你分享数学勾股定理论文,欢迎阅读。 数学思想是数学知识的精髓,又是把知识转化为能力的桥梁.
具体如下: 勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为