我叫歪歪
PLC的,一百多份,有用的话,加分给我,1. 基于FX2N-48MRPLC的交通灯控制2. 西门子PLC控制的四层电梯毕业设计论文3. PLC电梯控制毕业论文4. 基于plc的五层电梯控制5. 松下PLC控制的五层电梯设计6. 基于PLC控制的立体车库系统设计7. PLC控制的花样喷泉8. 三菱PLC控制的花样喷泉系统9. PLC控制的抢答器设计10. 世纪星组态 PLC控制的交通灯系统11. X62W型卧式万能铣床设计12. 四路抢答器PLC控制13. PLC控制类毕业设计论文14. 铁路与公路交叉口护栏自动控制系统15. 基于PLC的机械手自动操作系统16. 三相异步电动机正反转控制17. 基于机械手分选大小球的自动控制18. 基于PLC控制的作息时间控制系统19. 变频恒压供水控制系统20. PLC在电网备用自动投入中的应用21. PLC在变电站变压器自动化中的应用22. FX2系列PCL五层电梯控制系统23. PLC控制的自动售货机毕业设计论文24. 双恒压供水西门子PLC毕业设计25. 交流变频调速PLC控制电梯系统设计毕业论文26. 基于PLC的三层电梯控制系统设计27. PLC控制自动门的课程设计28. PLC控制锅炉输煤系统29. PLC控制变频调速五层电梯系统设计30. 机械手PLC控制设计31. 基于PLC的组合机床控制系统设计32. PLC在改造z-3040型摇臂钻床中的应用33. 超高压水射流机器人切割系统电气控制设计34. PLC在数控技术中进给系统的开发中的应用35. PLC在船用牵引控制系统开发中的应用36. 智能组合秤控制系统设计37. S7-200PLC在数控车床控制系统中的应用38. 自动送料装车系统PLC控制设计39. 三菱PLC在五层电梯控制中的应用40. PLC在交流双速电梯控制系统中的应用41. PLC电梯控制毕业论文42. 基于PLC的电机故障诊断系统设计43. 欧姆龙PLC控制交通灯系统毕业论文44. PLC在配料生产线上的应用毕业论文45. 三菱PLC控制的四层电梯毕业设计论文46. 全自动洗衣机PLC控制毕业设计论文47. 工业洗衣机的PLC控制毕业论文48. 《双恒压无塔供水的PLC电气控制》49. 基于三菱PLC设计的四层电梯控制系统50. 西门子PLC交通灯毕业设计51. 自动铣床PLC控制系统毕业设计52. PLC变频调速恒压供水系统53. PLC控制的行车自动化控制系统54. 基于PLC的自动售货机的设计55. 基于PLC的气动机械手控制系统56. PLC在电梯自动化控制中的应用57. 组态控制交通灯58. PLC控制的升降横移式自动化立体车库59. PLC在电动单梁天车中的应用60. PLC在液体混合控制系统中的应用61. 基于西门子PLC控制的全自动洗衣机仿真设计62. 基于三菱PLC控制的全自动洗衣机63. 基于plc的污水处理系统64. 恒压供水系统的PLC控制设计65. 基于欧姆龙PLC的变频恒压供水系统设计66. 西门子PLC编写的花样喷泉控制程序67. 欧姆龙PLC编写的全自动洗衣机控制程序68 景观温室控制系统的设计69. 贮丝生产线PLC控制的系统70. 基于PLC的霓虹灯控制系统71. PLC在砂光机控制系统上的应用72. 磨石粉生产线控制系统的设计73. 自动药片装瓶机PLC控制设计74. 装卸料小车多方式运行的PLC控制系统设计75. PLC控制的自动罐装机系统76. 基于CPLD的可控硅中频电源77. 西门子PLC编写的花样喷泉控制程序78. 欧姆龙PLC编写的全自动洗衣机控制程序79. PLC在板式过滤器中的应用80. PLC在粮食存储物流控制系统设计中的应用81. 变频调速式疲劳试验装置控制系统设计82. 基于PLC的贮料罐控制系统83. 基于PLC的智能交通灯监控系统设计
喵呜兔几
摘要:通过对应急发电机自启动要求的分析,结合装备现状、配电系统的设计要求,利用PLC(可编程控制器)改造现有设备的优势,提出了详细的设计思路和方案以供参考。 关键词:PLC 应急发电机 方案 配电系统 通过对应急发电机自启动要求的分析,结合装备现状、配电系统的设计要求,利用PLC(可编程控制器)改造现有设备的优势,提出了详细的设计思路和方案以供参考。 通常传统发电机控制采用落后继电接触器控制方式,中间继电器和时间继电器太多,体积大,功能少,寿命短,线路复杂,接点多,造成故障多可靠性差,维修困难;而采用微电子技术由于集成电路(IC)的系统芯片种类繁多,体积大,设计周期长,费用低,工艺复杂,抗干扰性差,可靠性差;而可编程控制器(PLC)是以微处理器为核心,综合了计算机技术、通信技术而发展起来的一种新型、通用的自动控制装置,具有结构简单、性能优越、可靠性高、灵活通用、易于编程、使用方便等优点,近年来在工业自动控制、机电一体化、改造传统产业等方面得到了广泛的应用。 应急发电机组用PLC控制有很多优点,它主要通过软件控制,从而省去了硬件开发工作,外围电路很少,大大提高了系统的可靠性与抗干扰能力;由于它简单易行的可编程序功能,无须改变系统的外部硬件接线,便能改变系统的控制要求,使系统的“柔性”大大提高。 主要设计功能 在生产过程中突然停电,应急发电机立即给设备继续供电。应急电源原动机一般采用一台独立冷却和供油系统的柴油机,并设有自启动装置,保证在主站失电后0-50秒内启动,应急电网通常为主电网的一部分,在正常情况下,这些用电设备由总配电板供电,只是在应急情况下由应急发电机组供电,因此在应急配电板上的应急发电机主开关与主开关向应急配电板供电的开关之间设有电气联锁,以保证安全。 应急发电机组作为一个应急电源,应具备以下基本要求: 1、自动启动 当正常供电出现故障(断电)时,机组能自动启动、自动升速、自动合闸,向应急负载供电。 2、自动停机 当正常供电恢复,经判断正常后,控制切换开关,完成应急电到正常电的自动切换、然后控制机组降速到怠速、停机。 3、自动保护 机组在运行过程中,如果出现油压过低(小于)、冷却水温过高(大于95度)、电压异常故障,则紧急停机,同时发出声光报警信号,如果出现水温高(大于90度)、油温高等故障。则发出声光报警信号,提醒维护人员进行干预。 4、三次启动功能 机组有三次启动功能,若第一次启动不成功,经10秒延时后再次启动,若第二次启动不成功,则延时后进行第三次启动。三次启动中只要有一次成功,就按预先设置的程序往下运行;若连续三次启动均不成功,则视为启动失败,发出声光报警信号(也可以同时控制另一台机组起动)。 5、自动维持准启动状态 机组能自动维持准启动状态。此时,机组的自动周期性预供油系统、油和水的自动加温系统、蓄电池的自动充电装置投入工作。 6、具备手动、自动两种操作模式。 控制系统的硬件设计 应急电源多采用135系列的柴油机组,下面就以此为例用PLC实现对柴油机自启动的控制。 电路分析 设计说明:控制面板上有“手动/自动”选择旋钮, “启动”、“加速” 、 “减速、”“合闸”、“分闸”按钮,柴油机上加装接近开关(旋转编码器),用于测速度,加装油门电机用于控制柴油机转速,加装电磁铁用于停机熄火,电压检测、水温、油压都是外部开关信号。 一次启动过程:正常电失电后,经5秒确认,“启动电机”启动4秒钟,如柴油机发火运行,则接近开关(旋转编码器)测到柴油机达到启动转速,PLC立即停止“启动电机”。柴油机怠速30S后开始根据接近开关的信号加速,直到稳定转速,发电机开始发电,电压正常后合上主开关向负载供电。运行中PLC自动稳定转速。 三次启动过程:若一次启动未成功,则接近开关(旋转编码器)测到柴油机达不到启动转速速度,并在5秒后测不到柴油机转速,由PLC内部的定时器来进行控制进行再次启动,以10秒作为一个周期,三次启动时间约30秒,32秒后输出报警,如启动中接近开关(旋转编码器)测不到柴油机达转速,则直接启动失败。 启动失败及柴油机组停机:启动失败后,电磁电把油门拉回到“停机”位置,当正常电恢复时,PLC发出分闸信号并由油门电机减速到怠速60S后,电磁电将油门拉回“停机”位置,柴油机缺油熄火。 并可根据用户需要增加小型人机界面,以文字、指示灯、图案等形式显示柴油机的各种数值及状态。并可通过其面板的按钮改变柴油机的数值及状态。可修改有与时间有关的参数,对输入的数据进行范围设定,超出范围的数据拒绝输入。可以对柴油机的各种故障以文字形式显示以便于查找故障,如三次起动失败,转速高,缸温高,市电供电等等。带密码保护功能,可以防止非授权用户更改重要数据和开关量。机组--自控的特点(1)机组由柴油机发电机组和中心控制柜组成,可以单机单柜、双机单柜或联网自动化控制(无人值守)。(2)控制柜的核心是可编程序控制器(PLC),通常选用选用北京凯迪恩公司CPU306小型可编程序控制器,运行可靠,质量稳定。(3)充分利用PLC的指令和功能编制程序,尽量减少外围控制元器件和接口,电路简单,操作方便,便于维护。(4)利用PLC的高速计数器功能,准确测出机组转速,不采用原来的测速发电机、转速表,避免了安装困难并提高了可靠性。(5)控制器采用直流24V供电,并配备先进的高频开关式直流充电设备,可对蓄电池进行浮充电,保证控制柜直流供电。(6)PLC中的EPROM(只读存储器)可固化程序,使原程序长期不丢失。(7)利用PLC的通信功能可实现近程、远程集中监控。技术要求:采用旋转编码器比接近开关性能效果更好。接近开关技术要求:螺纹式接近开关检测距离10mm±10%工作电压DC型:10-30VDC 三线型响应频率400Hz 接近开关又称无触点接近开关,是理想的电子开关量传感器。当金属检测体接近开关的感应区域,开关就能无接触,无压力、无火花、迅速发出电气指令,准确反应出运动机构的位置和行程,即使用于一般的行程控制,其定位精度、操作频率、使用寿命、安装调整的方便性和对恶劣环境的适用能力,是一般机械式行程开关所不能相比的。根据所需的输入/输出点数选择PLC机型 根据自动化机组的控制要求,所需PLC的输入点数为14个,输出点数为10个。系统的控制量基本上是开关量,只有电压是模拟量,为了降低成本,可以通过检测电路把模拟量转换成开关量、如电压监测可以用电压保护器代替。这样可以选用不带模拟量输入的PLC。对于小型发电机可不加装油门电机用于控制柴油机转速。本系统选用北京凯迪恩公司CPU306小型可编程序控制器,可靠性高,体积小,输入点数为14个,输出点数为10个。电源、输入、输出电压均为24VDC。分配PLC输入输出 根据自动化机组的控制要求和电气原理图,PLC输入、输出信号分配表见表1。表1输入/输出分配表 停市电信号 油门加速 接近开关 (旋转编码器) 油门减速 接近开关** (旋转编码器)** 启动电机 电压正常 合闸 油压低 分闸 水温高 停机电磁铁 手动/自动 故障信号 启动按钮 加速按钮 减速按钮 停机按钮 合闸按钮 分闸按钮 合闸输出信号注: I全为直流24V输入Q为无源触点输出(24V3A)1表示接通0表示断开 电路设计见附录1所示:(Autocad2004打开) 发电机时序图见附录2所示:(Autocad2004打开) 发电机PLC源程序见附件:(从北京凯迪恩自动化技术有限公司网站下载最新版EasyProg软件打开)源程序是加装接近开关,柴油机每转发出6个脉冲信号,柴油机每分钟1000转,秒一个周期测速,如采用旋转编码器则秒一个周期测速,效果更佳。结论 采用PLC控制的自动化柴油发电机组,硬件结构简单,成本低廉,响应速度快,性能、价格比很高,和单片机系统相比具有极高的可靠性。经现场使用考验,性能稳定,运行可靠。另外还可以根据实际需要很方便地进行扩展。程序稍作修改,就可以满足用户不同的控制要求,对于现代智能楼宇,控制系统还可以通过通讯模块纳入到整个楼宇的监控系统之中,体现出极大的灵活性和适应性,具有极高的实际推广价值。
井中月2500
★机械产品方案的现代设计方法及发展趋势★现代电力电子及电源技术的发展★面向FMS生产调度和控制的零件动态工艺模型研究★面向柔性自动化的成组统计质量控制技术★实施三标一体化贯标增强企业竞争实力★机电接口技术的内涵和发展★机电一体化技术在采油工具测试站总体方案设计中的应用★机电光一体化显微手术仪研制中的并行设计方法★机电一体化产品中的解耦和耦合分析方法★小型足球机器人踢球器的设计★机电一体化在矿用隔爆型移动变电站中的应用★基于EBI的机电设备系统一体化管理★一种机电一体化自动转换开关的设计★机电一体化简化了制动控制系统★机电一体化智能大流量电动执行机构的研究★纽玛格卷曲机的机电一体化控制的实现★机电一体化产品概念设计理论研究现状与发展展望★机电一体化系统建模技术与仿真软件的研究与分析★机电接口技术的内涵与机电一体化发展★单片机控制的机电一体化产品硬件加密技术★轻型工具磨床的机电一体化数控改造★从全液压式二板注塑机看机电液一体化★CAXA系列软件对机电一体化专业课程的全面优化
小脸欠捏
二线制交流电流变送器的设计步骤已知大电流电流互感器均将不同的电流转换成0~5A 的交流电流进行现场显示。而进行远距离传送时,必须将该电流转换成标准直流电流信号4~20mA,才能进行传送。 市场上此类交流电流变送器大都采用“四线制”的方法:即交流电源线二根,直流电流信号线二根。而我们设计的是“二线制交流电流变送器”则只采用二根电线:即在给变送器内的电路提供直流电源的同时,将根据0~5A 交流电流变化的变送输出标准直流电流信号4~20mA远传至控制室显示或进入计算机内处理后在显示器画面上显示。 设计思路1,选择低功耗元器件,在满足功能要求的前提下,尽量简化电路,满足二线制仪表的要求。2,采取有效措施,提高系统的抗干扰能力,减小温度飘移。3,完善系统保护措施,增加仪表的可靠性。一,互感器的选择 电流互感器是一种交流电流/电流变换器,当初级流过交流电流时,次级线圈则对应其变比产生交流电流。再通过负载电阻转换成交流电压信号。 合理选择互感器的变比十分重要。 在选择变比之前,首先要确定通过互感器产生的负载电压是否满足变送电路需要的输入信号电压。通常我们将输入信号电压的最大值选择在2~3V/AC 左右。 同时选择互感器负载电阻为标准系列电阻。选RL=1KΩ。(见图一)例如:输入信号电压选。 I=V/R=Ω= 已知:交流电流输入为0~5A, 则变比为: 5A/ 即 1:2000 所以,当电流互感器初级电流为0~5A 变化时,次级负载电阻两端的电压为0~。 选择5A/的互感器。 如果要求输入信号电压的最大值选择在3V时,只需要将负载电阻选择为RL=Ω即可。 V=I×R=×Ω=3V 仍然选择5A/的互感器。二,整流电路的选择 如果输入的信号非常微弱时,需要首先对信号进行放大后再进行整流。为了简化电路,我们选择的输入信号电压幅度比较大,0~。所以可以直接整流,而不必进行放大。 如果直接利用常用的晶体二极管整流,二极管的正向电压降会造成小电流时不能正常输出,从而造成在互感器输入≤1A 电流时,变送器无法线性输出标准电流信号。原因是晶体二极管的正向电压降在 左右,当互感器输入电流≤1A 时,次级负载电阻两端的电压为≤,此时晶体二极管无法导通! 我们利用运算放大器的反馈电路来实现理想二极管获得过零整流的特性,即微小信号的理想整流,从而获得高精度线性整流的特性。 同时,为了简化电路,降低变送器的功耗,而采用了半波精密整流电路。(见图二)图中的R2,R3,D1与N1 运算放大器组成正输出的理想二极管整流电路。D1 串接于运算放大器N1 的输出端,并且从D1 的阴极开始进行反馈。R2 是串联的输入电阻Ri,R3 是反馈电阻Rf。既然不需要进行放大,所以选择R3=R2。 通常选择通用运算放大器的输入阻抗为几十千欧姆,所以选择R2=R3=10KΩ~51KΩ均可,要求相对误差尽量小一点,否则输出的直流电压会产生误差。 对于输入的负半周信号来讲,N1 是一个典型的反相放大器。此时的增益为 A=(—Vi)×(—R3/R2)=Vi 而对于输入的正半周信号来讲,N1 的输出则变成负值 A=Vi×(—R3/R2)=—Vi此时D1 被反相偏置而截止,输入信号Vi 则通过R2,R3串联电路直接输出至后一级电路
我大旗网
传统家电的感应式电动机,运行速度单一、调节效率低,如将其更换成可变速永磁电动机,可以将能源消耗减少到60%左右。在全球范围内,就能够为消费者每年节约大约6300亿美元的开支。 除了能够减少能源消耗,永磁电动机技术所带来的低损耗和高转矩使得设计者能够设计出保持目标温度的更小型和更轻巧的电动机。这不仅能节约空间和减小重量,还能降低成本、简化机械设计。同感应电动机相比,它使用的贵重原材料也相对较少。可变速电动机的应用还带来了更大的运行可靠度和更长的使用寿命,以及噪音的减少。所以,永磁电动机技术是大多数可变速设备的选择。 成本和性能考虑 在使用霍耳效应传感器或者反电动势传感器来实现无刷交流电动机的梯形电流控制技术中,存在低速噪音高和高速范围受限的问题。而FOC(磁场定向控制)带来了更高更全面的使用性能,因为正弦电动机电流能产生更加平稳的转矩并且使得速度范围增大。FOC算法器的典型作用是将电流值以数学的方法从定子域转换成转子域,然后将所需要的电压值从转子域转换回定子域。在转换的结果上,还将作进一步的处理,比如在电流值上的比例积分运算。 然而,完善FOC算法器以实现在微型处理器或者DSP(数字信号处理器)中的执行,需要在电动机控制和软件编码技术上有丰富的经验。在设计中,电动机电流取样的计时是至关重要的,它依赖于设计中PWM(脉冲宽度调制)计时。为了得到一个高质量的解决方案,虽然使用现成的算法器在一般情况下比设计一个特殊的算法器更快速并且总成本更低,但是所要求的用于执行一个FOC算法器的处理资源会给很多DSP的处理能力造成较重负担。 使用一个现成的算法器也不能解决电动机控制设计的其它方面,包括电子电路的设计、模拟测流、电源管理、过电流和过电压保护、以及全部解决方案的综合和集成。 图1 混合模式控制器集成电路 综合行程控制平台 图1为一个可配置寄存器混合模式控制器集成电路。它使用FOC实现无传感器电动机速度和位置控制。FOC作为有标块的行程控制引擎(MCE)的一部分来使用。通过将控制器集成电路进行分配,MCE就可以成为合适的数字IP块,它可以很方便地使用在各种已优化的电动机控制集成电路中。 除此以外,通过在同样的芯片上使用一种微型控制器芯片,如图1所示,一台设备(诸如一台空调装置)的应用层上的编码也可以与数字行程控制功能一样在同样的硅片上执行。还可以将该应用部件在行程控制以外独立地加以修改,使其与行程控制成为一个模块体系结构,作为应用处理器的从属部分。在该设计中,60 MIPS的8051芯片具有在应用层面上充足的处理能力,并且还提供通讯端口,通过该端口可以将电动机的速度传递给电路运行FOC。 在图1所示的ASE(模拟信号引擎)块集成了模拟信号调节和转换功能,形成了一个混合模式控制器集成电路,以便进一步减少设计一个完整的控制器所需要的元件数量。在芯片上安装了5个运算放大器以及相关增益电路作为外部元件来使用,使其能够直接地感应整个外部测流电阻器的电压降。其上还安装了12位ADC,以执行电动机电流的复原。硬件计时器简化了设计人员对测流电阻器的时间控制,即临界取样上的软件操作任务。所以,该混合模式控制器集成电路的使用(包括模拟集成电路)减少了无传感器控制所要求的分立元件的数量。 可兼容的模拟接口以及电源模块使得设计平台更加完整,使快速配置整个永磁电动机控制器成为可能。电子电路设计以及系统集成任务是预先完成的,从而便于工程师快速完成电动机控制设计方案。 图2 IRS2136D 数字控制的要求 通过使用上述混合模式控制器集成电路,国际整流器公司已经开发出了可变速电控设计平台。作为一个特殊功能的硬件处理器,MCE能够在11ms内完成一个FOC回路的计算。如此快速的计算速度使其能够在较大范围内实现对两台电动机转矩和速度的控制。比如,它使得一个单一的控制器集成电路可以执行一台空调设备所要求的所有数字处理,这就需要对风扇和空压机的电动机进行有效的控制。此外,它还有足够的处理能力,能够在芯片上进行数字PFC(功率因数校正)操作,因此,就免去了再安装一套外部元件的必要。 因为FOC转矩控制回路已经在硬件中进行了优化,用户只需要确定外部速度和座席回路的参数即可完成数字设计任务。在基于个人计算机的配置工具的帮助下,通过写入存储器就能够很方便地完成设计任务。所要求的参数能很容易地输入到一个电子表格里,接着由配置程序进行翻译。 图3 IRS2136D的功能框图 模拟驱动器和电源模块 为了给对运行成本敏感的用户带来可变速电动机控制解决方案的好处,还需要有与数字控制和电力电子块兼容的三相模拟驱动和保护集成电路来作为该解决方案的一部分。制造集成驱动器集成电路(例如包括了带内置阴极负载二极管的半桥换向栅驱动器),也要求对诸如高、低信道的传播延时等参数进行严密的匹配,并在整个使用寿命期间保持稳定。其它基本特性还包括了停滞时间插入和保护功能,如:带自动排除故障功能的倒相器过电流跳闸和欠电压切断。分离式的电源和信号地线的连接方式能够实现在低端IGBT上进行单根直流线配置,用以执行测流任务。内置交叉传导保护也是一个有价值的特性,它可以防止意外的击穿,从而增加倒相器的可靠度。 图2为模拟驱动器集成电路IR2136D的框图。 该器件能够与其开发的耗尽停止型沟槽IGBT完全兼容。这些IGBT有一系列的配置方式,包括了用于处理电动机控制装置的电源开关操作任务的分散式和集成式的模块。这些显示了集电极到发射集的饱和电压以及总开关损损耗比击穿和非击穿IGBT都要低。 控制器集成电路、集成模拟驱动器以及IGBT模块共同构成了一个行程控制元件的组合—iMOTION。以使用方便和快捷为设计理念,该设计平台还纳入了参考设计,它使得工程师能进一步简化开发过程,以便集中精力于应用的开发工作。这将是未来能量效率型电动机控制的主要功能优势。 图4 效率数据对比 一种具有95%工作效率的空调机的设计 目前,空调设备在能源消耗中仍占有较大比例,因为电动机运行效率低将导致CoP(制冷系数)降低。根据实际使用系统的不同,将压缩机更换成一台永磁电动机型的可变速压缩机,能够将CoP提高甚至超过300%。 为了实现低成本高效率的设计应用,IRMCF312空调机控制器支持MCE结构体系,实现无传感器的电动机速度和位置控制的集成。IRMCF312集成了数字PFC控制,并且不需要传统空调机控制系统的分离式风扇控制器和分离式PFC控制功能。 图3显示了一个完整的基于iMOTION的室外空调机的设计,该设计主要是使用了IRMCF312。 结合IRS2136D高压集成电路作为伴随设施,该方案能设计成本低、效率高的室外空调机。该高压集成电路包括了倒相IGBT栅驱动、过电流保护和欠电压切断功能。此外,还开发了一种新型智能电源模块,它包括了IRS2136D及最新的沟槽栅式IGBT。 图4显示了基于直流输入和倒相输出功率测定基础上的倒相加PFC的效率数据。PFC是以恒向电流的模式运行,具有20KHz数字计算更新速度和40KHz的PWM载波频率。PFC和倒相器的共同效率超过了95%。 该项应用的优点还包括运行更安静(由于使用了正弦电流控制)、使用元器件更少(降低了成本)、减少了维护需要和具有更长的使用寿命
维护的目的是为了减少电机的损耗,使之能更好的工作,因为电动机的维护分机械部分和电路即绕组部分。 机械部分包裹电机壳的保洁--有利于电机散热,温度过高烧坏绕组
等会,我忙完那边的论文过来帮你写
做这个比较费时间 可以找一个专业原创的人帮你写 他们是专业团队,原创保证质量,包通过加他为好友就行:一一三六八七七 九二三
机械类的毕业论文题目有很多,学术堂整理了十五个题目供大家进行参考:1、某型汽车发动机曲轴的加工工艺及测试研究2、舞台升降装置的设计研究3、按摩机器人控制器的设计
软件设计毕业设计论文题目 软件设计毕业设计论文题目如何拟定,大家有参考的范文吗?以下是我为大家整理的关于软件设计毕业设计论文题目,希望大家喜欢! 1) 组合型板