• 回答数

    2

  • 浏览数

    163

虾米啊1
首页 > 学术期刊 > 研究生毕业论文数学变式训练

2个回答 默认排序
  • 默认排序
  • 按时间排序

喵喵小猫咪

已采纳

浅谈数学中的研究性学习 (转,供参考)找个自己感兴趣的题目去写,参考范文! 现代社会知识更新的速度不断加快,在高中阶段,对学生传授的知识是有限的,学校教育不可能让学生学的知识用上一辈子。人们在获得生存与发展中所面临的问题越来越具有社会性、复杂性和不可预见性,人们所必需的知识范围与能力素养的范围急剧扩大。而作为一名数学教师我们有责任引导学生从数学的角度分析社会生活和实践活动中的问题、开展探究活动,让学生在获得必要的数学知识与技能的同时,认识知识探究与问题探索的基本方法和途径,提高参与社会生活的探究、发现和改造等一切活动中进行决策的基本能力。 一、 正确的认识是开展数学研究性学习的基础 弄清概念:什么是数学研究性学习 数学研究性学习是培养学生在数学教师指导下,从自身的数学学习和社会生活、自然界以及人类自身的发展中选取有关数学研究专题,以探究的方式主动地获取数学知识、应用数学知识解决数学问题的学习方式。它同社会实践等教育活动一样,从特定的数学角度和途径让学生联系社会生活实例,通过亲身体验进行数学的学习。数学研究性学习强调要结合学生的数学学习和社会生活实践选择课题,学生从自身数学学习实践出发,找到他们感兴趣的、有探究价值的数学问题。开展数学研究性课题学习将会转变学生的数学学习方式,变传统的“接受性、训练性学习”为新颖的“研究性学习”,它有利于克服当前数学教学中注重教师传授而忽视学生发展的弊端,有利于调动学生的研究热情,激发学生的求知欲和进取精神,从而有效提高学生对数学的探究性学习能力、实践能力、创造能力和创新意识。 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学和现实问题的一种有意义的主动学习,是以学生动手动脑,主动探索实践和相互交流为主要学习方式的学习研究活动。 二、如何进行数学研究性学习 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。古希腊哲学家德谟克利特曾经指出:“教育力图达到的目标不是完备的知识,而是充分的理解。”我国古代教育家说得更精辟且形象:教学中应“授之以‘渔’”,而不仅是“授之以‘鱼’”。数学研究性学习更加关注学习过程,然而老师又如何让学生在数学课堂上进行研究性学习呢? (一) 从教材切入让学生在数学家探索数学规律的研究思维过程中体验研究性学习 ?在高中数学教材中有大量的材料可切入研究性学习的探索。在课堂教学中,教师应把握住“遵循大纲、教材,但又不拘泥于大纲、教材”的原则,结合生产、生活实际适当地加深、加宽,选出探究的切入点,对学生创新意识和能力进行初步培养。如:在讲复数的概念的引入时,告诉学生数的发展是由生产与生活的需要和解方程的需要推动的,是科学实际和生产、生活相结合的产物,然后要学生:解方程: 。学生一定会说无解或无实数解,教师引导学生分析“无解”和“无实数解”的区别,要学生探讨是不是有什么新的东西?如果有应该是怎样的?学生会通过探求及讨论发现此方程的解有但不是实数从而就会想到是虚的,教师要求学生用已有的方法求出方程的解,学生往往会感觉困难,教师就要问学生为什么困难?学生会说无法求,教师要求学生探求一个新的东西出来解决。 通过问题的层层揭示,并通过联系数的开方知识、解方程知识等手段来突破难点。这一过程使学生亲历数学研究之中,是学生主动地获取知识、应用知识、解决问题的学习活动。这一过程能充分调动学生的参与意识,培养学生的探索精神,启迪学生的思维,使学生能自然地掌握知识。 教师引导学生把提出的新东西进行归纳、总结,上升到理论。然后提出新的问题。如上面这节课对要求学生:解方程:x3-1=0.这样处理能再次将理论和实践结合起来,使学生感悟到在数学学研究中理论和实践之间的辩证关系。课后教师可以再布置几个探究性思考题,让学生在课外进一步巩固课堂上的探究方法和思路,拓展和活跃学生思维。 指导学生进行一题多解和一题多变也是一种研究性学习的方法。 这样以数学教材为载体渗透研究性学习,有一定的灵活性能更好的培养学生探求规律的能力。数学知识探索是数学学习的核心,用类似科学的研究方式,让学生置于探索和研究的气氛之中,亲身参与研究,体会知识及规律的探索方法,提高学生发现和解决问题的能力。 (二) 把握教材例、习题的潜在功能,有效培养学生的研究性学习能力 数学知识由纷繁复杂的客观世界抽象而来,研究性学习能力是学习数学知识的必要条件。很多教师都有一个发现:在学习单个知识时,学生似乎学得不错,但学完了多个知识或一个系统后,却变成简单的题目都不会,这除了综合能力不高外,还与平时没有养成研究性学习有关。像二倍角公式的理解就不能只知道2α是α的二倍角,类似的:4α是2α的二倍,α是的二倍, 例如:已知Sin= ,? ?, 求4的三角函数值。 分析:由,两次运用二倍角公式;又如:Cosα=2Cos 2? ?- 1 = 1 – 2Sin2 ???????? ?Cos 2? ??=? ,? Sin2 ?= ?????? ????tan2 ?= 这实际上是二倍角公式的逆向运用,得到的半角公式(或降幂公式)。有了对例题的深刻理解和研究性学习就能解决一类问题,如求的值;化简等。 通过变式、逆用、一题多解等训练思维的深度,引导学生不满足表面知识,能深入钻研问题,探求各种知识的联系,从而找到解决问题的本质和规律。 在教学上要鼓励学生敢于主动、独立的发现问题、探讨问题,敢于提问,敢于发表自己的不同观点,例如:在△ABC中 ,,求CosC值,可我在批改作业时,没有考究教材参考资料提供的答案(实际上只有),结果把正误答案颠倒。发现错误后,我主动向全班同学道歉,并表扬了善于研究思考、敢于坚持真理的同学。并及时提出新问题:(1)在△ABC中若 ,,求CosC值。有几个解?(2)在△ABC中,成立吗?作为留给学生的课外研究性学习题。学习了正弦定理后,再回头证明。通过这一问题的深刻探讨,不但使学生牢固掌握知识,更大大提升了学习的自信心和学习的热情,在潜移默化中培养了学生的科学态度和研究性学习精神。在学习等比数列前n项和知识时,有一题是:在等比数列中:已知 。在求解过程中学生得到了:? ,进一步发现:成等比数列 ,这就是研究性学习所得的成果,继续引导这一结论并推广就就可完成下面一题。证明:等比数列的也成等比数列。学生们总结前面的学习也较顺利地完成了证明,心理充满了成功的喜悦。真的没有漏洞吗?鼓励学生进行研究性学习探讨其严谨性,有学生举出了反例:数列 1,-1,1,-1……是公比q= -1等比数列,但 ,并不是等比数列;这一发现令人吃惊,因为在课本和其他所有的课外书都没有此说法。从理论上讨论:当,显然当n为偶数且q= -1时, ,不可能为等比数列。由此可见数学研究性学习的重要。 (三) 数学开放题与研究性学习 ??? 研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。 自70年代日本、美国在中小学教学中较为普遍地使用数学开放题以来,数学开放题已逐渐被数学教育界认为是最富有教育价值的一种数学问题,因为数学开放题能够激起学生的求知欲和学习兴趣,而强烈的求知欲望浓厚的学习兴趣是创新能力发展的内在动力。80年代介绍到我国后,在国内引起了广泛的关注,各类刊物发表了大量的介绍、探讨开放题的理论文章或进行教学实验方面的文章,并形成了一个教育界讨论研究的亮点。 高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,近几年在全国和各地的高考试题中连续出现具有开放性的题目。 数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 21、浅谈中学数学中的反证法 22、数学选择题的利和弊 23、浅谈计算机辅助数学教学 24、数学研究性学习 25、谈发展数学思维的学习方法 26、关于整系数多项式有理根的几个定理及求解方法 27、数学教学中课堂提问的误区与对策 28、中学数学教学中的创造性思维的培养 29、浅谈数学教学中的“问题情境” 30、市场经济中的蛛网模型 31、中学数学教学设计前期分析的研究 32、数学课堂差异教学 33、浅谈线性变换的对角化问题 34、圆锥曲线的性质及推广应用 35、经济问题中的概率统计模型及应用 36、通过逻辑趣题学推理 37、直觉思维的训练和培养 38、用高等数学知识解初等数学题 39、浅谈数学中的变形技巧 40、浅谈平均值不等式的应用 41、浅谈高中立体几何的入门学习 42、数形结合思想 43、关于连通性的两个习题 44、从赌博和概率到抽奖陷阱中的数学 45、情感在数学教学中的作用 46、因材施教与因性施教 47、关于抽象函数的若干问题 48、创新教育背景下的数学教学 49、实数基本理论的一些探讨 50、论数学教学中的心理环境 51、以数学教学为例谈谈课堂提问的设计原则 52、不等式证明的若干方法 53、试论数学中的美 54、数学教育与美育 55、数学问题情境的创设 56、略谈创新思维 57、随机变量列的收敛性及其相互关系 58、数字新闻中的数学应用 59、微积分学的发展史 60、利用几何知识求函数最值 61、数学评价应用举例 62、数学思维批判性 63、让阅读走进数学课堂 64、开放式数学教学

199 评论

HELLO小不不

数学思维是人脑与数学对象交互作用并按照一般思维规律认识数学内容的内在理性活动.在公式、定理、性质的教学过程中,教师精心编制一系列由简单到复杂的变式训练题,组织学生进行尝试练习,引导学生参与知识的发现、探索、推导过程,可以提高思维的探究水平,更可以掌握具有广泛性的思维方法.一、问题提出的背景学生数学学习的认知水平一般分为三个层次:记忆模仿型、说明性理解型与探究性理解型.为了培养与提高学生的数学思维能力,引导学生向探究性理解型发展,教师在课堂教学中,要敢于和善于给学生提供一定的独立思考、发现问题的条件和机会.适当地进行变式训练、一题多解、一法多用,可以让学生形成富于联想的思维习惯.数学公式作为解题的工具,深刻理解并准确掌握数学公式是学好数学的第一关.数学公式应用广泛,推导方法具有代表性,所以人们把它比喻为“数量关系的精髓”.在一般的数学教学中,我们通常是推导公式,首先教师讲解例题进行示范,然后学生模仿反复练习.一两堂课下来,学生对数学课的印象就是推导公式、代公式解题,纯粹把数学课看成做题目的枯燥无味的课,长此以往,对数学课就越来越没兴趣.如何提高学生学习数学的兴趣,让学生真正地参与课堂,在实践中培养学生的数学思维,是数学老师一直思考的问题.二、案例再现以五年制高等师范数学教材中的“二倍角的三角函数”这节内容为例,老师在引导学生推导出公式后,对公式进行变形研究,使学生能够找到它的一些其他形式并进行相应的应用.这样既能深刻理解公式,又可灵活应用于解题,课堂气氛热烈,学生学习积极性高.公式的导出部分老师让学生利用学过的正弦、余弦和正切的和角公式,化归为二倍角公式,让学生理解“二倍角” 与 “两角和” 的内在联系.在公式的运用应用部分,老师是这样设计的:提问:二倍角公式结构特征有哪些?师生互动:教师在黑板上板书且同时启发学生注意公式结构中等号两边角度倍数的对比、系数的对比、幂次数的对比,学生思考并回答问题以达到熟练公式结构的目的.学生通过观察比较,能很快地归纳出二倍角公式的结构特征.为了能很好地巩固和理解公式中“二倍角”含义,也为下面灵活应用公式化解和求值做准备,教师设置了以下练习:梯度一 (让学生理解倍角的相对性)在以上问题中主要突出的是倍角的相对性,以及公式左右两边的角的变化.为了进一步巩固所学公式与更深入熟练地掌握公式变形,特意由浅入深设计以下课堂练习以达到相关目的.学生对比二倍角公式的形式特点,基本能准确地填出结论,并且在给出结论的同时也真正理解了“二倍”的含义.二倍角的正弦公式、余弦公式是三角恒等变换中的重要公式,在理解和掌握公式的基础上,若能对公式作一些变形,并在解题中予以灵活运用,则可激活思维,化繁为简,使得解题过程更加简洁明快.教师在学生理解梯度一的基础上,再设计了以下两组变式训练:梯度二:(熟练公式结构并会用公式的逆用)经过三个梯度的训练,学生对公式的结构与公式的应用达到基本熟练之后,下一步就可以提供机会让学生利用倍角公式进行求值运算、以培养学生运算、分析和逻辑推理能力,可以很好地完成本节课的教学目标之一与难点之一.三、案例教学反思上课班级的学生基础相对较好,特别是男生,如果纯粹是讲公式后让学生模仿做题目,学生没有独立思考的机会,没有亲自体验公式和概念的形成过程,只能是做题目的机器,对知识一知半解,更不用说学以致用了.学生也会觉得没有挑战性,从而对数学学习缺乏积极性.学生只有在亲自实践中才能获取新知识的能力、分析解决问题的能力,以及交流与合作的能力.老师在教学中对二倍角公式的深化变式,让学生积极思维,既提高了学习的积极性,又加强了对公式的理解和应用.数学的公式有很多的变式,这些变式为学生提供了广阔的天地,同时在公式的变式过程中可以充分体现数学公式的转化和简化功能,从而有利于学生更深刻地理解数学公式的本质.通过探求公式的变式的应用,可以培养学生直觉思维、快速解题的能力,有利于培养学生的逆向思维、发散思维等,形成良好的思维品质.(一)公式的变式应用可以培养学生简单的直觉思维能力和解题能力直觉思维是导致数学发现的关键,教师在教学中,鼓励学生猜想,形成朦胧的直觉.让学生猜想,不仅激发了他们努力解题,还教会了他们一种应用的思维方式.二倍角公式的熟练应用对于学习三角函数的性质起着很重要的作用.如学习y=sin2x的图像及性质.再如梯度三中的练习sinπ16cosπ16cosπ8,学生看到相同的角,会联想到正弦的二倍角公式,猜想填个系数即可,学生在掌握了二倍角公式的逆向变形特点后,就能很快的与公式进行对比,从而找到系数上的差别,并相应的进行增添,就可以很方便得出答案.(sinα-cosα)2和cos4β-sin4β的解题学生根据做题目的直觉经验,自然会想到先用完全平方和平方差公式展开求解,教师再有意识地引导他们向纵深方向考虑,帮助理清来龙去脉,总结出方法和结论,学生的解题能力也会逐步提高.在教学过程中,有时设置一些顺理成章的“陷阱”也是有益的,可以引导学生积极思维,在猜想、探究、修改的过程中加深对知识的理解和掌握.(二)公式的变式应用可以培养学生的逆向思维能力人们习惯于沿着事物发展的正方向去思考问题并寻求解决办法.其实,对于某些问题,尤其是一些特殊问题,从结论往回推,倒过来思考,从求解回到已知条件,反过去想或许会使问题简单化.数学教学中可表现为某些数学公式、法则等逆用来解决有关问题.如二倍角这节课中,很多学生对于数学课本中的公式很熟练,但对它们的逆向运用却往往忽视.因此,老师在二倍角公式教学中,贯穿双向思维训练,除了让学生理解概念本身及其常规应用外,还注意引导启发学生反过来思考,从而加深对概念的理解与拓展.如梯度一和梯度二的设计,这样正向和逆向叙述相结合,使学生对公式的理解更加深刻,知识掌握得更加灵活,对数学思维的训练也起着重要的作用.(三)公式的变式应用可以培养学生的发散思维能力赞可夫说过:“凡是没有发自内心求知欲和兴趣的东西,是很容易从记忆中挥发掉的”.在课堂教学中应该适当给学生提供独立思考问题、自己提问题的条件与机会为发散思维的培养创造良好的内、外部的环境.老师在教学过程给出(sinα-cosα)2 和cos4β-sin4β题目给出后,没有直接板书讲解,而是让学生讨论,给学生提供探索尝试的机会.学生们跃跃欲试,积极动脑,一部分学生能自己利用二倍角公式和平方公式推算出结论,运用已学知识去解决新问题,并进行多种尝试,学生的解题思维得到拓展,学习积极性提高.如果老师怕学生在课堂上听不懂、吃不饱,总是在课堂上讲个不停,即使提出问题也是匆匆而过,学生没有进行充分思考问题的时间,这样培养的学生也不可能具有探究性思考的习惯与能力,当然谈不上培养发散思维了.数学教学就是数学思维活动的教学.因此,在数学教学中展现思维活动,教师在课堂教学中应该精心设计,给学生充分思考问题的机会和时间,让学生亲自参与思维活动,不仅体现了这种教学思想,而且有利于提高学生的思维的探究水平,从而提高学生学习数学的兴趣.

127 评论

相关问答

  • 毕业论文对学生的训练价值

    一、毕业论文是在导师指导下独立完成的科学研究成果 毕业论文作为大学毕业前的最后一次综合作业,离不开教师的帮助和指导。对于如何进行科学研究、如何撰写论文等问题,每

    8888一美食家 7人参与回答 2023-12-10
  • 运动训练学毕业论文

    运动训练专业属于体育学(一级学科)下设的体育教育训练学(二级学科),而体育学(一级学科)属于教育学的学科门类。故该专业本科毕业生授予:教育学学士学位。

    水蓝冰蓝 4人参与回答 2023-12-06
  • 科研训练毕业论文总结

    阅读论文对科研训练的帮助有:有助于科研能力、创新能力的提升。 阅读论文毕业论文(毕业设计),是带有总结性的集中的科研训练,是在系统掌握专业知识与技术及平时科研训

    黑白无距离 4人参与回答 2023-12-09
  • 研究生毕业论文数学变式训练

    浅谈数学中的研究性学习 (转,供参考)找个自己感兴趣的题目去写,参考范文! 现代社会知识更新的速度不断加快,在高中阶段,对学生传授的知识是有限的,学校教育不可

    虾米啊1 2人参与回答 2023-12-09
  • 研究生科研论文训练大纲

    论文大纲就想到于你即将写的论文的框架结构编写提纲的步骤: (一)确定论文提要,再加进材料,形成全文的概要 论文提要是内容提纲的雏型。一般书、教学参考书都有反映全

    缘分百合 3人参与回答 2023-12-11