大酸杏儿
z的积分上下限都是常数,其实就是化成极坐标求二重积分平面区域D,x^2+y^2<=2x得到r^2<=2rcosθ,即r<=2cosθy>=0得到rsinθ>=0,即0<=θ<=π注意D只在一四象限,0<=θ<=π/2原积分=∫(0,a)zdz∫(0,π/2)dθ∫(0,2cosθ)r^2dr=a^2/6∫(0,π/2)8(cosθ)^3dθ=2a^2/3∫cosθ(cos2θ+1)dθ=a^2∫cosθdθ+a^2/3∫cos3θdθ=a^2-a^2/9=8a^2/9
2009年06月03日 数学(shuxue)建模论文范文--利用数学(shuxue)建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,
奥斯特(1777~1851)Oersted,Hans Christian丹麦物理学家。1777年8月14日生于丹麦鲁兹克宾城。1799年获哥本哈根大学哲学博士学
z的积分上下限都是常数,其实就是化成极坐标求二重积分平面区域D,x^2+y^2
楼主你好,是一般性的学习心得方面的吧!参考论文: 我认为,一定要把教材看懂,我第一次微分方程部分来不及看,结果微分方程部分的题目不会做,就差4分,我如果
简单说,定积分是在给定区间上函数值的累积。∫[a,b] f(x)dx 表示曲线 f(x) 、直线 x=a、直线 x=b、直线 y=0 围成的面积。设 F(x)