• 回答数

    2

  • 浏览数

    128

大桥鸭子
首页 > 学术期刊 > cvpr2020论文格式

2个回答 默认排序
  • 默认排序
  • 按时间排序

reviveanna

已采纳

论文: EfficientDet: Scalable and Efficient Object Detection

目前目标检测领域,高精度的模型通常需要很大的参数量和计算量,而轻量级的网络则一般都会牺牲精度。因此,论文希望建立一个可伸缩的高精度且高性能的检测框架。论文基于one-stage的检测网络范式,进行了多种主干网络、特征融合和class/box预测的结构尝试,主要面临两个挑战:

FPN是目前最广泛的多尺度融合方法,最近也有PANet和NAS-FPN一类跨尺度特征融合方法。对于融合不同的特征,最初的方法都只是简单地直接相加,然而由于不同的特征是不同的分辨率,对融合输出特征的共享应该是不相等的。为了解决这一问题,论文提出简单但高效加权的bi-directional feature pyramid network(BiFPN),该方法使用可学习的权重来学习不同特征的重要性,同时反复地进行top-down和bottom-up的多尺度融合

论文认为除了缩放主干网络和输入图片的分辨率,特征网络(feature network)和box/class预测网络的缩放对准确率和性能也是很重要的。作者借鉴EfficientNet,提出针对检测网络的混合缩放方法(compound scaling method),同时对主干网络,特征网络和box/class预测网络的分辨率/深度/宽度进行缩放

最后,论文将EfficientNet作为主干,结合BiFPN和混合缩放,提出新的检测系列EfficientDet,精度高且轻量,COCO上的结果如图1,论文的贡献有以下3点:

定义多尺寸特征 ,论文的目标是找到变化函数 来高效融合不同的特征,输出新特征 。具体地,图2a展示了top-down FPN网络结构,一般FPN只有一层,这里应该为了对比写了repeat形式。FPN获取3-7层的输入 , 代表一个分辨率为 的特征层

top-down FPN操作如上所示, 为上采用或下采样来对齐分辨率, 通常是特征处理的卷积操作

top-down FPN受限于单向的信息流,为了解决这一问题,PANet(图2b)增加了额外的bottom-up路径的融合网络,NAS_FPN(图2c)使用神经架构搜索来获取更好的跨尺度特征网络的拓扑结构,但需要大量资源进行搜索。其中准确率最高的是PANet,但是其需要太多的参数和计算量,为了提高性能,论文对跨尺寸连接做了几点改进:

大多的特征融合方法都将输入特征平等对待,而论文观察到不同分辨率的输入对融合输出的特征的贡献应该是不同的。为了解决这一问题,论文提出在融合时对输入特征添加额外的权重预测,主要有以下方法:

, 是可学习的权重,可以是标量(per-feature),也可以是向量(per-channel),或者是多维tensor(per-pixel)。论文发现标量形式已经足够提高准确率,且不增加计算量,但是由于标量是无限制的,容易造成训练不稳定,因此,要对其进行归一化限制

,利用softmax来归一化所有的权重,但softmax操作会导致GPU性能的下降,后面会详细说明

,Relu保证 , 保证数值稳定。这样,归一化的权重也落在 ,由于没有softmax操作,效率更高,大约加速30%

BiFPN集合了双向跨尺寸的连接和快速归一化融合,level 6的融合操作如上, 为top-down路径的中间特征, 是bottom-up路径的输出特征,其它层的特征也是类似的构造方法。为了进一步提高效率,论文特征融合时采用depthwise spearable convolution,并在每个卷积后面添加batch normalization和activation

EfficientDet的结构如图3所示,基于one-stage检测器的范式,将ImageNet-pretrained的EfficientNet作为主干,BiFPN将主干的3-7层特征作为输入,然后重复进行top-down和bottom-up的双向特征融合,所有层共享class和box网络

之前检测算法的缩放都是针对单一维度的,从EfficientNet得到启发,论文提出检测网络的新混合缩放方法,该方法使用混合因子 来同时缩放主干网络的宽度和深度、BiFPN网络、class/box网络和分辨率。由于缩放的维度过多,EfficientNet使用的网格搜索效率太慢,论文改用heuristic-based的缩放方法来同时缩放网络的所有维度

EfficientDet重复使用EfficientNet的宽度和深度因子,EfficinetNet-B0至EfficientNet-B6

论文以指数形式来缩放BiFPN宽度 (#channels),而以线性形式增加深度 (#layers),因为深度需要限制在较小的数字

box/class预测网络的宽度固定与BiFPN的宽度一致,而用公式2线性增加深度(#layers)

因为BiFPN使用3-7层的特征,因此输入图片的分辨率必需能被 整除,所以使用公式3线性增加分辨率

结合公式1-3和不同的 ,论文提出EfficientDet-D0到EfficientDet-D6,具体参数如Table 1,EfficientDet-D7没有使用 ,而是在D6的基础上增大输入分辨率

模型训练使用momentum=和weight decay=4e-5的SGD优化器,在初始的5%warm up阶段,学习率线性从0增加到,之后使用余弦衰减规律(cosine decay rule)下降,每个卷积后面都添加Batch normalization,batch norm decay=,epsilon=1e-4,梯度使用指数滑动平均,decay=,采用 和 的focal loss,bbox的长宽比为 ,32块GPU,batch size=128,D0-D4采用RetinaNet的预处理方法,D5-D7采用NAS-FPN的增强方法

Table 2展示了EfficientDet与其它算法的对比结果,EfficientDet准确率更高且性能更好。在低准确率区域,Efficient-D0跟YOLOv3的相同准确率但是只用了1/28的计算量。而与RetianaNet和Mask-RCNN对比,相同的准确率只使用了1/8参数和1/25的计算量。在高准确率区域,EfficientDet-D7达到了,比NAS-FPN少使用4x参数量和计算量,而anchor也仅使用3x3,非9x9

论文在实际的机器上对模型的推理速度进行了对比,结果如图4所示,EfficientDet在GPU和CPU上分别有和加速

论文对主干网络和BiFPN的具体贡献进行了实验对比,结果表明主干网络和BiFPN都是很重要的。这里要注意的是,第一个模型应该是RetinaNet-R50(640),第二和第三个模型应该是896输入,所以准确率的提升有一部分是这个原因。另外使用BiFPN后模型精简了很多,主要得益于channel的降低,FPN的channel都是256和512的,而BiFPN只使用160维,这里应该没有repeat

Table 4展示了Figure 2中同一网络使用不同跨尺寸连接的准确率和复杂度,BiFPN在准确率和复杂度上都是相当不错的

Table 5展示了不同model size下两种加权方法的对比,在精度损失不大的情况下,论文提出的fast normalized fusion能提升26%-31%的速度

figure 5展示了两种方法在训练时的权重变化过程,fast normalizaed fusion的变化过程与softmax方法十分相似。另外,可以看到权重的变化十分快速,这证明不同的特征的确贡献是不同的,

论文对比了混合缩放方法与其它方法,尽管开始的时候相差不多,但是随着模型的增大,混合精度的作用越来越明显

论文提出BiFPN这一轻量级的跨尺寸FPN以及定制的检测版混合缩放方法,基于这些优化,推出了EfficientDet系列算法,既保持高精度也保持了高性能,EfficientDet-D7达到了SOTA。整体而言,论文的idea基于之前的EfficientNet,创新点可能没有之前那么惊艳,但是从实验来看,论文推出的新检测框架十分实用,期待作者的开源

179 评论

哇小妹夫

由于不同因素之间的复杂作用,在保留原始字体,颜色,大小和背景纹理的同时在场景图像中交换文本是一项具有挑战性的任务。在这项工作中,我们提出了一个三阶段框架SwapText,用于跨场景图像传输文本。 首先,提出了一种新颖的文本交换网络来仅替换前景图像中的文本标签。 其次,背景完成网络来学习以重建背景图像。 最后,通过融合网络将生成的前景图像和背景图像用于生成文字图像。 使用提出的框架,即使出现严重的几何失真,我们也可以巧妙的处理输入图像的文本。 定性和定量结果显示在几个场景文本数据集上,包括规则和不规则文本数据集。 我们进行了广泛的实验以证明我们的方法的有效性,例如基于图像的文本翻译,文本图像合成等。

想象一下,能够在场景图像中交换文本,同时在几秒钟内保持原始字体,颜色,大小和背景纹理,而无需花费数小时进行图像编辑。 在这项工作中,我们旨在通过自动替换场景图像中文本的算法来实现此目标。文本交换的核心挑战在于生成视觉逼真的文本并与原始文本保持一致的样式。

文本交换或文本替换在许多情况下都涉及到,包括文本检测,文本识别,海报中的文本转换和其他创造性应用。 对于文本检测和识别任务,文本交换是一种非常有用的数据增强方法。 见证了深度神经网络(DNN)在各种计算机视觉任务中的巨大成功,获得大量带注释的训练图像已成为训练DNN模型的瓶颈。最简单,使用最广泛的方法是通过几何变换来增加训练图像,例如平移,旋转和翻转等。近来,已经提出了基于图像合成的方法[11、7、39]来训练文本检测和识别模型。这些方法通过结合不同的渲染技术对光和能量的物理行为进行建模来从无文本图像中创建新图像。但是, 合成图像无法与场景中的图像完全融合,这在将合成图像应用于DNN模型训练时至关重要。

近年来,许多图像生成模型,例如生成对抗网络(GAN)[6],可变自动编码器(VAE)[17]和自回归模型[25],为现实的图像生成任务提供了强大的工具。在[9,38,33]中,GAN用于图像补全,可为缺失区域生成视觉上逼真的和语义上合理的像素。 [21,8,28,22]已经利用这些网络生成具有不同姿势或服装的新颖人物图像。

我们的贡献总结如下:

文本图像合成 图像合成已在计算机图形学研究中得到了广泛的研究[4]。文本图像合成被研究为一种数据增强方法,用于训练准确而健壮的DNN模型。例如,Jaderberg等[11]使用单词生成器来生成用于文本识别任务的合成单词图像。Gupta等 [7]开发了一个健壮的引擎来生成用于文本检测和识别任务的合成文本图像。 文本图像合成的目标是将文本插入背景图像中语义上敏感的区域。许多因素都影响合成文本图像的真实相似度,例如文本大小,文本视角,环境光照等。 在[39]中,Zhanet等人通过结合语义连贯,视觉注意力和自适应文本外观这三种设计来实现文本文本图像合成。尽管文本图像合成在视觉上是逼真的,但合成图像与真实图像之间仍存在许多差异。例如, 与真实图像相比,合成图像中文本字体和背景图像非常有限。

在最近,基于GAN的图像合成技术得到了进一步的探索。在[41]中,Zhan等人提出了一种将几何合成器和外观合成器组合在一起的空间融合GAN,以在几何和外观空间中实现合成现实。Yang等人[36]使用双向形状匹配框架通过可调整的参数来控制字形的关键风格。 GA-DAN [40]提出了一项有趣的工作,能够同时在几何空间和外观空间中对跨域移位进行建模。[2]中提出了MC-GAN来实现从A到Z的字母集的字体样式转换。 Wu等人 [34]提出了一个端到端的可训练样式保留网络来编辑自然图像中的文本。

图像生成 随着生成模型(例如GAN [6],VAE [17]和自动回归模型[25])的巨大成功,逼真而清晰的图像生成最近吸引了越来越多的关注。传统的生成模型使用GAN [6]或VAE [17]来将噪声z生成的分布映射到实际数据的分布。例如,GANs [6]用于生成真实面孔[37、3、15]和鸟类[29]。

为了控制所生成的结果,Mirzaet等人[23]提出了有条件的GAN。它们会生成在类别标签上进行分类的MNIST数字。在[12]中,karacanet等。根据语义布局和场景属性(例如日夜,晴天雾天)生成逼真的室外场景图像。 Lassneretal [19]基于细粒度的身体和衣服片段生成了穿着者的全身图像。完整模型可以以姿势,形状或颜色为条件。Ma[21,22]基于图像和姿势生成人图像。在[18]中提出了快速人脸交换,以将输入身份转换为目标身份,同时保留姿势,面部表情和光照。

图像完成 最近,基于GAN的方法已经成为图像完成的一种有希望的范例。 Iizuka等 [9]提议使用全局和局部判别器作为对抗性损失,在其中全局和本地一致性都得到了加强。Yu等人 [38]使用上下文注意力层来显式地参与远距离空间位置上的相关特征补丁。 Wang等 [33]使用多列网络以并行方式生成不同的图像分量,并采用隐式的多样化MRF正则化来增强局部细节。

给定场景文本图像Is,我们的目标是在保持原始样式的基础上基于内容图像Ic替换文本。 如图2所示,我们的框架由文本交换网络,背景完成网络和融合网络组成。文本交换网络首先从Is中提取样式特征从Ic中提取内容特征,然后通过自注意网络合并这两个特征。 为了更好地表示内容,我们使用内容形状转换网络(CSTN)根据样式图像Is的几何属性来转换内容图像Ic。背景完成网络用于重建样式图像Is的原始背景图像Ib。 最后,文本交换网络和背景完成网络的输出被融合网络融合以生成最终的文本图像。

现实情况下的文本实例具有多种形状,例如,呈水平,定向或弯曲形式。 文本交换网络的主要目的是在保留原始样式(尤其是文本形状)的同时替换样式图像Is的内容。 为了提高不规则文本图像生成的性能,我们提出了一个内容形状转换网络(CSTN)将内容图像映射到样式图像的相同几何形状中,然后通过3个下采样卷积层和几个残差块对样式图像和转换后的内容图像进行编码。 为了充分融合样式和内容特征,我们将它们馈入了一个自注意网络。 对于解码,使用3个上采样反卷积层来生成前景图像If。

文本形状的定义对于内容形状的转换至关重要。 受文本检测[20]和文本识别[35]领域中的文本形状定义的启发,可以使用2 K个基准点P = {p1,p2,...,p2K}定义文本的几何尺寸属性,如图3所示。

在对内容和样式图像进行编码之后,我们将两个特征图都馈送到自注意网络,该网络会自动学习内容特征图Fc和样式特征图Fs之间的对应关系。 输出特征图是Fcs,图5(a)给出了自注意力的网络结构。

内容特征Fc和样式特征Fs首先沿其深度轴连接。 然后,我们遵循[42]中类似的自注意力机制来生成输出特征图Fcs。

除了这种单级样式化之外,我们还开发了多级样式化管道,如图5(b)所示。 我们将自注意力网络依次应用于多个特征图层,以生成更逼真的图像。

文本交换网络主要侧重于前景图像生成,而背景图像在最终图像生成中也起着重要作用。为了生成更逼真的文字图像,我们使用背景完成网络来重建背景图像,其结构如表1所示。大多数现有的图像完成方法都是通过借用或复制周围区域的纹理来填充图像的像素。一般的结构遵循编码器-解码器结构,我们在编码器之后使用膨胀卷积层来计算具有较大输入区域的输出像素。通过使用较低分辨率的膨胀卷积,模型可以有效地“看到”输入图像的较大区域。

在此阶段,将文本交换网络和背景完成网络的输出融合以生成完整的文本图像。 如图2所示,融合网络遵循编码器-解码器结构。 类似于[34],我们在融合解码器的上采样阶段将背景完成网络的解码特征图连接到具有相同分辨率的相应特征图。 我们使用Gfuse和Dfuse分别表示生成器和判别器网络。 融合网络的损失函数可计算如下:

为了制作更逼真的图像,我们还遵循样式迁移网络[5,26]的类似思想,将VGG-loss引入融合模块。 VGG损失分为两部分,即知觉损失和风格损失,如下所示:

我们遵循[34]中的类似思想来生成具有相同样式的成对合成图像。我们使用超过1500个字体和10000个背景图像来生成总共100万个狮子训练图像和10000个测试图像。输入图像的大小调整为64×256,批处理大小为32。从权重为零的正态分布初始化所有权重,标准差为。使用β1= 和β2= 的Adam优化器[16]来优化整个框架。在训练阶段将学习率设置为。我们在Ten-sorFlow框架[1]下实现我们的模型。我们的方法中的大多数模块都是GPU加速的。

我们在几个公共基准数据集上评估了我们提出的方法。

我们采用图像生成中常用的指标来评估我们的方法,其中包括:

在本节中,我们将通过经验研究不同的模型设置如何影响我们提出的框架的性能。我们的研究主要集中在以下方面:内容形状转换网络,自注意力网络和背景完成网络中的膨胀卷积。图6给出了一些定性结果。

自注意力网络 使用自注意力网络来充分结合内容特征和风格特征。根据表2,使用单层自注意力网络,平均l2误差减少约,平均PSNR增加约,平均SSIM增加约。为了使用样式和内容特征的更多全局统计信息,我们采用了一个多层的自注意力网络来融合全局和局部模式。借助多级自我关注网络,所有的度量方法都得到了改进。

膨胀卷积 膨胀卷积层可以扩大像素区域以重建背景图像,因此更容易生成更高质量的图像。 根据表2,具有膨胀卷积层的背景完成网络在所有指标上均具有更好的性能。

为了评估我们提出的方法,我们将其与两种文本交换方法进行了比较:[10]中提出的pix2pix和Wuet等人[34]提出的SRNet。 我们使用生成的数据集来训练和测试这两个模型。根据论文,两种方法都保持相同的配置。

定量结果 在表2中,我们给出了本方法和其他两种竞争方法的定量结果。显然,我们提出的方法在不同语言的所有指标上都有显著改进,平均l2误差减少了以上,平均PSNR增加了以上,平均SSIM增加了以上。第二个最好的方法。

基于图像的翻译是任意文本样式传输的最重要应用之一。在本节中,我们提供一些基于图像的翻译示例,如图7所示。我们在英语和中文之间进行翻译。从结果可以看出,无论目标语言是中文还是英文,都可以很好地保持颜色,几何变形和背景纹理,并且字符的结构与输入文本相同。

在图9中,我们还展示了在场景文本数据集上评估的模型的一些示例结果。根据图9, 我们的模型可以替换输入图像中的文本,同时保留原始字体,颜色,大小和背景纹理。

我们的方法有以下局限性。由于训练数据量有限,因此无法充分利用几何属性空间和字体空间。当样式图像中的文本出现波动时,我们提出的方法将失败,请参见图8(顶部)。图8(底部)显示了使用WordArt中的样式图像的失败案例。

在这项研究中,我们提出了一种健壮的场景文本交换框架SwapText,以解决用预期的文本替换场景文本图像中的文本的新任务。我们采用分而治之的策略,将问题分解为三个子网络,即文本交换网络,背景完成网络和融合网络。在文本交换网络中,内容图像和样式图像的特征被同时提取,然后通过自注意网络进行组合。为了更好地学习内容图像的表示,我们使用内容形状转换网络(CSTN)根据样式图像的几何属性对内容图像进行转换。然后,使用背景完成网络来生成内容图像的背景图像样式图片。最后,将文本交换网络和背景完成网络的输出馈送到融合网络中,以生成更真实和语义一致的图像。在几个公共场景文本数据集上的定性和定量结果证明了我们方法的优越性。在未来的工作中,我们将探索基于字体和颜色生成更多可控制的文本图像。

138 评论

相关问答

  • 论文格式开头格式

    论文的标准格式如下: 1、页码:封面不编页。 2、从目录开始编页,目录使用阿拉伯数字编码,页码编号要求居中。 3、用A4纸单面打印。上、下各为2.5cm,左右边

    养生达人帅帅 6人参与回答 2023-12-09
  • 论文格式封面格式

    论文封面格式如下: 1不管是期刊论文、学术论文、学位论文还是其它各种毕业论文等,按本文介绍的方法排版就是对的,因为基本的论文格式是通用的。这里以模板的形式详细介

    韩建忠001 1人参与回答 2023-12-11
  • 论文格式规范格式

    论文格式1、论文格式的论文题目:(下附署名)要求准确、简练、醒目、新颖。 2、论文格式的目录 目录是论文中主要段落的简表。 (短篇论文不必列目录) 3、论文格式

    owenwoohyuk 2人参与回答 2023-12-07
  • 论文格式数字格式

    坚强的栀子花回答是对的。

    jonathan7704 6人参与回答 2023-12-10
  • 毕业论文格式格式

    毕业论文的组成部分有标题、作者信息、摘要、关键词、正文、参考文献和谢辞。接下来就和大家详细讲解一下。 (2)论文题目:三号黑体字,不超过20字。 (3)姓名、

    淡定的机车 2人参与回答 2023-12-08