苦瓜老太婆
随着影像医学的快速发展,影像检查已成为医疗工作中的重要环节,临床医疗对影像检查的依赖性越来越强。下面是我为大家整理的医学影像技术 毕业 论文,供大家参考。
《 医学影像学的现状和未来初探 》
摘要:医学影像学检查不仅在诊断与治疗的环节发挥作用,而且可以在疾病预防、健康体检、重大疾病筛查、健康管理、早期诊断、病情严重程度评估、治疗 方法 选择、疗效评价、康复等环节发挥越来越大的作用,医学影像学科的地位必将不断提高。
关键词:医学影像学;现状;未来;综述
【中图分类号】R473【文献标识码】A【 文章 编号】1672-3783(2012)04-0140-01
随着医学影像学飞速发展,它在临床医学中的地位不断提高,由X线、超声、放射性核素显像、CT、数字减影血管造成影及介入装置、磁共振成像所组成的医学影像学家族已经成为临床主要的诊断和鉴别诊断方法、医院现在化的重要标志、科学研究的主要手段及医院重要的经济收入来源。现将医学影像学的发展与展望综述如下。
1 医学影像学技术发展的历史回顾
1895年11月8日德国物理学家伦琴发现了一种新型射线(a kind of new rays)。并于11月22日为夫人拍摄了一张手部x线照片,也是人类第一张x线影像。随后,x线被广泛的应用于对疾病的诊断和治疗,形成了放射诊断学和放射治疗学。x线还用于疾病的预防、康复和预后随访。在医学之外,还用于x线衍射分析和工业探伤等多种用途。因此,x线的发现对人类作了重大贡献。1971年亨氏菲尔德发明了CT,将传统的X线的直接成像转变为间接成像,从而奠定了现在影像学的基础,随后出现的MRI、正电子发射型体层摄影术等影像学技术,以及近期出现的分子成像和光成像,使医学影像学在显示形态学状态之外,还能完成组织器官功能检查,并最终在分子和细胞水平显示组织、器官的化学成分和代谢变化。
2 医学影像学现状
曾经在我国长期使用用的x线透视检查的应用逐年减少, 大型医院或者发达地区的中小医院已逐步取消透视, 而代之 以x线摄影检查, 且以DR检查占主导地位。传统 X线造影检查被多排螺旋CT和磁共振成像所取代 首先是 X线脊髓造影检查被 MRI所取代;其次是多排螺旋CT和MRI结合光学内镜逐步取代 X线消化道造影、经静脉肾盂造影和胆道造影等检查;然后是 DSA的诊断性血管造影检查逐步被CT血管成像和MR血管成像所取代。 伴随设备的逐步普及,CT已经成为临床(尤其急诊)最重要的影像检查方法。MRI具有无创伤、 无射线辐射危 害,成像参数多、获得的信息量大,软组织对比度最佳等显著优点,是最活跃的影像学研究手段,已经成为很多重要疾病的确证诊断方法。超声以其设备普及、价格低廉、无创伤、无射线辐射危害、可在病床旁边实施和便于复查等优点, 成为目前临床应用最主要的影像学筛选检查技术。以早年的CT为起点,CT、MRI等设备开始提供横断层面影像。同时,得益于计算机技术的进步,今天已经可以在较短时间内把上述的信息“重组”(reformation)为三维的、分别显示兴趣结构的、带有仿真色彩的,甚至以内窥镜的信息模式显示的“直观信息”。举例说,一个重度创伤的病人可能会有骨折、颅脑损伤、内脏损伤、血管损伤及其他并发症。今天,只需用CT从头到脚在数十秒钟内完成采集,病人即可回病房作急症处理,而放射科医师可使用一次采集的信息分别显示出骨骼、颅脑、内脏、血管等结构与病变,并给急症医师提供“直观的”兴趣结构的三维的、彩色仿真的诊断信息。这样的信息已经超越了大体解剖学的可视能力,达到了即使在手术刀或解剖刀下都不可能完全洞察的水平。
3 医学影像学技术的发展趋势
各种医学影像学设备向小 型化、专门化、高分辨力和超快速化方向发展,MRI和CT的全器官灌注成像得到临床普及应用。虽然目前MSCT主要生产厂家的设计理念和主攻方向不一致,导致彼此设备的差异巨大,但是可以预测,在不远的将来,CT机的构造(包括发生器、X线球管的结构和数量、探测器种类和排数等) 将发生实质性变改, 也许球管和探测器的旋转速度更快,使MSCT的时间分辨力突破50 ms大关,使心脏得到真正的“冻结”,而探测器材质的改进能显著提高MSCT的空间分辨力。 各种介入治疗成为常规有效的治疗方法。集诊断与治疗一体化的医学影像学设备也在不断成熟和普及, 使疾病的诊断更加及时、 准确,治疗效果更佳。应用计算机仿真技术设计外科手术方案、 由影像导航 系统直接引导外科手术入路、确定手术切除范围,并在术中直接应用MRI对病灶切除范围进行现场评价会逐渐普及应用。在影像学网络化的基础上,医学图像处理将成为常规,而服务器软件取代工作站,实现多点同时后处理,并使图像后处理的自动化程度进一步提高。 伴随远程影像学的普及和宽频带网络的应用,医学影像学图像的远程传输更为快捷,图像更加清楚,影像学科医生可以在家里或者在出差旅途中完成诊断 报告 。
分子成像是医学影像学的 热点 研究方向之一,伴随分子成像的研究进展,会有多种组织、器官特异性对比剂问世,这些新型对比剂能显示特定基因表达、 特定代谢过程、特殊生理功能,其毒副作用更小、对比增强效果更佳、诊断的特异性更强,真正实现疾病早期诊断。开发疗效监测对比剂(或称分子探针),以在最短时间得到治疗的反馈信息, 在分子水平上进行疾病的靶向治疗。除PET外, 其他医学影像学技术也能直接用于药物的研发和监测疗效,在活体早期、连续观察药物或基因治疗 的机制和效果,以利于药物筛选和新药开发。此外,分子成像方法和图像后处理技术将得到持续改进,并开发出用于分子成像的影像学新技术。 医学影像学技术的进展还将导致影像学科内部人员构成发生变化,物理师、数学家、生物医学工程师、计算机专家和循证医学专家占影像科室人员的比例越来越高,针对某种重大疾病可以组建包含内、外科和影像学医生的新型科室。医学影像学检查不仅在诊断与治疗的环节发挥作用,而且可以在疾病预防、健康体检、重大疾病筛查、健康管理、早期诊断、病情严重程度评估、治疗方法选择、疗效评价、康复等环节发挥越来越大的作用,医学影像学科的地位必将不断提高。参考文献
[1] 贺延莉,王亚蓉,殷茜,等.T-PACS在医学影像学实践教学中的应用和优势[J].中国医学 教育 技术,2011,25(6):657-659
[2] 刘卫宾,韩冬.浅析普通X射线摄影及其应用[J].中国卫生产业,2011,8(11):115-115
[3] 蒋震,沈钧康,宦坚,等.医学影像学研究生读书报告的方法学探讨[J].中华医学教育探索杂志,2011,10(10):1179-1181
[4] 高艳,李坤成,杜祥颖,等.医学影像学教学中比较影像学的重要性[J].中国高等医学教育,2011(11):79-80
[5] 王安明,史跃,赵汉青,等.格式塔理论在医学影像学诊断中的作用[J].医学与哲学.临床决策论坛版,2011,32(10):67-68
[6] 江传海,余梁,胡正宇.PACS在医学影像学教学中的应用[J].安徽医学,2011,32(10):1778-1779
《 数字图象在医学影像中的应用 》
【摘要】医学影象技术从70年代进入数字时代,二十多年来先后有了MR、B超、DR、DSA、ECT、CR等数字化影像设备投入使用。对医学影像诊断起了很大的推进作用。在客观上促使各种成像技术凭借自身的优势竞相发展。取长补短,综合利用,使疾病的早期诊断率有明显提高。
【关键词】数字图象;医学影像;应用
Digital image in medicine image application
Rao Tianquan
【Abstract】medicine phantom technology enters the Digital Age from the 70's,20 for many years successively have had MR,B ultra,digitized image equipment and so on DR,DSA,ECT,R put into the use. Diagnosed the very big advancement function to the medicine image. In on is objective urges each kind of imagery technology to rely on own superiority unexpectedly to develop. Makes up for one's deficiency by learning from others' strong points,the comprehensive utilization,enable the disease the early diagnosis rate to have the distinct enhancement.
【key word】digital image; Medicine image; Using
图象是周围客观世界的一种印象,数字图象是60年代出现的一种全新的,科技含量极高的产物。它的出现使传统的模拟图象受到了极大的挑战。数字图象和模拟图象相比,二者的区别在于:一:模拟图象是以一种直观的物理量的方法来连续地表现我们期望得知的另一种物理场的特征。而且数字图象则完全以一种规则的数字量的集合来表达我们面对的物理图象。二:用模拟图象的方法来显示图象具有直观,方便的特点,一旦设计出一种图象的处理方法则具有全场性与实时处理等优点。但是模拟图象亦有抗干扰性差,重复精度差,处理功能有限,处理灵活性差的缺点。而数字图象具有很好的抗干扰性,图象处理方便,适应性能强等优点,特别是随着计算机技术的发展,数字图象处理的速度也变得越来越快,越来越显示它的发展潜力和优势。三:数字图象和模拟图象相比,它的图象更清晰、无失真,更便于储存和传输。
从70年代末期开始,医学影像技术进入了数字时代。二十多年来先后有了MR、B超、DR、DSA、ECT、CR等数字化影像设备投入使用。对医学影像诊断起了很大的推进作用。这一些进展无一不是从根本上破除了原有信息载体形式和成像原理的束缚,开创新径而取得的。同时这也在客观上促使各种成像技术凭借自身的优势竞相发展。它们之间不仅没有相互代替,而是取长补短,综合利用,使疾病的早期诊断率有明显提高。
1 数字X线图象的形成
X线透射成像是基于人体内不同结构的脏器对X线吸收的差异。一束能量均匀的X线照射到人体不同部位时,由于各部位对X线吸收的不同,透过人体各部位的X线的强度亦不同,这些穿透过人体的剩余X线就携带着人体被照射部分的组织密度和厚度的信息。这些信息投影到一个检测平面上,即形成一幅人体的X线透射图象。如果这个检测平面是荧光屏,那么我们就得到一幅模拟的图象了。再将这幅图象用不同的方法采集下来(如摄影,录像,拍照等方法)。检测器也可以是 其它 ,如电离室、光电管、晶体压电等等。然后将收集到的信号进行模数转换就形成了一组由不同数字代表X线强弱排列的数字信号了。最后将该组信号交计算机处理经数模转换即成为清晰、无干扰、无变形、无失真的数字X线图象。
2 数字图象技术在X线检查中的运用
X线电视系统:主要由影像增强器和X线闭路电视系统组成,影像增强器把X线像转换成可见光像,而且图象的亮度得到很大的增强,然后通过电视系统进行观察和分析图象,它是实现X线图象数字化的基础。
数字摄影:(DR)对影像增强器所得到的电视信号,用摄像机拾取的高信噪比的电视信号进行数字化,然后再进行各种计算机处理,得到不同效果的图象,这种技术多用于胃肠透视和血管造影成像。该种检查拍摄后立即可以得到图象。不必等待冲洗,还可以动态的观察。
计算机摄影:(CR)它是用影像板(IP)代替胶片暴光,然后将存储在IP板上的X线潜影用激光扫描拾取并转换成电信号,再经计算机处理得到一幅X线数字图象,最终用激光像机把X线图象记录在胶片上。这种方法灵敏度高、敏感范围大、图象清晰。
数字减影:(DSA)用于血管造影,原理是将检查部位于造影前后用摄像机各采集图象,然后将图象数字化后存储在计算机里,用计算机进行处理,将两次采集的图象进行对应像素逐个相减,减影后的图象只留下充盈的血管图象,这样去掉了组织的重叠干扰,可以清楚地观察血管情况。
计算机横断体层装置:(CT)X线对人体横断面的各个方向进行照射,检测器采集到体层各个面对X线的吸收曲线后,用计算机处理所得数据最后以数字矩阵的形式表示横断面上个点的密度值,这样断面上的各点的密度都用确定的数值表示出来,这种对组织密度的量化,可以从数值上来区分健康组织和病变组织,大大提高了诊断的科学性。
此外;数字图象还应用于MIR、ECT、B超等医学影象学科,在我们的日常生活中都离不开数字图象。
参考文献
[1] 王容泉. 《医用大型X线机系统》
[2] 梁振声. 《医用X先机结构与维修》
[3] 邹 仲.《X线检查技术学》
[4] 吴恩惠.《头部CT诊断学》
有关医学影像技术毕业论文推荐:
1. 医学影像毕业论文范文
2. 有关医学影像类毕业论文
3. 医学影像本科毕业论文
4. 医学影像学研究论文
5. 关于医学影像的论文
小花肚子饿
X射线荧光的激发源使用X射线而不使用电子束,因为使用X射线避免了样品过热的问题。几乎所有的商品X射线荧光光谱仪均采用封闭的X射线管作为初始激发光源。某些较简单的系统可能使用放射性同位素源,而电子激发一般不单独使用在X射线荧光光谱仪中,它仅限于在电子显微镜中X射线荧光分析中使用。
X射线荧光谱仪具有快速,无损,高精度和适用性强的重要性能,对所有的元素能进行快速定量分析。波长色散光谱仪的最新进展已经把元素范围扩展到碳(Z=6)。大部分测量范围内可低到10-6水平的检测限下,精度达千分之几。
一、基本原理
荧光的产生是由于初始X射线光子能量足够大,以致可以在样品中产生电子—空穴,导致二次辐射(荧光)的产生。这种二次辐射是组成样品的元素的特征。用于分离和测量初始X射线激发产生的分立的特征波长的技术,被称为X射线荧光光谱学。X射线荧光光谱学提供了一个用测量其特征X射线辐射波长或能量来确定元素种类的定性分析方法,同时测量辐射的特征谱线的强度,然后把这一强度和元素的浓度联系起来,即可进行给定元素的定量分析。根据莫塞莱定律,只要测出X荧光射线的波长,就可确定某元素的存在,只要测出X荧光射线的强度,就可确定某元素的含量。
二、X射线荧光光谱分析
X射线荧光光谱分析仪的主要部件为:激发源、探测器、高压电源、前置放大器、主放大器、模数转换器。
1.获得X射线荧光光谱的方法
X射线荧光光谱法,即X射线发射光谱法,是一种非破坏性的仪器分析方法。为了区别不同宝玉石的成分,常采用两种X荧光分光技术:
(1)波长色散光谱法:通过分光晶体对不同波长的X荧光进行衍射而达到分光的目的,然后用探测器探测不同波长处的荧光强度。
(2)能量色散光谱法:首先使用探测器接收所有不同能量的X荧光,由探测器转变为电脉冲信号,经前置放大之后用多道脉冲高度分析器进行信号处理,得到不同能量的X荧光光谱。波谱仪使用分光晶体,各元素的谱线进入探测器之前已被分光,探测器每次只能接受某一波长的谱线;而能谱仪使用的探测器和多道脉冲分析器,直接测量不同能量的元素的特征X谱线的能量。图13-4-1为合成碳化硅和钻石X荧光能谱图,由图可见Si的能量峰尖锐,其SiKα能量峰位于 keV,由于C是轻元素( Z=6)因此无论是波谱法,还是能谱法目前都较难检测。
荧光能谱仪的类别
(1)便携式X荧光能谱仪:一般为定性、半定量分析。它是以同位素源为激发源。优点是体积小巧,便于携带,适用于现场分析、野外和大型工件或设备上某零件的元素分析及合金牌号的鉴定;主要缺点是分析精度较差。
图13-4-1 碳化硅和钻石X荧光能谱图
(2)小型管激发X荧光能谱仪:一般仅用于高含量单元素的半定量分析。由于探测器采用正比计数管技术,因此体积较小。优点是价格便宜。
(3)大型X 荧光能谱仪:仪器的稳定性、灵敏度、准确度和重现性都很高,可同时分析Na~U 的各种元素,分析的浓度从100%至10-6级。主要特点是采用管激发和Si(Li)探测器技术。
3.制备样品
对宝玉石样品要进行表面抛光,才可放入仪器中进行直接测量。测量前还应做相应的设备检查。
三、X荧光能谱仪在珠宝首饰检测中的应用
1.贵金属首饰成色检测
市场上已有多种型号的测金仪出售,大多配备放射性同位素源,以正比计数管为探测器。固定的放射性同位素源激发能量的范围较窄,正比计数管的分辨率一般较低。因此,这种组合适合于单元素或多元素样品的定量测试。如使用241Am放射性同位素源,适合于激发能量较高的Au(L系)、Ag(K系)、Pt(L系)、Pd(K系)荧光,可用于贵金属成色分析。为了达到准确定量分析的目的,所有仪器均使用标准样品或标准物质进行校正。
2.宝玉石中主元素的确定
天然不同的宝玉石都具有特定的化学成分和晶体结构,测试出矿物中的主要化学元素对鉴定和区分外观相似的宝玉石是具有重大的意义。
3.宝玉石中微量元素的确定
有许多宝玉石矿物属于一个大家族,这些宝石常具有类似的化学成分,有的所含常量元素含量变化不大,但微量元素含量却有不同,如刚玉有红刚玉和蓝刚玉,即红宝石和蓝宝石,根据X荧光能谱定量或半定量结果可以进行其亚种区分:红宝石含Cr 波谱图上出现铬和铝峰;蓝宝石含Fe和Ti在谱图上出现铝、铁和钛峰。
4.宝石产地、产状的识别
同一种宝石因产出的地质条件即产状、产地不同,宝石内部微量元素或痕量元素的种类及含量会有变化,这些变化有时可以反应其产地、产状信息。使用大型X荧光能谱仪可以区分天然红宝石产地:泰国产红宝石具有高铁含量;缅甸抹谷产红宝石具有高镓含量;缅甸孟宿产红宝石具有高钛含量等特征。使用X荧光能谱仪可以区分海水养殖珍珠与淡水养殖珍珠:海水养殖珍珠锶比锰高,而淡水养殖珍珠却具有锰比锶高。
5.合成宝石的鉴定
天然尖晶石与合成尖晶石具有不同的镁铝含量比值。在合成钻石中经常可检测到含有Ni、Co或Fe等元素。
6.优化处理宝石的鉴定
宝石经优化处理后,可能有外来元素进入而引起化学成分出现异常。使用大型X荧光能谱仪可以测出传统银盐染色黑珍珠中的银。
ly的天空
康普顿(Arthur Holly Compton)教授是美国著名的物理学家、“康普顿效应”的发现者。 1892年9月10日康普顿出生干俄亥俄州的伍斯特,1962年3月15日于加利福尼亚州的伯克利逝世,终年70岁。 康普顿出身于高级知识分子家庭,其父曾任伍斯特学院哲学救授兼院长。康普顿的大哥卡尔(KarL)是普林斯顿大学物理系主任,后来成为麻省理工学院院长,他是康普顿最亲密的和最好的科学带路人。 康普顿中学毕业后,升入伍斯特学院。该院具有悠久的历史传统,这对康普顿一生的事业具有决定性的影响。在这里,他所受的基础教育,几乎完全决定了他一生中对生活、科学的态度。在学院以外,康普顿熟悉许多感兴趣的事物,诸如密执安的夏令营、卡尔早期的科学实验,等等。所有这些对康普顿以后的科学生涯也都超着重要的作用。 1913年,康普顿从伍斯特学院毕业后,进入普林斯顿大学深造,1914年取得硕士学位,1916年取得博士学位。他的博士学位论文起先由里查逊(O·W·Richardson)指导,后来在库克(H·L·Cooke)指导下完成。取得哲学博士学位后,康普顿在明尼苏达大学(1916—1917)担任为期一年的物理学教学工作,随后在宾夕法尼亚州的东匹兹堡威斯汀豪斯电气和制造公司担任两年研究工程师。在此期间,康普顿为陆军通讯兵发展航空仪器做了大量有独创性的工作;并且还取得钠汽灯设计的专利。后面这一项工作跟他以后在美国俄亥俄州克利夫兰内拉帕克创办荧光灯工业密切相关;在内拉帕克期间,他跟通用电气公司的技术指导佐利·杰弗里斯(Zay Jeffries)密切配合,促进了荧光灯工业的发展,使荧光灯的研制进入最活跃的年代。 康普顿的科学家生涯是从研究X射线开始的。早在大学学习时期,他在毕业论文中,就提出一个新的理论见解,其大意是:在晶体中X射线衍射的强度是与该晶体所含的原子中的电子分布有关。在威斯汀豪斯期间(1917——1919);康普顿继续从事X射线的研究。从1918年起,他在理论在获得X射线吸收与和实验两方面研究了X射线的散射。散射数据之间的定量吻合之后,根据J·J·汤姆逊的经典理论,康普顿提出了电子有限线度(半径×10-10”cm)的假设,说明密度与散射角的观察关系。这是个简单的开端,却导致了后来形成的电子以及其它基本粒子的“康普顿波长”概念。这个概念后来在他自己的X射线散射的量子理论以及量子电动力学中都充分地得到了发展。 在这一时期他的第二项研究,是1917年在明尼苏达大学跟奥斯瓦德·罗格利(Oswrald Rognley)一起开始的,这就是关于决定磁化效应对磁晶体X射线反射的密度问题。这项研究表明,电子轨道运动对磁化效应不起作用。他认为铁磁性是由于电子本身的固有特性所引起的,这是一个基本磁荷。这一看法的正确性后来由他在芝加哥大学指导的学生斯特思斯(J·C·Stearns)用实验得出的结果作了更有力的证明。 第—次世界大战后,1919至1920年间,康普顿到英国进修,在剑桥卡文迪许实验室从事研究。当时卡文迪许实验室正处于最兴旺发达的年代,许多年青有为的英国科学工作者从战场转到这里跟随卢瑟福、J·J·汤姆逊进行研究。康普顿认为它是一个最鼓舞人心的年代,在这段时间里他不仅限卢瑟福建立了关系;而且也得以与汤姆逊会面。当时,汤姆逊对他的研究能力给以高度的评价,这极大地鼓舞了康普顿,使他对自己的见解更加充满信心。康普顿跟汤姆逊的友好关系二直保持到生命的最后一刻。 在剑桥期间,由于高压X射线装置不适用,康普顿便改用γ射线进行散射实验。这—实验不仅证实格雷(T·A·Gray)其他科学家早期研究的结果,同时也为康普顿对X射线散射实验作更深人的研究奠定了基础。 之后,康普领于1920年回到美国,在圣路易斯华盛顿大学担任韦曼·克劳(Wayman Crow)讲座教授兼物理系主任。在这里他作出了对他来说是最伟大的一个发现。当时,康普顿把来自钼靶的X射线投射到石墨上以观测被散射后的x射线。他发现其中包含有两种不同频率的成分,一种频率(或波长)和原来人射的X射线的频率相同,而另一种则比原来人射的父射线的频率小。这种频率的改变和散射角有一定的关系。对于第一种不改变频率的成分可用通常的波动理论来说明,因为根据光的波动理论,散射不会改变入射光的频率。而实验中出现的、第二种频率变小的成分却令人费解,它无法用经典的概念来说明。面对这种实验所观测到的事实,康普顿于1923年提出了自己的解释。他认为这种现象是由光量子和电子的相互碰撞引起的。光量子不仅具有能量,而且具有某些类似力学意义的动量,在碰撞过程中,光子把一部分能量传递给电子,减少了它的能量,因而也就降低了它的频率。另外,根据碰撞粒子的能量和动量守恒,可以导出频率改变和散射角的依赖关系,这也就能很好地说明了康普顿所观测到的事实。这样一来,人们不得不承认:光除了具有早巳熟知的波动性以外,还具有粒子的性质。这就说明了一束光是由互相分离的若干粒子所组成的,这种粒子在许多方面表现出和通常物质的粒子具有同样的性质。康普顿的这一科学研究成果,陆陆续续发表在许多期刊上。1926年他又把先后发表的论文综合起来写成《 X射线与电子》一书。 1923年,康普顿接受了芝加哥大学物理学教授职位(R·A·密立根曾经担任过这一职位),同迈克尔逊共事。在这里担,他把自己的第一项研究定名为“康普顿效应”。由于他对“康普顿效应”的一系列实验及其理论解释,因此与英国的A·T·R威尔逊一起分享了1927年度诺贝尔物理学奖金。这时他年仅35岁。同年,他被选为美国国立科学院院士,1929年成为C·H·斯威夫特(C·H·Svift)讲座教授。 1930年,康普顿改变了自己的主要兴趣,从研究X射线转为研究宇宙射线。这是因为宇宙射线中的高能γ射线和电子的相互作用是“康普顿效应”的一个重要方面(今天,高能电子与低能光子相互作用的反康普顿效应是天文物理学的重要研究课题)。第二次世界大战期间,许多物理学家都关心“铀的问题”,康普顿更不例外。1941年l1月6日,康普顿作为国立科学院铀委员会主席,发表了一篇关于原子能的军事潜力的报告,这篇报告促进了核反应堆和原子弹的发展。劳伦斯在加利福尼亚大学发现钚,不久,曼哈顿工区冶金实验室负责生产钚,这些方面的工作主要也是由康普顿和劳伦斯领导的。费米设计的第一个原于核链式反应堆,也曾受到康普顿的支持和鼓励。 战争末期,康普顿接受了圣路易斯华盛顿大学校长的职位。二五年前,他正是在该校做出了最大的物理发现——“康普顿效应”。1954年,康普顿到了应从大学行政领导岗位上退休的年龄了。退休后,他继续讲学、教书并撰写著作。在此期间他发表了《原子探索》一书。这是一部名著,它完整而系统地汇集了战争期间曼哈顿计划中所有同事的研究成果。 康普顿是世界最伟大的科学家之一。他所发现的“康普顿效应”是发展量于物理学的核心。他的这一发现为自己在伟大科学家的行列中取得了无可争辩的地位。
期刊名称:光谱学与光谱分析GUANGPUXUE YU GUANGPU FENXISPECTROSCOPY AND SPECTRAL ANALYSISSPECTR
不用注册,免费下载,专门提供关于无损检测方面的文献: 标准下载: 论文下载: 参考资料:
撰写文献综述步骤: 1、搜索相关文献 2、评价来源 3、识别主题、辩论和差距 4、概述结构 5、写文献综述
医学影像技术论文范文 在日常学习、工作生活中,大家都经常接触到论文吧,论文是学术界进行成果交流的工具。你写论文时总是无从下笔?以下是我帮大家整理的医学影像技术论
相信很多人会遇到这样一个类似的问题,那就是在英文论文写好之后,却苦于找不到国内经常使用的论文发表期刊有哪些。下面是根据多年的经验总结出来的其中比较受欢迎的期刊,