桑珠欢穆
激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。下面是我整理了激光加工技术论文,有兴趣的亲可以来阅读一下!
谈机械制造激光加工技术
摘要:激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。激光有固体激光、液体激光和气体激光等。目前,作为加工用的以固体激光为最好。
关键词:机械 制造 激光 加工 技术
激光是通过入射光子使亚稳态高能级的原子、离子或分子跃迁到低能级受激幅射(不是自发幅射)时发出的光,也可解释为“光受激幅射后发射加强”。它是由于受激发射的发光放大现象。激光具有单色性好、方向性强、能量高度集中等特性,因此在军事、工农业生产和科学研究的很多领域中得到了广泛应用。激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。激光有固体激光、液体激光和气体激光等。目前,作为加工用的以固体激光为最好。
激光加工具有以下特点:激光加工不需要加工工具,所以不存在工具损耗问题,很适宜自动化连续操作,可以在大气中进行。功率密度高,几乎能加工所有的材料,如果是透明材料(如玻璃),只要采取一些色化和打毛 措施 ,仍可加工。加工速度快,效率高,热影响区小。因不需要工具,又能聚焦成极细的光束,所以能加工深而小的微孔和窄缝(直径可小至几微米,深径比可达10以上),适合于精微加工。可通过透明材料(如玻璃)对工件进行加工。
1、激光器
气体激光器
通常用二氧化碳激光器。
二氧化碳激光器的激光管内充有二氧化碳,同时加进一些辅助气体,这些辅助气体有助于提高激光器输出功率。二氧化碳激光器是目前气体激光器中连续输出功率最大、能量转换效率最高的一种激光器,能以大功率连续输出波长的激光,而且方向性、单色性及相干性好,能聚焦成很小的光斑。缺点是设备体积大,输出瞬时功率小,而且是看不见的红外光,调整光束位置不方便。
固体激光器
包括红宝石激光器、钇铝石榴石激光器、钕玻璃(掺钕的盐酸玻璃)激光器等。固体激光器的特点是体轵小,输出能量大,可以打较大较深的孔;但其能量转换效率低,制造较难,成本高。而二氧化碳激光器则具有造价低,结构简单,工作效率高,打孔质量好等优点;不足是体积大,占地面积大。
2、影响激光加工的因素
激光主要用于各种材料的小孔、窄缝等微型加工,虽然也有生产率和表面粗糙度的要求,但主要是加工精度问题,如孔和窄缝大小、深度和几何形状等。因工艺对象的最小尺寸只有几十微米,所以加工误差一般为微米级。为此,除保证光学系统和机械方面精度外,还有光的特殊影响。
输出功率与照射时间
激光输出功率大,照射时间长,工件所获得能量大。当焦点位置一定时,激光能量越大, 加工孔就大而深,锥度小。照射时间一般为几分之一至几毫秒。激光能量一定时,照射时间太长会使热量传散到非加工区;时间太短则因能量密度过大,蚀除物的高温气体喷出,也会使激光使用效率降低。
焦距与发散角
发散角小的激光束,经短焦距的聚焦物镜以后,在焦面上可以获得更小的光斑及更高的功率密度。光斑直径小,打的孔也小,且由于功率密度大,打出的孔不仅深,而且锥度小。
焦点位置
焦点位置低,透过工件表面的光斑面积大,不仅会产生喇叭口,而且因能量密度减小而影响加工深度。焦点位置太高,同样,工作表面尖斑大,进入工件后越来越大,甚至无法继续加工。激光的实际焦点在工件表面或略低于工件表面为宜。
光斑内的能量分布
激光束经聚焦后,在焦面上的光点实际上是一个直径为d的光斑,光斑内能量分布不均。中心点的光强最大,离开中心点迅速减弱,能量以焦点为轴心对称分布,这种光束加工出来的孔是正圆形的。若激光束能量分布不对称,打出的孔也不对称。
激光的多次照射
激光照射一次,加工孔的深度大约是孔径的五倍左右,且锥度较大。激光多次照射,深度将大大增加,锥度减小,孔径几乎不变。但是,孔加工到一定深度后,由于孔内壁的反射、透射以及激光的散射或吸收及抛出力减小,排屑困难等原因,使孔前端的能量密度不断减小,加工量逐渐减少,以致不能继续加工。
第一次照射后打出一个不太深而且带锥度的孔;第二次照射后,聚焦光在第一次照射所打的孔内发散,由于光管效应,发散的光在孔壁上反射的下深入孔内,因此第二次照射后所打出的孔是原来孔形的延伸,孔径基本上不变。多次照射的焦点位置固定在工件表面,不向下移动。
工件材料
各种工件材料的吸收光谱不同,经透镜聚焦到工件上的激光能量不可能全部被吸收,有相当一部分能量被反射或透射散失,吸收效率与工件材料吸收光谱及激光波长有关。在生产实践中,应根据工件材料的性能(吸收光谱)选择激光器。对于高反射和透射率的工件表面应作打毛或黑化处理,增大对激光的吸收效率。
3、激光加工的应用
激光打孔
利用激光打微型小孔,目前已应用于火箭发动机和柴油机的燃料喷嘴加工、化学纤维喷丝头打孔、钟表及仪表的宝石轴承打孔、金刚石拉丝模加工等方面。
激光打孔不需要工具,适合于自动化连续打孔。采用超声调制的激光打孔,是把超声振动的作用与激光加工复合起来。把激光谐振腔的全反射镜安装在超声换能器变幅杆的端面上作超声振动,使输出的激光尖锋波形由不规则变为较平坦排列,调制成多个尖锋激光脉冲。由此可以增加打孔深度,改善孔壁粗糙度和提高打孔效率。
激光切割
激光切割具有如下特点:(1)可以用来切割各种高硬度、高熔点的金属或非金属材料。(2)切缝窄,可以节省贵重材料(如半导体材料等)。(3)速度快,成品率高,质量好。目前,激光切割已成功应用于半导体材料、钛板、石英、陶瓷等材料的切割加工中。
激光焊接激光焊接与激光打孔的原理稍有不同
焊接时不需要那么髙的能量密度,使工件材料气化、蚀除,只需将工件加工区烧熔粘合在一起。因此,激光焊接所需的能量密度较低,通常可用减小激光输出功率来实现。
脉冲输出的红宝石激光器和钕玻璃激光器适合于点焊;而连续输出的二氧化碳激光器和YAG激光器适合于缝焊。
激光焊接过程迅速,被焊材料不氧化,热影响区小,适合于热敏感元件焊接。
参考文献
[1]哈尔滨工业大学,上海工业大学.机床夹具设计(第二版).上海:上海科学技术出版社,1989.
[2]刘文剑等.夹具工程师手册.哈尔滨:黑龙江科学技术出版社,1992.
[3]李庆寿.机床夹具设计.北京:机械工业出版社,1984.
[4]孔巴德.机床夹具图册.北京:机械工业出版社,1984.
点击下页还有更多>>>激光加工技术论文
维基先生Wiki
追溯历史:看激光打印机的发展道路2005-7-13 9:38:00 文/无边 编辑整理 出处:(IT世界) 任何一项技术的发明与运用通常都是艰辛的,打印机也是如此,从1885年全球第一台打印机出现以后,科学家们不断地探索,从点阵式打印机到针式打印机,再到喷墨打印机、激光打印机,每一步都履步艰辛,但每一次突破都为人类带来新的福音,这也是科学的根本意义所在。今天笔者打开历史的记录本,和朋友们一起去了解激光打印机曾经被遗忘的过去。 一、 概述 激光打印机的研制,起源于施乐(Xerox)公司1948年生产的世界首台静电复印机。从此以后科学家们开始潜心研究激光技术和激光调制技术在打印机的应用。而说到激光打印机的诞生,不能不谈到被人们誉为“激光打印机之父”的盖瑞·斯塔克维。1970年盖瑞·斯塔克伟泽调到帕罗阿图研究中心(PaloAltoResearchCenter简称PARC,即帕克)工作,1971年11月研制出了世界上第一台激光计算机打印机。1977年,施乐公司的9700型激光打印机投放市场,标志着印刷业一个划时代的开始。刚开始的激光打印机的体积庞大,噪声大,预热需要很长时间而且打印的质量也不尽人意,能支付相当昂贵费用的企业也较少,但技术革新的速度很快,随着半导体激光器的发展、微机控制和激光打印机生产技术的日益成熟,成本不断降低,到了上个世纪90年代,生产和销售额突飞猛进,激光打印机也开始走向普及。 激光打印机由于具有打印质量精美、输出效率高及打印成本低的优势,近年在打印机市场上独占鳌头,成为现代办公不可缺少的输出设备。随着互联网的触角深入到世界的每一个角落,政府、企业、家庭信息化建设的加速,激光打印机应用也越来越广泛。 二、技术 无论是黑白激光打印机还是彩色激光打印机,其基本工作原理是相同的。激光打印机的工作原理如复印,利用电子成像转印技术进行打印。具体来说:首先,计算机把需要打印的内容转换成数据序列形式的原始图像,然后再把这些数据传送给打印机。打印机中的微处理器将这些数据破译成点阵的图样,破译后的点阵图样被送到激光发生器,激光发生器根据图样的内容迅速作出开与关的反应,把激光束投射到一个经过充电的旋转鼓上,鼓的表面凡是被激光照射到的地方电荷都被释放掉,而那些激光没有照到的地方却仍然带有电荷,通过带电电荷吸附的碳粉转印在纸张上从而完成打印。彩色激打构造:四次成像彩色激打构造:一次成像 而彩色激光打印机与黑白激光打印机最大的区别是在引擎结构上,彩色激光打印机采用了C(Cyan,蓝色)、M(Magenta,品红)、Y (Yellow,黄色)和K(Black,黑色)4色碳粉来实现全彩色打印,因此对于一页彩色内容中的彩色要经过CMYK调和实现,一页内容的打印要经过 CMYK的4色碳粉各1次打印过程。从理论上讲,彩色激光打印机要有4套与黑白激光打印机完全相同的机构来实现彩色打印过程。在打印控制器方面,内部处理器的速度比黑白激光打印机高,配置内存也要比黑白激光打印机大。 目前主流的激光打印技术纷繁复杂,我们没有必要一一去探索其原理,下面让我们从打印速度、分辨率、色彩处理技术三方面去了解一些主要的有代表性的技术。打印速度技术革新分辨率技术革新色彩处理技术革新彩色同速技术 Tandem高速引擎 imageRET2400技术 精细墨点控制技术 CoLorSmartII智能色彩二代技术 色阶扩展技术Ⅱ 1。打印速度技术革新 彩色同速技术 惠普的彩色同速技术,也就是一次成像技术,四种颜色的都有各自的成像鼓,因此可在同一时间内在四个成像鼓上分别呈现四种颜色的"电子影像",并吸附各自对应颜色的碳粉形成四个不同颜色的"潜影",纸张依次通过四种颜色的"潜影"转印到打印介质上,最后通过定影辊实现定影,由于颜色是一遍打印完成而不是四遍,彩色打印性能得到很大的改进,彩色打印速度与黑白打印一样。 Tandem高速引擎 这一技术在Epson Aculaser C4100最新彩色激光打印机中得到充分的发挥,采用先进的4-2-1串联式(Tandem)打印引擎,CMYK四种色彩能够一次成像,使得打印速度比传统彩色激光打印机速度快4倍,获得每分钟24页的彩色黑白同速的高效输出。2。分辨率技术革新 imageRET2400技术 imageRET2400技术也叫图像分辨率增强技术,这里我们以惠普ColorLaserJet4500彩色激光打印机为例,它采用惠普专利的 ImageRet2400色彩分层技术,在引擎的600dpi物理分辨率基础上,使用颗粒直径小至5微米的UltraPrecise超精细碳粉,在每一个物理像素点上进行多层着色,实现2400dpi效果。这种打印过程在单一点上最大限度地融合进四种颜色,并在指定区域内对碳粉进行分配,实现对颜色的精确控制,从而产生出上百万种柔和的色彩。 精细墨点控制技术 爱普生 AcuLaser精细墨点控制技术通过改变应用于曝光单元的脉冲宽度来控制激光发射的时间。对脉冲宽度的精确控制使得打印机能够控制墨点的大小。所以,该技术可以复制平滑的灰度等级,即使是在亮区和暗区。 4。色彩处理技术革新 色彩处理技术当然是针对彩色激光打印机的,是整个打印机质量重要指标之一。由于激光打印机的打印分辨率通常不如喷墨打印机高,所以要实现高质量的图片打印,色彩处理技术至关重要。 HP CoLorSmartII(HP智能色彩二代技术) HP公司创建ColorSmart 技术的目的是使彩色打印轻松自如。ColorSmart 图像处理技术于1994年推出,是消除早期彩色打印和主流打印之间差别的一种方法。ColorSmart智能化分析需打印的文档,然后根据打印机的能力自动确定最佳的亮度和色彩组合以产生最佳打印效果。后来,ColorSmart增加了新的技术特性,输出质量进一步提高彩色。ColorSmart可鉴定需打印的页面,识别页面的各种元素,并自动调整颜色,使打印结果最逼真、最清晰。 色阶扩展技术Ⅱ 色阶扩展技术II(AcuLaserColor2400)以第一代色阶扩展技术以发展而来。在600dpi分辨率的基础上,对墨点尺寸进行52级的精细调整,同时将像素内每个点都进一步细分,从而使打印精度整体跃升至2400dpi级的崭新高度,使文本表现更锐利,而商品目录及产品照片的细节更鲜明。
h071232003
激光——人类创造的神奇之光激光的最初中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词的头一个字母组成的缩写词。意思是“受激辐射的光放大”。激光的英文全名已完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。它的原理早在 1916 年已被著名的物理学家爱因斯坦发现,但要直到 1958 年激光才被首次成功制造。激光是在有理论准备和生产实践 迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。激光的产生原理:受激辐射基于伟大的科学家爱因斯坦在1916年提出的一套全新的理论。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。这就叫做“受激辐射的光放大”, 一段激活物质就是一个激光放大器。激光的特点:(一)定向发光普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有弧度,接近平行。1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。(二)亮度极高在激光发明前,人工光源中高压脉冲氙灯的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。因为激光的亮度极高,所以能够照亮远距离的物体。红宝石激光器发射的光束在月球上产生的照度约为勒克斯(光照度的单位),颜色鲜红,激光光斑明显可见。若用功率最强的探照灯照射月球,产生的照度只有约一万亿分之一勒克斯,人眼根本无法察觉。激光亮度极高的主要原因是定向发光。大量光子集中在一个极小的空间范围内射出,能量密度自然极高。(三)颜色极纯光的颜色由光的波长(或频率)决定。一定的波长对应一定的颜色。太阳光的波长分布范围约在微米至微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。发射单种颜色光的光源称为单色光源,它发射的光波波长单一。比如氪灯、氦灯、氖灯、氢灯等都是单色光源,只发射某一种颜色的光。单色光源的光波波长虽然单一,但仍有一定的分布范围。如氪灯只发射红光,单色性很好,被誉为单色性之冠,波长分布的范围仍有纳米,因此氪灯发出的红光,若仔细辨认仍包含有几十种红色。由此可见,光辐射的波长分布区间越窄,单色性越好。激光器输出的光,波长分布范围非常窄,因此颜色极纯。以输出红光的氦氖激光器为例,其光的波长分布范围可以窄到2×10-9纳米,是氪灯发射的红光波长分布范围的万分之二。由此可见,激光器的单色性远远超过任何一种单色光源。(四)能量密度极大光子的能量是用E=hγ来计算的,其中h为普朗克常量,γ为频率。由此可知,频率越高,能量越高。激光频率范围*10^(14)Hz到*10^(14)Hz.激光能量并不算很大,但是它的能量密度很大(因为它的作用范围很小,一般只有一个点),短时间里聚集起大量的能量,用做武器也就可以理解了。目前激光技术及其应用研究内容包括:⑴超快超强激光:超快超强激光主要以飞秒激光的研究与应用为主,作为一种独特的科学研究的工具和手段,飞秒激光的主要应用可以概括为三个方面,即飞秒激光在超快领域内的应用、在超强领域内的应用和在超微细加工中的应用。其中飞秒激光超微细加工是当今世界激光、光电子行业中的一个极为引人注目的前沿研究方向。⑵新型激光器研究:激光测距仪是激光在军事上应用的起点,将其应用到火炮系统,大大提高了火炮射击精度。激光雷达相比于无线电雷达,由于激光发散角小,方向性好,因此其测量精度大幅度提高。由于同样的原因,激光雷达不存在"盲区",因此尤其适宜于对导弹初始阶段的跟踪测量。但由于大气的影响,激光雷达并不适宜在大范围内搜索,还只能作为无线电雷达的有力补足。⑶激光医疗:激光在医学上的应用分为两大类:激光诊断与激光治疗,前者是以激光作为信息载体,后者则以激光作为能量载体。多年来,激光技术已成为临床治疗的有效手段,也成为发展医学诊断的关键技术。它解决了医学中的许多难题,为医学的发展做出了贡献。现在,在基础研究、新技术开发以及新设备研制和生产等诸多方面都保持持续的、强劲的发展势头。⑷激光化学:激光化学的应用非常广泛。制药工业是第一个得益的领域。应用激光化学技术,不仅能加速药物的合成,而又可把不需要的副产品剔在一旁,使得某些药物变得更安全可靠,价格也可降低一些。又如,利用激光控制半导体,就可改进新的光学开关,从而改进电脑和通信系统。激光化学虽然尚处于起步阶段,但其前景十分光明。目前全球业界公认的发展最快的、应用日趋广泛的最重要的高新技术就是光电技术。而在光电技术中,其基础技术之一就是激光技术。21世纪的激光技术与产业的发展将支撑并推进高速、宽带、海量的光通信以及网络通信,并将引发一场照明技术革命,小巧、可靠、寿命长、节能半导体(LED)将主导市场。光电技术将继微电子技术之后再次推动人类科学技术的革命和进步,激光产品已成为现代武器的"眼睛"和"神经"。激光的研究必将对相关领域进步起到巨大推动作用。
焊接是一种连接金属或热塑性塑料的制造或雕塑过程。这是我为大家整理的材料焊接技术论文,仅供参考! 高强材料的焊接浅析 摘要:在现代工业中,高强材料越来越占有重要的
激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。下面是我整理了激光加工技术论文,有兴趣的亲可以来阅读一下!
光纤通信光源技术论文篇二 我国光纤通信技术综述 光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断
《模具工业》2001. No . 4 总 242 40激 光 加 工 技 术 在 模 具 制 造 中 的 应 用江苏理工大学(江苏镇江 212013) 张 莹
CMOS模拟集成温度传感器的设计