• 回答数

    5

  • 浏览数

    282

且行且珍惜02
首页 > 学术期刊 > 向量的数量积论文开题报告

5个回答 默认排序
  • 默认排序
  • 按时间排序

竹径通幽处

已采纳

对数量积性质的新认识 【摘 要】:教学活动要遵循内在规律,只有当一切外在事实(知识)通过教师的主导作用,最后被主体(学生)认识之后,这外在东西才会为主体真正占有,这种转化只有在参与实践中才能体会并重新构建、形成知识体系。我们的教材中的好多知识表面上是孤立的,若我们的的教师在引领学生认知这些内容的同时,有“意识”的揭示这种“知识链”,内化我们学生的理解,让学生对知识的构建“水到渠成”!这不失为一种有效教学的好途径。【关键词】:数量积 向量 角度 距离作为新课程改革,高中数学教材的两个显著变化就是“向量和导数”的引入。其目的也很明确:为研究函数、空间图形,提供新的研究手段,即充分体现它们的工具性。但这种“工具性”,只有在深刻理解的基础上才能用好,而要想用活,这又需要我们在实践中不断“开发”新的认识,丰富知识网络,形成较完善的“认知模块”、“知识体系”。例如全日制普通高级中学教科书《数学•第二册(下B)》P33¬中,关于空间向量的数量积有这样三条性质:(1) ,(2) ,(3) 。作为“工具性”,性质(2)(3)比较明显,会立即得到充分的应用。可是对于性质(1),当时,在上新授课时我总认为:这条性质没有什么“本质上”的用处,有点像“房间里的摆设”——配角。但是随着时间的推移,笔者发现了她的奥妙之处:在后继的有关空间问题中的“三大角度”和“三大基本距离”的坐标法的研究中有着奇妙无穷的用途,并带来意想不到的“知识链”反应,极大地丰富了关于空间向量的“数量积”这一运算的“认知模块”的内涵。本文便梳理和佐证这一认知,以飨读者。(一)性质的产生与内含已知向量 和轴l, 是l上与l同方向的单位向量,作点A在l上的射影 ,作点B在l上的射影 则 叫向量 在轴l上或在 方向上的正射影,简称射影。 可以证明得, (证明略,图如下所示。)此性质的内含理解有四点:①结果是一个数量(本身含正负号);②其正负号由向量 所成角的范围决定;③加上绝对值 便是一条线段长度(这里 刚好组成一个直角三角形的两条直角边);④可以推广为求一条线段在另一条直线上的正射影(此线段所在直线与已知直线的位置关系可以异面直线)。(二)性质的“知识链”对教材引进空间向量的“坐标法”来解决空间中“三大角”问题,我们的学生可以说是欣喜若狂啊,因为学生觉得这种方法好!可操作性强!(只要能建系,有坐标就行!)但在实际应用中,学生觉得这些结论不易理解,加上这些结论只能逐步形成和完善,靠死记硬背吧,今天记了明天又忘了!等到用时,仍是“生硬、呆板”,甚至张冠李戴。如何突破这一问题?我认为其根本原因是:在学生的认知结构里,这一性质未能如愿地形成“知识链”。那么,这一性质是怎样与相关问题产生“对接或联系”的呢?(1)它是空间三大角(即线线角、线面角、二面角的平面角)用向量法求解的“对接点”。1.1线线角 的求法的新认识:我们把这两条线赋予恰当的两个向量,问题就化归为两个向量的夹角(两个向量所成的角的范围为 ),即 ,我们能否加以重新认识这个公式呢?如图,,此时OB1可以看作是 与 方向上的单位向量 的数量积 ,这就是由数量积这条性质滋生而成的;故此结论重新可以理解为: (这里刚好满足三角函数中余弦的定义:邻边比斜边)。1.2线面角 的求法的新认识: (其中 为平面 的一个法向量),此结论重新可以理解为: ,此时OP又可以看作是 在 上的投影,即 与 方向上的单位向量 的数量积 , ,故 (这里刚好满足三角函数中正弦的定义:对边比斜边)。1.3二面角的平面角 的求法的新认识: = (其中 是两二面角所在平面的各一个法向量)此结论重新可以理解为: (这里刚好满足三角函数中余弦的定义:邻边比斜边)。★三大角的统一理解: 、 、 、其从上述梳理完全可以看出其本质特征:这里的“空间角”的求法,完全与直角三角形中的三角函数的“正弦或余弦的定义”发生了对接——对边或邻边就是斜边的向量在此边向量上的投影,即斜边向量与对边或邻边方向上的单位向量的数量积,而理解与掌握这里的“空间角”的直角三角形的构图,学生完全可以达到“系统化”和“自主化”,因为直角三角形中的三角函数定义,他们太熟悉了!即将知识的“生长点”建立在学生认知水平的“最近发展区”,那学习就会水到渠成! (2)它又是空间三大距离(即点线距、点面距、异面直线间距离)用向量法求解的“联系点”。空间中有七大距离(除球面上两点间的距离外)基本上可转化为点点距、点线距、点面距,而点线距和点面距又是重中之重!另外两异面直线间的距离,高考考纲中明确要求:对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离。因此对异面直线间的距离的考查有着特殊的身份。教材按排中引进了向量法来解决距离问题,也给问题的解决带来新的活力!不用作出(或找出)所求的距离了。2.1点面距求法的新认识: (其中 为平面 的一个法向量),此结论重新可以理解为: ,即 在 上的投影,即 与 方向上的单位向量 的数量积 。2.2点线距求法的新认识:1)新认识之一:如图,若存在有一条与l相交的直线时,就可以先求出由这两条相交直线确定的平面的一个法向量 ,则点P到l的距离 。2)新认识之二:若不存在有一条与l相交的直线时,我们可以先取l上的一个向量 ,再利用 来解,即: ,而数量OB可以理解为 在l上的向量 的投影,也即为: 。2.3异面直线间距离求法的新认识: 从这几年的高考《考纲说明》观察,我们不难发现,对异面直线间距离的考查本意不能太难,但若出现难一点的考题,命题者又能自圆其说的新情况。实际上,这种自圆其说法归根到底在于高考考纲中的说法:只要求会计算已给出公垂线或在坐标表示下的距离。那也就是说,在不要作出公垂线(也许学生作不出!)的情况下,也可以求出它们的距离的!那就是用向量法!如图所示:若直线l1与直线l2是两异面直线,求两异面直线的距离。 略解:在两直线上分别任取两点A、C、B、D,构造三个向量 ,记与两直线的公垂线共线的向量为 ,则由 ,得 ,则它们的距离就可以理解为: 在 上的投影的绝对值,即: 。 ★三大距离的统一理解: (点面距)、 (异面距)、 (点线距之一)、 且 (点线距之二)、其本质特征是:一个向量在其所求的距离所在直线的一个向量上的投影,也即数量积此性质的直接应用。由上述的剖析过程不难再看出:空间中的三大角与三大基本距离的计算,都隐藏于这个“特定”的数量积的性质之中,体现在这个公式结构的“统一美”之中,把问题的本质揭示得“淋漓尽致”,而又不失自然!这给“立体几何” 中向量的工具性的体现,增色了几分美感与统一感!(三)性质的应用例1、(2005年山东省(理科)高考第20题)如图,已知长方体 直线 与平面 所成的角为 , 垂直 于 , 为 的中点.(I)求异面直线 与 所成的角;(II)求平面 与平面 所成的二面角;(III)求点 到平面 的距离.解:在长方体 中,以 所在的直线为 轴,以 所在的直线为 轴, 所在的直线为 轴建立如图示空间直角坐标系;由已知 可得 , ,又 平面 ,从而 与平面 所成的角为 ,又 , , ,从而易得 (I) 因为 所以 ,易知异面直线 所成的角为 (II) 易知平面 的一个法向量 ,设 是平面 的一个法向量, 由 即 所以 即平面 与平面 所成的二面角的大小(锐角)为 (III)点 到平面 的距离,即 在平面 的法向量 上的投影的绝对值,所以距离 = 所以点 到平面 的距离为 例2、(2005年重庆(理科)高考第20题)如图,在三棱柱ABC—A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1,已知AB= ,BB1=2,BC=1,∠BCC1= ,求:(Ⅰ)异面直线AB与EB1的距离;(Ⅱ)二面角A—EB1—A1的平面角的正切值. 解:(I)以B为原点, 、 分别为y、z轴建立空间直角坐标系.由于BC=1,BB1=2,AB= ,∠BCC1= ,在三棱柱ABC—A1B1C1中有B(0,0,0),A(0,0, ),B1(0,2,0),A1(0,2, ) ,设 ; ,则 得, (令y=1),故 =1(II)由已知有 故二面角A—EB1—A1的两个半平面的法向量为 。 。通过上述几个高考题的分析,我们不难看出:立体几何中的几何法的“难在找(或作)所求的角度或距离”,通过这个数量积的性质的转化(方法的转化与知识之间的转化),其“难”渐渐地溶解于“转换与化归”之中及学生的细心地“计算”之中,从而也焕发了数量积这条性质的奥妙之处,也就更体现了“向量”这个工具在立体几何中应用的优越性、工具性。因为”程序化”的计算使我们的学生的“信心”倍增!同时让我们的学生也懂得了“知其所以然”,再也不用为记这一个“好结论”而烦恼了!参考文献:1、2005年普通高等学校招生全国统一考试大纲 (高等教育出版社)2、《浙江省高考命题解析——数学》 (浙江省高考命题咨询委员们编著)3、基础教育课程改革教师通识培训书系第二辑《课程改革发展》(中央民族大学出版社 周宏主编)

230 评论

PaperwizPx

向量数量积的几何意义是:一个向量在另一个向量上的投影

两向量的数量积等于其中一个向量的模与另一个向量在这个向量的方向上的投影的乘积

两向量α与β的数量积α·β=|α|*|β|cosθ其中|α||β|是两向量的模θ是两向量之间的夹角(0≤θ≤π)

若有坐标α(x1,y1,z1) β(x2,y2,z2)那么 α·β=x1x2+y1y2+z1z2 |α|=sqrt(x1^2+y1^2+z1^2)|β|=sqrt(x2^2+y2^2+z2^2)

把|b|cosθ叫做向量b在向量a的方向上的投影

因此用数量积可以求出两向量的夹角的余弦cosθ=α·β/|α|*|β|

已知两个向量A和B,它们的夹角为C,则A的模乘以B的模再乘以C的余弦称为A与B的数量积(又称内积、点积。)

即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b"·不可省略若用×则成了向量积

设ab都是非零向量θ是a与b的夹角则

① cosθ=a·b/|a||b|

②当a与b同向时a·b=|a||b|当a与b反向时a·b=-|a||b|

③ |a·b|≤|a||b|

④a⊥b=a·b=0适用在平面内的两直线

折叠 向量数量积运算规律

1.交换律α·β=β·α

2.分配律(α+β)·γ=α·γ+β·γ

3.若λ为数(λα)·β=λ(α·β)=α·(λβ)

若λμ为数(λα)·(μβ)=λμ(α·β)

4.α·α=|α|^2 此外α·α=0=α=0

向量的数量积不满足消去律即一般情况下α·β=α·γα≠0 ≠β=γ

向量的数量积不满足结合律即一般α·β)·γ ≠α·β·γ

相互垂直的两向量数量积为0

折叠 平面向量数量积的坐标表示

已知两个非零向量a=x1y1b=x2y2则有a·b=x1x2+y1y2即两个向量的数量积等于它们对应坐标的乘积的和

一般地设两个非零向量a=x1,y1,b=(x2,y2)根据向量的数量积的定义它们的夹角q可由

cosq=(a·b)/(|a|·|b|)=(x1x2+y1y2)/(sqr(x1^2+y1^2)·sqr(x2^2+y2^2))求得由两个向量垂直的充要条件为a·b=0,可得两个向量垂直的充要条件为x1x2+y1y2=0

平面向量的分解定理如果e1e2是同一平面内的两个不平行向量那么对于这一平面的任意向量a有且只有一对实数n1n2使a=n1·e1+n2·e2 (粗字为向量)

平面向量的数量积a·b是一个非常重要的概念利用它可以很容易地证明平面几何的许多命题例如勾股定理菱形的对角线相互垂直矩形的对角线相等等

Rt△ABC中∠C=90°则|CA|^2+|CB|^2=|AB|^2

因AB=CB-CA

所以AB·AB=CB-CA·CB-CA=CB·CB-2CA·CB+CA·CA;

由∠C=90°有CA⊥CB于是CA·CB=0

所以|CA|^2+|CB|^2=|AB|^2

菱形ABCD中,点O为对角线ACBD的交点求证AC⊥BD

设|AB|=|BC|=|CD|=|DA|=a

因AC=AB+BC;BD=BC+CD

所以AC·BD=(AB+BC)(BC+CD)=a^2(cosπ-α+cosπ+cos0+cosα

又因为cosα=-cosπ-α

cosπ=-1cos0=1

所以AC·BD=(AB+BC)(BC+CD)=a^2(2cosα+2cosπ-α =0

AC⊥BD

196 评论

光影碎片

a(x1,y1) b(x2,y2)

a*b=x1*x2+y1*y2

向量是有方向的线段,两个有方向的向量,不同向,

一个向量在另一个向量方向上的投影

设θ是a、b的夹角,则|b|cosθ是向量b在向量a的方向上的投影

|a|cosθ是向量a在向量b方向上的投影。

其实向量的数量积使用三角的勾股定理推出来的,在向量中|a|表示的是距离,或者模而不是绝对值,而考试的过程中向量的数量积题目一般会提示你求出向量的数量积,这时候需要定位出两点坐标,或者其中一点的坐标和夹角。

312 评论

水之云端

数量积就是点乘,求得结果是一个数值。向量积是叉乘,求得结果是一个向量C,方向垂直两个向量构成的平面。几何意义是:C的模长就是两个向量构成的四边形面积大小。至于向量数量积没听说过,但是有一个混合积,形式:(AxB)*C 。所说的向量数量积?混合积 的几何意义是:向量ABC所构成的六边形的体积(可想象正方体,三条边就是三个向量)。

271 评论

腾瑞水暖卫浴

向量数量积的几何意义:一个向量在另一个向量上的投影。

定义

两向量的数量积等于其中一个向量的模与另一个向量在这个向量的方向上的投影的乘积

两向量α与β的数量积α·β=|α|*|β|cosθ其中|α||β|是两向量的模θ是两向量之间的夹角(0≤θ≤π)

若有坐标α(x1,y1,z1) β(x2,y2,z2)那么 α·β=x1x2+y1y2+z1z2 |α|=sqrt(x1^2+y1^2+z1^2)|β|=sqrt(x2^2+y2^2+z2^2)

把|b|cosθ叫做向量b在向量a的方向上的投影

因此用数量积可以求出两向量的夹角的余弦cosθ=α·β/|α|*|β|

已知两个向量A和B,它们的夹角为C,则A的模乘以B的模再乘以C的余弦称为A与B的数量积(又称内积、点积。)

即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b"·不可省略若用×则成了向量积

扩展内容:

向量积性质

几何意义及其运用

叉积的长度 |a×b| 可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积 [a b c] = (a×b)·c可以得到以a,b,c为棱的平行六面体的体积。 [1]

代数规则

1.反交换律:a×b= -b×a

2.加法的分配律:a× (b+c) =a×b+a×c

3.与标量乘法兼容:(ra) ×b=a× (rb) = r(a×b)

4.不满足结合律,但满足雅可比恒等式:a× (b×c) +b× (c×a) +c× (a×b) =0

5.分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的 R3 构成了一个李代数。

6.两个非零向量a和b平行,当且仅当a×b=0。 [1]

拉格朗日公式

这是一个著名的公式,而且非常有用:

(a×b)×c=b(a·c) -a(b·c)

a× (b×c) =b(a·c) -c(a·b),

证明过程如下:

二重向量叉乘化简公式及证明

可以简单地记成“BAC - CAB”。这个公式在物理上简化向量运算非常有效。需要注意的是,这个公式对微分算子不成立。

这里给出一个和梯度相关的一个情形:

这是一个霍奇拉普拉斯算子的霍奇分解的特殊情形。

另一个有用的拉格朗日恒等式是:

这是一个在四元数代数中范数乘法 | vw | = | v | | w | 的特殊情形。 [2]

矩阵形式

给定直角坐标系的单位向量i,j,k满足下列等式:

i×j=k;

j×k=i ;

k×i=j ;

通过这些规则,两个向量的叉积的坐标可以方便地计算出来,不需要考虑任何角度:设

a= [a1, a2, a3] =a1i+ a2j+ a3k;

b= [b1,b2,b3]=b1i+ b2j+ b3k ;

则a × b= [a2b3-a3b2,a3b1-a1b3, a1b2-a2b1]。

叉积也可以用四元数来表示。注意到上述i,j,k之间的叉积满足四元数的乘法。一般而言,若将向量 [a1, a2, a3] 表示成四元数 a1i+ a2j+ a3k,两个向量的叉积可以这样计算:计算两个四元数的乘积得到一个四元数,并将这个四元数的实部去掉,即为结果。更多关于四元数乘法,向量运算及其几何意义请参看四元数(空间旋转)。 [2]

高维情形

七维向量的叉积可以通过八元数得到,与上述的四元数方法相同。

七维叉积具有与三维叉积相似的性质:

双线性性:x× (ay+ bz) = ax×y+ bx×z;(ay+ bz) ×x= ay×x+ bz×x;

反交换律:x×y+y×x= 0;

同时与 x 和 y 垂直:x· (x×y) =y· (x×y) = 0;

拉格朗日恒等式:|x×y|² = |x|² |y|² - (x·y)²;

不同于三维情形,它并不满足雅可比恒等式:x× (y×z) +y× (z×x) +z× (x×y) ≠ 0。

参考资料:百度百科-向量积

357 评论

相关问答

  • 收益质量论文开题报告

    浅议上市公司财务报表分析-会计学是一门非常严谨的学科。它具备六大要素:资产、负债、所有者权益、收入、费用、利润。几大要素之间相互依赖存在相当复杂的制约关系。这本

    Doubleflower 3人参与回答 2023-12-08
  • 变量变换论文开题报告

    开题报告要确定模型和变量。确定模型和变量是开题报告的核心,变量又分内生变量和外发变量。开题报告是指开题者对科研课题的一种文字说明材料。是一种新的应用写作文体,这

    Brita阿菜 4人参与回答 2023-12-11
  • 海量数据流统计论文开题报告

    1,论文的基本结构: 一般由三个部分构成: 文章题目 作者及工作单位 摘(提)要 关键(或主题)词 引言 正文 结论 致谢 参考文献 附录部分(必要时) 统计图

    南南南南者 6人参与回答 2023-12-07
  • 盈利质量论文的开题报告

    毕业设计(论文)开题报告课题名称:图书管理系统的设计与实现教学站:奉天站专业:计算机科学与技术学号:2006243011012学生姓名:王龙指导教师:林铭一、选

    黎明前的静谧 5人参与回答 2023-12-09
  • 现金流量论文的开题报告

    于现金流量表论你如何明白道理

    女王Z大人 3人参与回答 2023-12-10