donkeybenben
我这里有一份“等”对“不等”的启示 对于解集非空的一元二次不等式的求解,我们常用“两根之间”、“两根之外”这类简缩语来说明其结果,同时也表明了它的解法.这是用“等”来解决“不等”的一个典型例子.从表面上看,“等”和“不等”是对立的,但如果着眼于“等”和“不等”的关系,会发现它们之间相互联系的另一面.设M、N是代数式,我们把等式M=N叫做不等式M<N,M≤N,M>N、M≥N相应的等式.我们把一个不等式与其相应的等式对比进行研究,发现“等”是“不等”的“界点”、是不等的特例,稍微深入一步,可以从“等”的解决来发现“不等”的解决思路、方法与技巧.本文通过几个常见的典型例题揭示“等”对于“不等”在问题解决上的启示. � 1.否定特例,排除错解 �解不等式的实践告诉我们,不等式的解区间的端点是它的相应等式(方程)的解或者是它的定义区间的端点(这里我们把+∞、-∞也看作端点).因此我们可以通过端点的验证,否定特例,排除错解,获得解决问题的启示. �例1 满足sin(x-π/4)≥1/2的x的集合是(). ��A.{x|2kπ+5π/12≤x≤2kπ+13π/12,k∈Z} ��B.{x|2kπ-π/12≤x≤2kπ+7π/12,k∈Z} ��C.{x|2kπ+π/6≤x≤2kπ+5π/6,k∈Z} ��D.{x|2kπ≤x≤2kπ+π/6,k∈Z}∪{2kπ+5π/6≤(2k+1)π,k∈Z}(1991年三南试题) �分析:当x=-π/12、x=π/6、x=0时,sin(x-π/4)<0,因此排除B、C、D,故选A. �例2 不等式 +|x|/x≥0的解集是(). ��A.{x|-2≤x≤2} ��B.{x|- ≤x<0或0<x≤2} ��C.{x|-2≤x<0或0<x≤2} ��D.{x|- ≤x<0或0<x≤ } � 分析:由x=-2不是原不等式的解排除A、C,由x=2是原不等式的一个解排除D,故选B. �这两道题若按部就班地解来,例1是易错题,例2有一定的运算量.上面的解法省时省力,但似有“投机取巧”之嫌.选择题给出了三误一正的答案,这是问题情景的一部分.而且是重要的一部分.我们利用“等”与“不等”之间的内在联系,把目光投向解区间的端点,化繁为简,体现了具体问题具体解决的朴素思想,这种“投机取巧”正是抓住了问题的特征,体现了数学思维的敏捷性和数学地解决问题的机智.在解不等式的解答题中,我们可以用这种方法来探索结果、验证结果或缩小探索的范围. �例3 解不等式loga(1-1/x)>1.(1996年全国高考试题) �分析:原不等式相应的等式--方程loga(1-1/x)=1的解为x=1/(1-a)(a≠1是隐含条件).原不等式的定义域为(1,+∞)∪(-∞,0).当x→+∞或x→-∞时,loga(1-1/x)→0,故解区间的端点只可能是0、1或1/(1-a).当0<a<1时,1/(1-a)>1,可猜测解区间是(1,1/(1-a));当a>1时,1/(1-a)<0,可猜测解区间是(1/(1-a),0).当然,猜测的时候要结合定义域考虑. �上面的分析,可以作为解题的探索,也可以作为解题后的回顾与检验.如果把原题重做一遍视为检验,那么一则费时,对考试来说无实用价值,对解题实践来说也失去检验所特有的意义;二则重做一遍往往可能重蹈错误思路、错误运算程序的复辙,费时而于事无补.因此,抓住端点探索或检验不等式的解,是一条实用、有效的解决问题的思路. �2.诱导猜想,发现思路 �当我们证明不等式M≥N(或M>N、M≤N、M<N)时,可以先考察M=N的条件,基本不等式都有等号成立的充要条件,而且这些充要条件都是若干个正变量相等,这就使我们的思考有了明确的目标,诱导猜想,从而发现证题思路.这种思想方法对于一些较难的不等式证明更能显示它的作用. �例4 设a、b、c为正数且满足abc=1,试证:1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥3/2.(第36届IMO第二题) �分析:容易猜想到a=b=c=1时,原不等式的等号成立,这时1/a3(b+c)=1/b3(c+a)=1/c3(a+b)=1/2.考虑到“≥”在基本不等式中表现为“和”向“积”的不等式变换,故想到给原不等式左边的每一项配上一个因式,这个因式的值当a=b=c=1时等于1/2,且能通过不等式变换的运算使原不等式的表达式得到简化. �1/a3(b+c)+(b+c)/4bc≥ =1/a, �1/b3(a+c)+(a+c)/4ca≥1/b, �等号不一定成立而启迪我们对问题进一步探索的典型例子是1997年全国高考(理科)第22题: �例8 甲、乙两地相距S千米(km),汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时(km/h).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为b,固定部分为a元. �Ⅰ.把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域; �Ⅱ.为了使全程运输成本最小,汽车应以多大的速度行驶? �分析:y=aSv+bSv,v∈(0,c〕,由y≥2S 当且仅当aS/v=bSv,即当v= 时等号成立得,当v= 时y有最小值.这是本题的正确答案吗?那就得考虑v= 是否一定成立.当 ≤c时可以,但 是有可能大于c的.这就引发了我们进行分类讨论的动机,同时也获得分类的标准. �综上所述,“等”是不等式问题中一道特殊的风景,从“等”中寻找问题解决的思路,本质上是特殊化思想在解题中的应用.从教学上看,引导学生注视不等式问题中的“等”,是教会学生发现问题、提出问题,从而分析问题、解决问题的契机. �1/c3(a+b)+(a+b)/4ab≥1/c, �将这三个等式相加可得 �1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥1/a+1/b+1/c-(1/4)〔(b+c)/bc+(c+a)/ca+(a+b)/ab〕=(1/2)(1/a+1/b+1/c)≥(3/2) =3/2,从而原不等式获证. �这道题看似不难,当年却使参赛的412名选手中有300人得0分.上述凑等因子的思路源于由等号的成立条件而产生的猜想,使思路变得较为自然,所用的知识是一般高中生所熟知的.再举二例以说明这种方法有较大的适用范围. �例5 设a,b,c,d是满足ab+bc+cd+da=1的正实数,求证:a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥1/3.(第31届IMO备选题) �证明:a3/(b+c+d)+a(b+c+d)/9≥(2/3)a2, �b3/(a+c+d)+b(a+c+d)/9≥(2/3)b2, �c3/(a+b+d)+c(a+b+d)/9≥(2/3)c2, �d3/(a+b+c)+d(a+b+c)/9≥(2/3)d2. �∴ a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥(2/3)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da+ac+bd) �=(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)+(1/9)(a2+c2-2ac+b2+d2-2bd) �≥(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)≥(5/9)(ab+bc+cd+da)-(2/9)(ab+bc+cd+da)=(1/3)(ab+bc+cd+da)=1/3. �当a=b=c=d=1/2时,原不等式左边的四个项都等于1/12,由此出发凑“等因子”.对于某些中学数学中的常见问题也可用这种方法解决,降低问题解决对知识的要求. �例6 设a,b,c,d∈R+,a+b+c+d=8,求M= + + + 的最大值. �分析:猜想当a=b=c=d=2时M取得最大值,这时M中的4个项都等于3.要求M的最大值,需将M向“≤”的方向进行不等变换,由此可得3 ≤(3+4a+1)/2=2a+2,3 ≤2b+2,3 ≤2c+2,3 ≤2d+2.于是3M≤2(a+b+c+d)+8=24,∴M≤8.当且仅当a=b=c=d时等号成立,所以M的最大值为8. �当然,例6利用平方平均数不小于算术平均数是易于求解的,但需要高中数学教材外的知识.利用较少的知识解决较多的问题,是数学自身的追求,而且从教学上考虑,可以更好地培养学生的数学能力.先有猜想,后有设计,再有证法,也是数学地思考问题的基本特征. �3.引发矛盾,启迪探索 �在利用基本不等式求最大值或最小值时,都必须考虑等号能否取得,这不仅是解题的规范要求,而且往往对问题的解决提供有益的启示.特别当解题的过程似乎顺理成章,但等号成立的条件却发生矛盾或并不一定成立.这一新的问题情景将启迪我们对问题的进一步探索. �例7 设a,b∈R+,2a+b=1,则2 -4a2-b2有(). ��A.最大值1/4� B.最小值1/4 ��C.最大值( -1)/2� D.最小值( -1)/2 � 分析:由4a2+b2≥4ab,得原式≤2 -4ab=-4( )2+2 =-4( -1/4)2+1/4≤1/4.若不对不等变换中等号成立的条件进行研究,似已完成解题任务,而且觉得解题过程颇为自然,但若研究一下等号成立的条件,则出现了矛盾:要使4a2+b2≥4ab中的等号成立,则应有2a=b=1/2,这时 = /4≠1/4,第二个“≤”中的等号不能成立.这一矛盾使我们感觉到解题过程的错误,促使我们另辟解题途径.事实上,原式=2 -(2a+b)2+4ab=4ab+2 -1,而由1=2a+b≥2 得0< ≤ /4,ab≤1/8,∴原式≤ /2+1/2-1=( -1)/2,故选�C. 本文来自论文大学网
又肥又馋的兔子
(一)考点剖析1.不等关系与不等式:高考中,对本节内容的考查,主要放在不等式的性质上,题型多为选择题或填空题,属容易题。2.一元二次不等式及其解法:高考命题中,对一元二次不等式解法的考查,若以选择题、填空题出现,则会对不等式直接求解,或经常地与集合、充要条件相结合,难度不大。 若以解答题出现,一般会与参数有关,或对参数分类讨论,或求参数范围,难度以中档题为主。3.简单的线性规划:线性规划问题时多以选择、填空题的形式出现,题型以容易题、中档题为主,考查平面区域的面积、最优解的问题;随着课改的深入,近年来,以解答题的形式来考查的试题也时有出现,考查学生解决实际问题的能力。4.基本不等关系:高考命题重点考查均值不等式和证明不等式的常用方法,单纯不等式的命题,主要出现在选择题或填空题,一般难度不太大。5.不等式的综合应用:不等式的综合应用多以应用题为主,属解答题,有一定的难度。6.不等式的证明:不等式的证明多以交汇出现,以解答题的形式出现,属中等偏难的试题。 (二)命题规律 在近年的高考中,不等式的考查有选择题、填空题、解答题都有,不仅考查不等式的基础知识,基本技能,基本方法,而且还考查了分析问题、解决问题的能力。 解答题以函数、不等式、数列导数相交汇处命题,函数与不等式相结合的题多以导数的处理方式解答,函数不等式相结合的题目,多是先以直觉思维方式定方向,以递推、数学归纳法等方法解决,具有一定的灵活性。 由上述分析,预计不等式的性质,不等式的解法及重要不等知识将以选择题或填空的形式出现;解答题可能出现解不等与证不等式。 如果是解不等式含参数的不等式可能性比较大,如果是证明题将是不等式与数列、函数、导数、向量等相结合的综合问题,用导数解答这类问题仍然值得重视。 有时属高难度的题。三)复习建议1.不等式的证明题题型多变,证明思路多样,技巧性较强,加之又没有一劳永逸、放之四海而皆准的程序可循,所以不等式的证明是本章的难点。 攻克难点的关键是熟练掌握不等式的性质和基本不等式,并深刻理解和领会不等式证明中的数学转化思想。 在复习中应掌握证明不等式的常用思想方法:比较法;综合法;分析法;放缩法;反证法;函数法;换元法;导数法。2.在复习解不等式过程中,注意培养、强化与提高函数与方程、等价转化、分类讨论、数形结合的数学思想和方法,逐步提升数学素养,提高分析解决综合问题的能力。 能根椐各类不等式的特点,变形的特殊性,归纳出各类不等式的解法和思路以及具体解法。3.熟练掌握不等式的基本性质,常见不等式(如一元二次不等式)的解法,不等式在实际问题中的应用,不等式的常用证明方法。
慵懒安静的阳光
(三)不等式选讲 (1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: ∣a+b∣≤∣a∣+∣b∣; ∣a-b∣≤∣a-c∣+∣c-b∣; (2)会利用绝对值的几何意义求解以下类型的不等式: ∣ax+b∣≤c; ∣ax+b∣≥c; ∣x-c+∣x-b∣≥a (3)通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法 13.不等式 (1)不等关系 了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. (2)一元二次不等式 ① 会从实际情境中抽象出一元二次不等式模型. ② 通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系. ③ 会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. (3)二元一次不等式组与简单线性规划问题 ① 会从实际情境中抽象出二元一次不等式组. ② 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. ③ 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决. (4)基本不等式: ① 了解基本不等式的证明过程. ② 会用基本不等式解决简单的最大(小)值问题.
mengjia097
※不等式性质及证明※1.不等式的性质比较两实数大小的方法——求差比较法 ; ; 。定理1:若 ,则 ;若 ,则 .即 。说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。定理2:若 ,且 ,则 。说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数;定理2称不等式的传递性。定理3:若 ,则 。说明:(1)不等式的两边都加上同一个实数,所得不等式与原不等式同向;(2)定理3的证明相当于比较 与 的大小,采用的是求差比较法;(3)定理3的逆命题也成立; (4)不等式中任何一项改变符号后,可以把它从一边移到另一边。定理3推论:若 。说明:(1)推论的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)同向不等式:两个不等号方向相同的不等式;异向不等式:两个不等号方向相反的不等式 定理4.如果 且 ,那么 ;如果 且 ,那么 。推论1:如果 且 ,那么 。说明:(1)不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变;(2)两边都是正数的同向不等式的两边分别相乘,所得不等式与原不等式同向;(3)推论 可以推广到任意有限个两边都是正数的同向不等式两边分别相乘。这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向。推论2:如果 , 那么 。定理5:如果 ,那么 。2.基本不等式定理1:如果 ,那么 (当且仅当 时取“ ”)。说明:(1)指出定理适用范围: ;(2)强调取“ ”的条件 。定理2:如果 是正数,那么 (当且仅当 时取“=”)说明:(1)这个定理适用的范围: ;(2)我们称 的算术平均数,称 的几何平均数。即:两个正数的算术平均数不小于它们的几何平均数。3.常用的证明不等式的方法(1)比较法比较法证明不等式的一般步骤:作差—变形—判断—结论;为了判断作差后的符号,有时要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,以便判断其正负。(2)综合法利用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质,推导出所要证明的不等式,这个证明方法叫综合法;利用某些已经证明过的不等式和不等式的性质时要注意它们各自成立的条件。综合法证明不等式的逻辑关系是: ,及从已知条件 出发,逐步推演不等式成立的必要条件,推导出所要证明的结论 。(3)分析法证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。(1)“分析法”是从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”;(2)综合过程有时正好是分析过程的逆推,所以常用分析法探索证明的途径,然后用综合法的形式写出证明过程 ※不等式解法及应用※ 1.不等式的解法解不等式是求定义域、值域、参数的取值范围时的重要手段,与“等式变形”并列的“不等式的变形”,是研究数学的基本手段之一。高考试题中,对解不等式有较高的要求,近两年不等式知识占相当大的比例。(1)同解不等式((1) 与 同解;(2) 与 同解, 与 同解;(3) 与 同解);2.一元一次不等式解一元一次不等式(组)及一元二次不等式(组)是解其他各类不等式的基础,必须熟练掌握,灵活应用。 情况分别解之。3.一元二次不等式 或 分 及 情况分别解之,还要注意 的三种情况,即 或 或 ,最好联系二次函数的图象 4.分式不等式分式不等式的等价变形: >0 f(x)•g(x)>0, ≥0 。5.简单的绝对值不等式绝对值不等式适用范围较广,向量、复数的模、距离、极限的定义等都涉及到绝对值不等式。高考试题中,对绝对值不等式从多方面考查。解绝对值不等式的常用方法:①讨论法:讨论绝对值中的式于大于零还是小于零,然后去掉绝对值符号,转化为一般不等式;②等价变形:解绝对值不等式常用以下等价变形:|x|0),|x|>a x2>a2 x>a或x<-a(a>0)。一般地有:|f(x)|
基本研究内容一般包括:1、对论文名称的界说。应尽可能明确三点:研究的对象、研究的问题、研究的方法。2、本论文写作有关的理论、名词、术语、概念的界说。目标特色:1
我这里有一份“等”对“不等”的启示 对于解集非空的一元二次不等式的求解,我们常用“两根之间”、“两根之外”这类简缩语来说明其结果,同时也表明了它的解法.这是用“
这种题型很好做的。设涨价x元。则商品售价为60+x元/kg,则每周可以卖出300-10x kg根据题意是的利润不少于6240元。则(60+x-40)*(300-
问题一:课题研究与论文有什么关系 课题与论文的区别一言蔽之 随着大家对专业化发展的认识,越来越多的老师认识了作课题的必要了。但是一些老师对课题的认识还不到
自学考试毕业论文必须使用标准A4打印纸打印,一律左侧装订,并至少印制3份。页面上、下边距各2.5厘米,左右边距各2.2厘米。自学考试毕业论文论文装订顺序要求如下